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The influence of interelectron scattering on the galvanomagnetic effects in strong electric 
fields is investigated under conditions of inelastic scattering on optical phonons at low tem
peratures T « w 0 ( w 0 is the optical phonon frequency). A displaced Maxwellian distribution 
is employed for describing the electron distribution. The temperature T* and drift velocity 
u of the distribution are determined from the energy and momentum balance equations. In
elasticity of scattering results in a large anisotropy of the distribution, i.e., mu2 » T *. It 
is shown that "disruption" of dissipative effects occurring for H/E = 2c/v0 ( v0 is the elec
tron velocity for an energy w =Eo) takes place irrespective of the efficiency of the inter
electron collisions. However the singularity of the galvanomagnetic characteristics for this 
critical value of the ratio H/E is weakened by interelectron collisions. The effect of inter
electron collisions is particularly pronounced under conditions of open-circuited Hall con
tacts. 

1. INTRODUCTION 

GAL V ANOMAGNETIC effects in strong electron 
fields under conditions of inelastic scattering of 
electrons by optical phonons have been studied 
in [t] and [21. At low temperatures T « w0, where 
w0 is the frequency of the optical phonons, it is 
convenient to divide momentum space into two 
regions-an active region in which E ( p) < w0 and 
a passive region in which_ E ( p) > w 0• In the active 
region the frequency of scattering by the lattice is 
determined by the spontaneous emission time of 
the phonon T+, and in the passive region-by the 
induced absorption time of the phonon T-. In the 
temperature interval under consideration, these 
times differ appreciably: 

't+ ~ No't-, No= e-ooo/T ~ 1. (1.1) 

There appear therefore two characteristic fields 
E± given by the relations 

eE±-r;± = Po, Po = l'2mooo. ( 1. 2) 

In the range of fields 

(1.3) 

the electron has time between two acts of phonon 
absorption to cover the entire section of the tra
jectory in the passive region; however, having 
reached its boundary, i.e., having attained an en-

ergy E = w0, it emits a phonon and stops almost 
instantaneously. Owing to the fact that in the pas
sive region the dynamics of the electron is not 
"reduced" by collisions with the lattice, the 
nature of the trajectories in the passive region 
has a decisive effect on the electron distribution 
and the galvanomagnetic effects. Therefore the 
gauss-ampere characteristic (the dependence of 
the current j on the magnetic field H for a,fixed 
electric field E) has singularities at two values 
of H at which the topology of the electron trajec
tories in the passive region changes. [21 
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In this paper we study the effect of interelec
tron collisions on these singularities of the gauss
ampere characteristics. To this end, we consider 
the opposite limiting case when the interelectron 
collisions fully maxwellize the distribution both in 
the passive and in the active region; the essential 
criteria for this have been discussed in [3]. 

Restricting ourselves for simplicity to an iso
tropic model, we have the following Maxwell dis
tribution (normalized to unity): 

f (p-mu)2 }· 
f(p) = (2:rtmT*)-''' exp l- 2mT* 

(1.4) 

The parameters of this distribution-the electron 
temperature T * and the drift velocity u-are ob
tained from the equations of the energy and mo
mentum balance. [4] 
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2. BALANCE EQUATIONS where 

The balance equations of the energy and mo
mentum are of the following form: 

eEu= Q, (2.1a) 

eE + ~[uH] = N. (2.1b)* 
c 

We have here on the left-hand side the energy and 
momentum acquired by the electron system from 
the field in unit time, and on the left the energy 
and momentum lost in unit time in collisions with 
the lattice (calculated per electron). It is conven
ient to calculate the quantities on the right-hand 
side as follows. One introduces the ''powers'' of 
energy and momentum loss by a test electron with 
momentum p [a] : 

Q(p) = S dp' W(p, p') [e(p)- e(p')], (2.2a) 

N {p) = ~ dp'W {p, p'){p- Pl (2.2b) 

Then the right-hand parts of (2.1) are calculated 
as averages of the quantities (2.2) over the distri
bution ( 1.4): 

Q = ~ dpf(p)Q(p), N=S dpf(p)N(p). (2.3) 

It is convenient to represent W in the form of 
a sum of components w+ and w- which correspond 
to emission and absorption of a phonon. Then the 
quantities (2.2), and as a result also (2.3), will 
also split up into the sum of the corresponding 
terms. At the same time the energy difference in 
(2.2a) which is equal to ± w0 is taken out from 
under the integral. The resultant quantities 

_1_ = s dp' W±(p, p') (2.4) 
To± {p) 

are the lifetimes of the state p with respect to 
emission and absorption of a phonon. [5] Because 
of the isotropy of the model it follows from sym
metry considerations that 

To±(p) = To±(e), N±(p) = p/~{e), (2.5) 

where T± are the corresponding relaxation times 
of the momentum of the test particle. 

Relations (2.5) make it possible to integrate in 
(2.3) over the angles; as a result of this one finds 
for the right-hand parts of (2.1) the final expres
sions: 

Q= Q+-Q-, (2.6a) 

N = N+ + N-, N±liu, (2.6b) 

*[uH] = u x H. 

00 

1 roo 
Q± = J deg(e) fo(e) To±(e) , 

Wo,O 

~ 1 p(e) ( ) 
N±= J deg(e)3"fi(e) T±(e) . 2.7 

roo,O 

Here the integration is carried out from E = w o 
for phonon emission and from E = 0 for absorp
tion; g (E) is the density of states. 

The functions fo and f1 are the coefficients of 
the expansion of the distribution (1.4) in Legendre 
polynomials of the angle between p and u which 
appear on integration over the angles. They are 
calculated by elementary integration and for what 
follows below it is convenient to write them by in
troducing the following dimensionless parameters: 

Y=_:__, b= roo., a=~=r mu2/2 J'h. (2.8) 
w0 T Vo l roo 

We then have 
f0 (e) = C exp {-b(y + a2)} S (2ab {y), (2. 9a) 

If3f1 (e) = C exp { -b (y + a2 ) }S' (2ablfY}, (2.9b) 

where 

C = _!_!\ !?__)''', S(x) = ~shx 
Po3 :rt x 

(2.10) 

and the prime denotes differentiation over the 
inner argument. 

Explicit expressions for the times T~ and T± 
have been obtained in [S]. We shall write them in 
the following form 

1 1( 1 1) ---=- No+-+- cp±(l'y), 
To±(e) To 2 2 

(2.11a) 

- 1- =~(No+_!_+ _!_)'IJ±(l'Y). 
To±(e) To 2 2 

(2.llb) 

Here To is a constant of the order of the spontane
ous emission time of a phonon; the functions cp± 
and 1/J± are different for deformation (DO) and 
polarization (PO) interaction of electrons with 
optical phonons: 

DO: cp±(l'Y) = \jl±(l'y) = (y + 1) 'h; 

PO: cp+(l'Y) = y-'f, Arch y''', 

cp- (l'Y) = y-11, Arsh y''', 

'IJ±(l'y)= (2y)-1 [(y + 1)'h + cp±(l'y)]. 
(2.12) 

Expressions having no meaning in the real region 
should be considered to vanish. 

The values of Q and N have been calculated 
both for DO [7] and for PO, [B] however only for 
small anisotropy of the distribution when 
% mu2/T* = a 2b « 1. We note in this connection 
that such a distribution is for inelastic scattering 
only valid for weak heating T * - T « T which 
corresponds to E « E-. The range of fields (1.3) 
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of interest to us corresponds, as can be shown, to 
a ~ 1 and b » 1, i.e., a2b » 1. This enables one 
to calculate the integrals (2. 7) by the method of 
steepest descents with respect to the parameter 
b. In (2.9a) one can replace sinh x by % exp x, 
and in (2.9b) one can differentiate with respect to 
x only the rapidly changing exponent. We then 
have under the integral sign, upon integrating with 
respect to y, 

exp {-b(l'Y- a) 2}, (2.13) 

with the saddle point at y = a2 and with a charac
teristic length of the change t::;.y ~ b-112 « 1, 
whereas the remaining multipliers in the integrand 
change over a length Ay ~ 1. For N- and Q- the 
integration interval from y = 0 to y = oo always 
contains a saddlepoint; for N+ and Q + the saddle
point falls in the integration interval from y = 1 
to y = oo only when a > 1. Therefore when a < 1 
only the neighborhood of the point y = 1 contributes 
to N+ and Q+; as can be seen from (2.12), in this 
neighborhood cp+ and l{; + are the same for DO and 
PO. 

Allowing for all these remarks, we find 

Q = ~<l>(a, b), N = ~ 'l'(a, b), (2.14) 
To To 

where 

<D (a, b)= Q>+(a, b) -lV0cp-(a), 

'l'(a, b) = lJI+(a, b) + Noa¢-(a). (2.15) 

Here the terms connected with the emission of 
phonons have in accordance with the location of 
the saddle point different forms: 

<J>+(a, b) = lJI+(a, b) = :x(a, b) 

=:1/ 4a-1 (1- a)-'f,b-1 exp {- b(1- a2)}. a< 1; (2.16) 

<J>+(a, b) =~cp+(a), lJI+(a, b) ='a'lJ+(a), a> 1.(2.17) 

3. SOLUTION OF THE BALANCE EQUATIONS 

Proceeding to the solution of the balance equa
tions, we introduce the characteristic field E0 and 
dimensionless parameters with the aid of the 
following relations 

eEoTo = po, WH = eH/mc, 

E 
6 = Eo, ~ = WHTo, 

~ H Vo 
~=-=--26 E 2c · 

(3.1) 

One can readily see that 

(3.2) 

so that instead of (1.3) we have 

(3.3) 

From (2.1) there follows a system of equations 
for a and b: 

<D(a, b)= 2a'l'(a, b), 

62 = ~2a2+ 'l'(a, b)2. 

(3.4a) 

(3.4b) 

After solving this system one finds the Hall angle 
J between E and u: 

cos'l't = 6-ilJI(a, b). (3.5) 

Equation (3.4a) is obtained after scalar multiplica
tion of (2.1b) by u and use of Eq. (2.1a). To obtain 
(3.4b) one must transfer in (2.16) the Lorentz 
term to the right-hand side and square it. Equa
tion (3.5) is obtained from (2.1a). 

We note above all that in the range of fields 
(1.3) the system (3.4) has no solutions for a - 1 
~ 1 or a - 1 » 1, i.e., for u which exceeds v0 

appreciably. From (2.15) and (2.17) it follows that 
for such values of a we have lJt ~ 1 or lJt » 1; it 
follows therefore from (3.4b) that ~ ~ 1 or ~ » 1 
in contradiction to (3.3). For this reason we shall 
assume below that a< 1; it is readily seen that 
in conjunction with b » 1 this means that the 
main bulk of electrons is in the passive region in 
accordance with the results obtained in [2] without 
account of interelectron scattering. Assuming 
a < 1, we leave out a small interval of values of 
this parameter a - 1 « 1. For such a close to 
a = 1 we have, as is seen from (2.15) and (2.12), 
lJt « 1. It follows therefore from (3.4b) that such 
a are only possible in a small interval of values 
K on the left of K = %. As will become clear from 
the following, this interval is of no particular in
terest. 

Using (2.16), we obtain for a< 1, instead of 
(3 .4), the following system: 

x(a, b) (1- 2a) = N0 [2a2¢-(a) + cp-(a)], (3.6a) 

62 - ~?a2 - x(a, b) 2 = 2Nox(a, b)a'lJ-(a) + N02a~-(a)2. 

(3.6b) 
Let us first consider the lattice at absolute 

zero, i.e., T = 0 or N0 = 0. Then we have from 
(3.6a) a =% or X (a, b) = 0. One can see from 
(2.16) that the latter equality is satisfied for 
b = oo. From (3.6b) we find that a = Y2 K corre
sponds to the root b = oo and 

(3. 7) 

corresponds to the root a = Y2, where x = L ( z) 
is the solution of the equation x exp x = z. Ac
cording to (3.3) we have z » 1 and consequently 
b » 1 which justifies the assumption made in cal
culating the integrals. Approximately, 
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s 
L(z) = ln---, z~1 

z 
ln-

z 
ln-

(3.8) 

We shall restrict ourselves to the first approxi
mation L ( z) = ln z, leaving out under the logar
ithm sign factors of the order of unity compared 
with larger factors. 

There are thus at zero lattice temperature two 
branches of the solution of the balance equations: 
a dissipative branch for K < 1: 

u = 1/2vo, 

f} = arcsin x; 

and a nondissipative for K > %: 

(3.9) 

u = cE/H, T* = 0, ft = n/2. (3.10) 

The limitation K > % for the nondissipative solu
tion is obtained from a < 1. 'the limitation 
K < % for the dissipative solution follows from 
(3.1b); i~ we substitute here a = %. we find ~2 
> t I 4, 1.e., K < 1. In the region Y2 < K < 1 there 
exist solutions connected with both branches. 

We now proceed to consider the case T "" 0 
when there is scattering in the passive region. 
Then it follows from (3.6a) that a < Y2, i.e., the 
nondissipative solution in the interval Y2 < K < 1 
vanishes. In other words, the nondissipative solu
tion of the balance equations is unstable with re
spect to weak scattering in the passive region. It 
is interesting to calculate the corrections to the 
solutions of the balance equations for the nondis
sipative and for the dissipative branch near the 
point at which the latter joins the nondissipative 
branch at K = 1. Leaving out numerical factors of 
the order of unity, we have: far from the junction 
point, where K -1 » (No/~)2/3, 

a-1/2x:::::: -(N0/~)2x(x-1)-2, (3.lla) 

b= (1-1/2x)-2 ln[N0- 1(x-1)], (3.llb) 

cosft::::::: (Non)x(x -1)-1; 

near the junction point, where l K - 11 
»(No/~ )2/3, 

b = ln [N0-'h ~-'Ia], 

(3.llc) 

(3.12a) 

(3.12b) 

(3.12c) 

As is seen from a comparison of (3.11) and (3.12), 
the largest effect of scattering is in the passive 
region in the neighborhood of the point K = 1. 

4. PHYSICAL MEANING OF THE VARIOUS 
BRANCHES OF THE SOLUTION. "COOLING" 
OF THE ELECTRON GAS 

Let us compare the solutions (3.9) and (3.10) 
with the results of the treatment without allowance 
for interelectron scattering in [2]. For the nondis
sipative solution the velocity u is the velocity of 
the magnetic drift; T* = 0 means that all the 
electrons are in the passive region and do not in
teract with the phonons. It is readily seen that 
this solution corresponds to closed trajectories 
on which the electrons have the same average 
velocity and do not emit phonons. The dissipative 
solution corresponds to half a unclosed main tra
jectory. The velocity u of this solution corre
sponds to the center of the chord joining the be
ginning and end of that section of the trajectory, 
and differs slightly from the average electron 
velocity on this trajectory corresponding to the 
center of gravity of the arc. For this solution 
T* "" 0, i.e., a portion of the electrons is in the 
active region transferring energy to the lattice. 
Whet the number of solutions changes, the points 
K = Y2 and K = 1 correspond to values of the mag
netic field for which the topology of the trajector
ies changes: with increasing K closed trajectories 
appear in the passive region for K = Y2, and for 
K = 1 the main trajectory closes. The instability 
of the nondissipative solution with respect to 
scattering in the passive region corresponds to 
the circumstance that the electron removed by 
such scattering from a closed secondary trajec
tory does not return to it, whereas that removed 
from the main trajectory returns to it after the 
emission of a phonon. 

We note that the nonuniqueness of the solutions 
of the balance equations also takes place for the 
case of runaway [9•10] when an extremum of the 
energy distribution function at the point Es corre
sponds to each value of T*; in this case Es 
~ T* and stable solutions for T* correspond to 
maxima of the distribution and unstable ones-to 
minima. The same points Es can be defined as 
the values E of the test electron for which the 
energy coming from the field is equal to the energy 
transferred to the lattice. One can apparently 
draw the following conclusion: whereas in mo
mentum space there are several regions in which 
a balance is observed between the action of the 
field and the scattering, interelectron collisions 
can maxwellize the distribution near each of these 
"regions." In the case of runaway these regions 
are the equal-energy surfaces E ( p) = Es, whereas 
in the case considered here it is half the main 
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FIG. 1. Dependence of the electron temperature on the mag
netic field. The dashed curve shows the dependence at T = 0. 

trajectory and the region occupied by closed tra
jectories. 

Let us now discuss the connection between the 
obtained results with the so-called "cooling effect 
of the electron gas" observed in [lt l and [12T where 
it was shown that under given conditions one can 
obtain T * < T in an electric field (for H = 0). 
For K = 0 it follows from (3.9) that T * 
= wo/ln ~-4 , whence one obtains T* < T for the 
condition ~ < N~ 4 consistent with (3.3). At the 
limit of applicability of our results for ~ f':j N0 we 
have T* = T/4. We note that the conditions for 
which T * < T was obtained in [121 are strongly 
reminiscent of the assumptions under which (3.9) 
was obtained. The conditions T ~ w0 and T ~ ms2 
(for acoustic scattering, s is the speed of sound) 
obtained in [121 signify in fact [51 that the scattering 
is sufficiently inelastic, whereas the necessity of 
expandinT in a2b up to and including the second 
power [12 means that the effect is connected with 
an appreciable scattering anisotropy. However, 
in [121 there is no limitation on the field from be
low; implicit use is made instead of a limitation 
on the field from above which is much stronger 
than that in ( 1.3) . 

For T "'- 0 the dependence of T* on H/E is 
nonmonotonic; this follows from (3.9), (3.11b), and 

FIG. 2. Gauss-ampere characteristics of the longitudinal 
and transverse currents (with respect to the field). The dashed 
curves show the characteristics in the absence of interelec
tron scattering. 

(3.12b). The T*(K) dependence is shown in Fig. 
1; the upper part refers to the case ~ < N~4 , the 
lower to the case ~ > N~ 4 • T* reaches a mini
mum at the point at which the branches join, i.e., 
for K f':j 1; the value of T fuin is obtained from 
(3.12b). The maximum is reached for K ""'w 0/T; 
T inax f:::l T if one neglects ln ( w0/T) compared 
with w0/T. In the region K- 1 »(No/~ )2/3, T* 
does not depend on E. 

5. GALVANOMAGNE'l'IC EFFECTS AND 
GENERATION OF OPTICAL PHONONS 

With the aid of (3.9) and (3.10) one can readily 
calculate the components of the current j parallel 
and perpendicular to the field E for T = 0. Re
taining for Y2 < K < 1 only the stable dissipative 
branch, we have 

. -{io(1-x2)''•, x< 1 
Ju- 0 1 ' 

' x>' 
. _ {iox, x < 1 
l.l.- . i 1 ]ox-, x > , 

(5.1) 

(5.2) 

where j0 = % env0 is the current in the absence of 
a magnetic field, and n is the electron concentra
tion. 

The corresponding graphs are shown in Fig. 2 
where the dashed lines indicate for comparison 
the currents calculated without allowance for 
interelectron scattering. It is seen that the main 
effect-the disruption of dissipative processes for 
K = !-occurs independently of the frequency of 
interelectron scattering. However, the singularity 
at K = 1 becomes weaker: 1) the finite discontin
uity of the function jll ( K) is replaced by an in
finite discontinuity of the derivative a j II ( K )/a K; 

2) the infinite discontinuity of the derivative 
a h ( K )/a K is replaced by a finite discontinuity. 

Allowance for the scattering in the passive 
region changes the gauss-ampere characteristics 
appreciably only near K = 1 and for K > 1. The 
corrections are easily found with the aid of (3.11) 
and (3.12). The singularity is smoothed out over 
the interval 

L\x ~ (No/6)'1• ~ (E-/E)'I• ~ (oon·r-)-'1• (5.3) 

On increasing K to K = 1 the current jll does not 
decrease to zero but to a value of the order of 
jo(WHT-)-113; on further increase of K to (K- 1) 
f':j 1 it decreases to a value of the order of 
jo(WHT-)-1. 

The not very sharp difference between the 
gauss-ampere characteristics with no interelec
tron scattering and when it predominates is en
hanced if one changes the boundary conditions of 
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the experiment turning from the regime of a given 
field which was considered above to one of given 
current (corresponding to closed or open Hall 
constants-infinite sample and platelet). In this 
case one fixes in the experiment not the total E 
but only Ett along j and one measures the total 
current j 2 = jf1 + jl· The dependence of j on K 11 

= Hv0/2Ettc is therefore of interest. This depend
ence is given by the relations 

p = ju2(x) + i.J..2(x), x =xu cos 'l't(x), 

tg 'l't(x) = i.J..(x)/in (x). 
(5.4) 

Since h is a continuous function of K, and there
fore also of K II• then at that value of K II which 
corresponds to K = 1 the total current decreases 
sharply. 

Using (5.1) and (5.2), as well as (3.1), [11 we find, 
respectively, when interelectron scattering pre
dominates: 

(5.5) 

and with no interelectron scattering: 

xu2 = 1 + arc~n x [ arcs~n x- 2y1- x2 J. (5.6) 

With increasing K the quantity K II increases, 
K = oo and K II = ( 1 + 1r2/ 4 )t/ 2 corresponding to the 
value K = 1. In other words, in the regime of a 
given current the interelectron scattering in
creases strongly the value of the magnetic field at 
which the disruption of dissipative processes oc
curs. The reason for this can be understood if 
one compares the behavior of tan~ ( K) for K - 1 
in both cases. With interelectron scattering 
tan ~ - oo for K - 1, whereas with no interelec
tron scattering tan~ --11"/2. Therefore in the first 
case on approaching K = 1 the Hall field E 1• and 
with it the total field E, increase without limit, 
decreasing thereby K (the Hall field acts as a 
feedback). In the second case E is bounded and 
K = 1 can be reached, albeit with a slightly larger, 
by a factor of ( 1 + 1r2/ 4 )11 2, magnetic field. 

For open Hall contacts the nature of the depend
ence of T* on the magnetic field also changes. 
Under these conditions the critical point K = 1 
corresponds to K II = oo. The minimum in the de
pendence of T * on K 11 is therefore not reached 
and the interval of monotonic decrease from K = 0 
to K = 1 extends over the entire axis from K tl = 0 

to Kit =oo. 

The disruption of the dissipative processes can 
be observed on the generation of optical phonons. 
The number of phonons with momentum q gener
ated in unit time is 

dl(q)=ndq) f(p)W+(p,p-q)dp. (5.7) 
e>ooo 

Utilizing the distribution (1.4), and omitting con
stants and pre-exponential factors, we find the 
spectral density of the generated phonons 

dl(q)= exp{- b[~sin2 a+_!_( _!_+~)2 
4 4,po q 

- ~cos a( ~0 +p; )]} dq, (5.8) 

where a is the angle between q and u. For fixed 
q this function has a maximum in a for a = 0, 
and for fixed a a maximum in q for q = p0• This 
means that the basic characteristics of the phonon 
emission are the same as without interelectron 
scattering. On going away from the point of the 
maximum the spectral density decreases expo
nentially; the characteristic widths of the peak 
are 

(5.9) 

i.e., the phonon emission is monochromatic to a 
high degree. 

The monochromaticity in the absence of inter
electron scattering can be estimated from Fig. 1 
of [1 J in the following way: .Q.q ~ .6. + p + .6. -p and 
.Q.a ~ .6.-p/p0 where A+p is the penetration depth 
of electrons into the active region, and A-p is the 
radius of the sphere into which they return after 
emission of a phonon. From energy conservation 
and (2.19)[1] we have: 

( E )'I• !J.+p ~Po Eo . (5.10) 

As a result we find 

l!.q ~ Pos'1·~po, !!.a~ 6'1·~ 1. (5.11) 

Comparing (5.11) and (5.9), in which b has 
been substituted in accordance with (3.9), we see 
that consistent with the weakening of all singulari
ties the interelectron scattering decreases the 
monochromaticity. The total number of generated 
phonons can be found in the following obvious way: 

r nQ E . 
1= J d/(q) =-=-Jn· 

Wo Wo 

(5.12) 

In conclusion we note that qualitatively all the 
results obtained above are also valid in the case 
when the scattering in the passive region is of a 
different nature, when it is connected with impuri
ties and acoustic phonons; the meaning of T

changes accordingly, but it is essential that, as 
before, T- » T+. 
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