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A method is developed for describing non-equilibrium processes in a partially ionized plasma 
by taking into account inelastic processes. The initial set of equations is that for four opera­
tor density matrices that describe the states of free and coupled charged-particle pairs 
(electrons and ions) as well as transitions from bound states to free ones and vice versa. 
The equations are considered simultaneously with those for the microscopic electromagnetic 
field strengths. Expressions in which inelastic processes are taken into account are ob­
tained for the field spectral functions, and a set of kinetic equations for the electron, ion, and 
atom distribution functions is obtained, in which inelastic processes are taken into account. 
The properties of the collision integrals are such that they ensure conservation of the total 
number of charged particles, the total momentum, and the energy. The Maxwell-Boltzmann 
distribution is the equilibrium solution of this set of equations under conditions of chemical 
(ionization) equilibrium. 

The approximation in which the kinetic equations have been derived corresponds to the 
Born approximation for elastic and inelastic processes, but with atomic motions and polari­
zation of the medium taken into account. The polarization of the medium is due to four 
processes: motion of free charged particles, variation of the internal state of the atoms, and 
transitions of the charged particles from the bound state to a free one or vice versa. 

A set of equations for the electron, ion, and atom concentrations is derived with aid of the 
kinetic equations. The ionization coefficient for longitudinal electric field quanta is calculated. 
The expressions for the equilibrium ionization and recombination coefficients of colliding 
particles are considered. 

INTRODUCTION 

IN studies of the statistical theory of non-equili~ 
brium processes in a plasma [1- 81, principal at­
tention is paid to the investigation of a fully­
ionized plasma. The starting point is either the 
system of equations for the distribution functions 
of the coordinates and momenta of all the charged 
particles [2•81, or the system of equations for the 
microscopic phase density of each plasma com­
ponent and the microscopic electromagnetic 
fields [7). In the quantum case, the chain of equa­
tions for the distribution functions is replaced by 
a chain of equations for the density matrices of 
one, two, etc. particles [81, and the equations for 
the microscopic phase densities are replaced by 
the corresponding operator equations [9, 101. The 
initial equations are valid, naturally, for a de­
scription of both fully and partly ionized plasma. 
Limitations arise in the choice of the method of 

approximately solving the initial equations. 
The kinetic equations are derived for a plasma 

by using the assumption that the correlation func­
tions are small [2•4- 81 . In zeroth approximation, 
that is, when the correlation of the coordinates and 
momenta of the charged particles is completely 
neglected, a closed system of equations is ob­
tained for the first distribution functions of the 
electrons and ions and for the average intensities 
of the electromagnetic field, namely the Vlasov 
approximation. This approximation can be called 
the approximation of completely free charged 
particles. The term "free charged particles" has 
here a statistical meaning and indicates that the 
correlation functions are equal to zero. 

In the next approximation (in determining the 
collision integral), the correlation is taken into 
account but it is assumed to be small. The small 
parameter is either the ratio of the average poten­
tial energy of the interaction to the average kinetic 
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energy to the particles, or else the plasma 
parameter. Such an approximation is not suitable 
for the description of the bound states of charged 
particles in atoms, for in this case the correlation 
functions are not small. This made it possible, in 
the derivation of the kinetic equations in [1•2•4-sJ, to 
obtain only a collision integral that describes 
elastic scattering of charge particles-the collision 
integral in the Landau form. 

In the present paper we consider a more general 
method of approximately solving the exact initial 
equations; this method makes it possible to de­
scribe the procr Jses in a partly ionized plasma 
with allowance for inelastic interactions between 
the free charged particles and the atoms and of 
the inelastic collisions of the atoms with one 
another. 

In many recent papers dealing with ionization, 
dissociation, and other inelastic processes in 
gases at sufficiently high temperatures, kinetic 
equations with allowance for inelastic processes 
are used to derive hydrodynamic equations. An 
analysis of these papers and a pertinent bibliogra­
phy are contained in [tt-taJ. The kinetic equations 
themselves, which take inelastic processes into 
account, are written in analogy with the Boltzmann 
equation, by introducing appropriate effective 
cross sections. A consistent statistical derivation 
of these equations from exact macroscopic equa­
tions is one of the main tasks of the present paper. 

1. INITIAL MICROSCOPIC EQUATIONS 

We consider a partly polarized plasma. In the 
simplest case, such a system consists of three 
components: electrons, singly-charged ions, and 
neutral atoms. The first two components will be 
designated by indices a and b, and the third by 
the double index ab. The charged particles of 
components a and b will be called free, and those 
of the component ab, that is, the charged particles 
forming the atoms, will be called bound. 

The system on the whole is neutral, so that the 
total number of negatively charged particles (both 
free and bound) is equal to the total number of 
positively charged particles. We denote this num­
ber by N. In order not to complicate the problem 
from the very outset, we confine ourselves here 
to the case of a Coulomb plasma. 

To take into account the bound states in the 
kinetic equations (within the framework of the 
classical theory), it is convenient to separate from 
the very beginning the particle pairs making up 
the atoms (or, in the more general case, more 
complicated particle complexes). To this end we 

can use as the starting point the equation for the 
microscopic phase density of pairs of charged 
particles in twelve-dimensional space ra, Pa. rb, 
Pb• that is, for the function 

Nab(la, Pa,lb, Pb, t) = ~ b(ra- l;a(t) )b(Pa- Pia(t)) 
i~i~N 

X b (rb- r;b (t)) b (Pb- P;b (t)), 

and the equation for the microscopic field [to]. 

For a consistent description of the inelastic 
processes it is necessary to use quantum theory, 
and therefore we shall use in lieu of the classical 
function the corresponding quantum function-the 
operator of phase density in the space ra, Pa• rb> 
Pb: 

Nab= (2:) 6 ~ Pab( la + ~ li-ra,lb + 2
1 /i-rb) • 

X exp {- i (TaPa+ 't'bPb)} d-rad't'b. 

Here Pab is the corresponding operator density 
matrix. 

In place of the variables r~. r~. rb, rb, it will 
be more convenient to use the variables 

R= (mara+mbrb)/(ma+mb), r=ra-lb. (1.1) 

In terms of these variables, the equation for the 
operator density matrix takes the form 

. OPab n 2 (A A ) n 2 (A A ) zn --= -- LlR'- ua• Pab-- Llr•- Llr" Pab at 2Af 2~ 

+{[<Dab (I r' j} + U ab (R', r')]- [<Dab (I r" I) 
+ Uab(R", r")l}Pab· 

Here 

(1.2) 

Uab(R,r) = eaUM(ra) + ebUM(rb)· (1.3) 

The equation for the microscopic potential uM 
can be expressed in the terms of these variables 
in the form 

LlUM (q, t) = - 4n ~ [ ea() ( q ~ ( R + ma ~ mb r)) 
+ eb() ( q- (R- m ma m r)) J Pab(R, R,r, r,t)dRdr. 

a+ b (1.4) 

Equations (1.2) for the function Pab describes 
the distribution of the particle pairs, both free and 
bound. In order to separate the free and the bound 
states and to describe the transitions between 
them, we proceed as follows. 

We use the eigenfunctions of the energy opera­
tor of an individual atom. They are represented 
by the equations 

'ft2 
- 2~ [Llr +<Dab (I r 1)1 'Y oc (r) = Ea'I' a• 

'ft2 
- 2Af Lla'YP (R) = Epo/p. (1.5) 
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The orthonormalization conditions for the eigen­
functions is written in the form 

~ "¥ P' (R) '¥;, (R) dR = (Z~) 3 6 (P'- P"), 

1 { iPR 'Yp (R) = fV exp -n-}, 

for a=n, ~= m 

for OG=p',~=m; ct = n, 
~ = p" 

for a=p', ~ = p" (1.6) 

Thus, the values a =nand f3 = m pertain to the 
discrete spectrum, while a = p' and (3 = p" per­
tain to the continuous spectrum. 

Using the eigenfunctionexpansion, we represent 
the operator density matrix in the form 

Pab(R', R", r', r", t) 

= (Z:~)6 ~ ~ Pall (P', P", t) 'I' a (r') '¥~ (r") 'f P' (R') 

X 'o/~, (R") dP' dP". (1. 7) 

From (1.2) and (1. 7) we obtain a system of equa­
tions for the functions Pab ( P', P", t): 

·n apall(P', P", t) (E E E E P' P" 
l at = a+ P'- II- P") Pall ( • ) 

+ (2:n)s 2] ~ [U ay (P', P1) Pyll (P1, P") 
y 

a= n, p'; ~ = m,p". 

Here 

U all (P', P" • t) 

(1.8) 

= ~ '¥~ (r) 'o/;, (R) U ab (R, r, t) 'o/ p• (R) '¥ 11 (r) dr dR, 

(1.9) 

~ ... = 2] ... + _v_\ .. . ap.1. 
y n (2nnr J ( 1.1 0) 

We have thus reduced the initial equation (1.2) 
to a system of equations for four operator density 
matrices: 

Pnm' Pp'p"' Pnp", Pp· m (P', P", t) 

The first two describe the bound and free states 
of the charged particles, respectively, and the 
last two described transitions between the free 
and bound states. 

2. KINETIC EQUATIONS FOR THE DISTRIBUTION 
FUNCTIONS OF THE ELECTRONS, IONS, AND 
ATOMS 

We present the derivation of the kinetic equa­
tions in two stages. We first obtain the kinetic 
equations for the distribution functions of pairs of 
charged particles, and from them we obtain the 
sought-for equations for the distribution functions 
of the electrons, ions, and atoms. 

We confine ourselves here to the case of a 
spatially homogeneous plasma. Under this condi­
tion we have 

Paii(P', P",t) = 6a11 (2n:) 3 6(P'- P")fa(P',t), 

U= UM=O. (2.1) 

Here fa ( P', t) is the distribution function of 
pairs of free ( a = p' ) and bound ( a = n) charged 
particles. 

After averaging the system (1.8), we obtain a 
system of two equations for the function fa ( P', t). 
We write it in the form 

ata(P', t) 2V 
at 

X 2] ~ Im [6pall (P', P", t) 6Uall (P', P", t)] dP" = la (P', t). 

II (2.2) 

Here Ja are the corresponding collision integrals. 
They are determined by the correlation function 
of the random collisions opap = Pa{3 - Pa{3; 6Uaf3 
= Ua{3• since uM = 0. 

The next step in obtaining the kinetic equations 
is perfectlf analogous to that given in Sec. 14 of 
the book [7 in the derivation of the kinetic equations 
without allowance for the inelastic processes. We 
consequently omit all the intermediate steps and 
write down directly the final expression for the 
collision integral in the following form: 

J a (P', t) = 4n (Z:fi)S 2] ~ dP" dP1' dP1" dw dk I Pa,s (k) 12 1 
aa,fl, 

X Pa,,s, (k) 12 k-4 I e (w, k) r2 6 (nk- (P' -- P")) 

X {> (nw- (Ea + EP' - E 11 - Ep")) 6 (P' + Pt" 

- (P"+ P1')) 6 (Ea+ Ep· + Ee. + Ep,r· 

- (Ea, + Ep,• + Ea+EP")) [fa, (P1') ffl (P") 

-fa (P') ffl, (P1")], (2.3) 

where n = N/V. The matrix elements in (2.3) are 
determined by the expression 

Patl(k)= S [eaexp(i mb kr) 
ma+mb 

f ma )] nr • +ebeXpl -i kr ra (r)'¥t~(r)dr. 
\ ma+mb 

(2.4) 
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E ( w, k) is the dielectric constant of the partly 
ionized plasma. It is determined by the formula 

4:rtn V 
e (w, k) = 1 + k2 (2:rtli)3 

X 2J (' dP' dP" I p af3 (k) /2 (/a (P')- iJ3 (P")} 6 (lik- (P'- P")) 
af3J li (w +iLl}- (Ea + Ep·- E13 -Ep") . 

The double sum I) has the meaning 
af3 

(2.5) 

2; ... = ~ ... + 2; 3 ( 2; s ... dp" + ~ ~ ... dJl') 
aj3 nm ( ) n m ' 

V2 I 
+ (2:rtfi)6 J ... dp'dp". (2.6) 

It follows from (2.5) that the polarizability of 
a partly ionized plasma consists of four parts: the 
polarizability produced by the free particles (first 
term), bound particles (fourth term), and the 
polarizabilities arising in transitions from the 
bound to the free state and vice versa. The colli­
sion integrals (2.3) take into account the possibil­
ity of production of bound states (atoms) from free 
particles belonging to one pair only. In order to 
take into account the possibility of formation of 
atoms from free particles of arbitrary pairs, we 
proceed as follows. 

The free charged particles remain most of the 
time at distances such, that the eigenfunctions of 
the continuous spectrum can be replaced by plane 
waves, that is, at the chosen normalization, 

W P (r)-+ ~ exp { ipr}. (2. 7) 
-yv 1i 

In this approximation, the matrix element 
l Pp' p" ( k) 12 of the free particles is given by 

lp k I (2:rtfi)3 •[ I I II mb nk) p'p"() 2 =-- ea26! P -p ----
V \ ma+mb 

(2.8) 

To describe the motion of free particles it is more 
convenient to use the variables 

P=pa+Pb, p= (mbpa-maPb)/(ma+mb). (2.9) 

Here Pa and Pb are the momenta of the free 
electrons and ions. Following such a change of 
variables we have 

fp (P,t) --+ f(pa, Pb, t). (2.10) 

We note that the function 

Njp (P, t) = Nf(Pa, Pb, t) (2.11) 

determines the mean value of pairs of free charged 
particles with momenta Pa and Pb· In order to 

take into account the possibility of formation of 
atoms from free particles of arbitrary pairs, we 
make the following substitution in the terms the 
collision integral (2.3) which describe the transi­
tions from the free states to the bound states and 
vice versa: 

(2.12) 

A similar substitution is made in expression (2.5) 
for the dielectric constant. 

We can now write the sought kinetic equations 
for the distribution functions of the free electrons 
f ( Pa• t), the free ions f ( Pb, t), and the bound 
charged particles (atoms) fn ( P, t). The last 
function determines the probability of an atom of 
momentum P in the state n. 

Taking account of the fact that 

f(Pa) = (2:/i) 3 sf (Pa, Pb) dpb, 

f(Pb)= (2:1i) 3 ~ /(Pa,Pb)dpa, (2.13) 

we obtain from (2.2) and (2.3) the sought-for sys­
tem of kinetic equations. 

Bf(Pb, t) V I 
-·-8t- = (2:rtfi) 3J /(pa, Pb)dpa = /(pb, t), 

Bfn(P,t)/Bt= ln(P,t). (2.15) 

The distribution functions of the electrons, ions, 
and atoms are normalized in the following fashion: 

(2.16) 

(2.17) 

Here ca = cb anq ca +cab = 1; ca. cb, and cab 
are the electron, ion, and atom concentrations. 

In the equilibrium state, the distribution func­
tions are given 

{ !lab- En- Ep} 
Nfn (P) = exp xT , 

{ jla- Epa} 
Nf(Pa) = exp xT , (2.18) 

where 

E p = P2 I 2M, Epa= Pa2 I 2ma and 

[ Nab ( 2nli2 )''• 1 J !lab= xTln - -- -
V MxT Z ' 
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J.ta = xT ln[ Na ( 2n/i2 '\ '''] 
V maxT 

(2.19) 

( Z is the partition function). The expressions for 
the functions f ( Pb) and 1-'b are obtained from 
(2.8) and (2.19) by the substitution a- b. 

3. SPECTRAL FUNCTION OF THE FIELD AND 
POLARIZABILITY OF PARTLY IONIZED 
PLASMA 

We return to expression (2.5) for the dielectric 
constant of a partly ionized plasma. We represent 
it in the form 

e( w, k) = 1 + 4n(att + abt + afb + abb). (3.1) 

The indices f and b denote free and bound states. 
For the polarizability G!ff we obtain from (2.5), 

with allowance for (2.7) and (2.8), the well known 
expression [14 •151 

v 
aff(W, k) = n (2nli) 3 

X~~ i d /a(P+ 1/2hk)-/a(P- 1/2hk) (3 .2) 
LJ /ik2 J p w + iA - kv ' 

a 

where a = e, i. 
The polarizabilities a bf and Cl!fb· which char­

acterize the transitions between the bound and 
free states, are defined by the expressions 

ab1(w, k) =atb*(-w•, -k) 

VZ (' J Ppm (k) !2 

= n (2n1i)6 ~ ~ dpa dpbdP kl 

X ~ ((1ik- ~a+ Pb;; P))[Nj (~~ f (Pb)-;; fm ~)~ ; (3.3) 
r• W + i ) - (Pa / ma + Pb mb - m- P 

where p = ( mbPa- ffiaPb)/( rna+ mb). We took 
the condition (2.12) into account here. 

The expression for G!bb follows directly from 
(2.5) with a = n and [:J = m. 

We now consider the expression for the spec­
tral field-intensity function, which will be used in 
Sec. 4. In the case of a partly ionized plasma, this 
function is defined by the formula 

(c'IE c'IE).,, k = 2~~ ~ ~ dP' dP" (fa (P')- fr> (P")] 
a~ 

X J Pall (k) J2 I) (1ik- (P'- P")) 
k2 Je(w,k)J2 

X 6 (1iw- (Ea + Ep•- Ell- Ep•)). (3.4) 

The double sum has here the meaning of (2.6), and 
therefore the spectral function (3.4), like the die­
lectric constant, consists of four terms. In the 
terms due to the transitions from the free state to 
the bound state and back it is necessary to take 
the condition (2.12) into account. In the equili-

brium case, the spectral field function is defined 
by the usual expression [15• 1]. For that part of the 
spectral function which is determined by transi­
tions between free states of charged particles, we 
obtain from the general formula (2.4), with ac­
count taken of (2.7) and (2.8), a simpler expression 
which coincides with the expression for the spec­
tral function of a fully ionized plasma. 

Let us consider certain results that follow from 
the foregoing general formulas. 

Using (3.4), we can determine the spatial spec­
tral function of the field. In the equilibrium case, 
we obtain for this function 

(t'lE<'IE),. = 4nxT [( 1- e(; k) ) 

~ 1 J +2 ~Re (1- ) . 
\ e (2inlxT fli~ k) 

1=1 

(3.5) 

In the classical approximation, when ti = 0, only 
the first term remains in this formula. We con­
sider the two extreme cases when the degree of 
ionization is close to unity and zero, respectively. 

In the fully ionized plasma, the classical for­
mula can be used at values k < kmax ~ ..j iJ.KT/ti. 
This condition can be obtained from (3.2) and (3.5), 
but it is simpler to derive it from the uncertainty 
relation. It follows from this estimate that rmin 
~ 1/kmax ~ ti/J iJ.KT. For a low-temperature 
plasma we have rmin > a, where a is the Bohr 
radius. This enables us to use the classical form, 
assuming the spectral function to be equal to zero 
when r < rmin ( k > ~ax). In the case of a fully 
ionized plasma in the classical approximation [T, 151 

e(O, k) = 1 + 1/ri'k2, (3.6) 

where rd is the Debye radius. From (3.5) and 
(3.6) we get an expression for the mean square 
deviation of the field 

E2""- _1_ i E E dk ,_. 4nxT i dk 
(c'l)- (2n)aJ(<'I 6 h (2n) 3 R.Jh ra?-k2+1 

max 

(3. 7) 

We used here the expression r~ = KT/l:a47Te~na, 
and took account of the fact that kmax » 1/rd. 

The result (3. 7) agrees with formula (1.12) 
of [161, where an expression was considered for 
the quantum correlation function of a fully ionized 
plasma. 

We now consider the other limiting case. In 
the dipole approximation, that is, when ka « 1 
(a-Bohr radius) we get from the formula for the 
function abb ( w, k), under the condition me « mi, 
the expression 
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( ·A k)- 2e2nab"' lrnml2wmnPn 
Ubb tu, ---- L.J - (3.8) 

3/i Wmn2 + /).2 
nm 

When ka » 1, the matrix element I Pnm ( k) 12 

vanishes, and therefore we can use for the esti­
mate the formula (3.8), putting abb(i~, k) = 0 for 
ka > 1. In this approximation, the spatial spectral 
function is 

2 2 
(6E6Eh ~ 4:n:xT e a ;ab for ka < 1 (3.9) 

and vanishes when ka > 1; I is the ionization 
potential. It follows therefore that the mean 
square deviation is 

that is, 

( 6E) 2 /4:n:xTnab "' 1. (3.10) 

The mean square deviation determined by formu­
las (3.10) is larger than or of the same order as 
the corresponding quantity in the case of a fully 
ionized plasma. 

A more detailed analysis of the functions 
E ( w, k) and ( oE · oE lwk in the case of a partly 
ionized plasma is a separate problem. 

4. CLASSIFICATION OF COLLISION PROCESSES 
IN A PARTLY IONIZED PLASMA. RELAXA­
TION TIMES 

Using expressions (2.5) and (3.4) for the die­
lectric constant and the spectral function of the 
field, we can write the collision integral (2.3) in 
the form 

J (P 1 t) = - 1 -""' \ap" dwdk I Pafl (k) 1
2 t> (nk- (P 1 P")) 

a ' (2:n:)3Ji 7 ~ k2 -

X6 (nw- (Ea + EP'- E13- Ep")) {(6E6E)wk 1/B (P", t) 

1 4:n:1ie" (w, k) f P" I } 

-fa(P,t)] Je(w,k)J2 I fl( , t)+fa(P,t)]. 

(4.1) 

If the time of relaxation of the function 
(oE·oE)wk to its stationary value is much 
shorter than the relaxation time of the distribu­
tion function, then expressions (2.3) and (4.1) are 
equivalent. In the opposite case it is necessary to 
use for the spectral function an additional equa­
tion-the equation for plasmons. The collision in­
tegral in the form (4.1) is convenient for a classi­
fication of the collision processes. 

We write down the system (2.14) for the distri­
bution functions of the electrons and ions in the 
form 

8fa(Pa1 , t) / 8t = (Ja(Pa 1, t) )1 + (Ja(pa', t) )2. (4,2) 

Here and below a = e and i for the electrons and 

ions, respectively. 
The first term in the right side of (4.2) de­

scribes processes in which the number of free 
charged particles is conserved. In order to obtain 
for it an explicit expression, we put in (2.3) 

I d{3 II a = p an = p , make the change of variable 
(2.9), use expression (2.8), and integrate with re­
spect to Pb· As a result we obtain 

e2 I 1 
(!a (Pa', t)) i = {2:n:) 31i J dpa''dw dkk2 6 (nk- (Pa'- Pa")) 

( ( p'2 "2) 
X6 nw- 2~a- p;ma ){ (6E6E).,k[/a(Pa",t) 

, 4:n:lie" ( w, k) } 
-fa(Pa ,t)]- Je(w,k) !2 Ua(Pa",t)+fa(Pa',t)] . 

(4.3) 
When n = 0 this expression coincides in form 

with the Landau collision integral in which addi­
tional account is taken of the polarization [4, 5• 7]. 

The difference lies in the fact that the functions 
( oE · oE lwk and E ( w, k) in (4.3) take into ac­
count both the elastic and inelastic processes. 

We recall that the functions ( oE · oE lwk and 
E ( w, k) each consist of four parts. As a result, 
the integral (4.3) consists in turn of four parts 
which describe four processes: 

1) Pa' + Pib11 ++ Pa" + Pib1 , Pa' + Pia" ++ Pa" + Pia'; 
2) Pa' + miP l' ++ Pa" + Pia' + Pib1

; 

3) Pa' + Pia" + Pib 11 ++ Pa11 + nP"; 
4)Pa' + miPi" ++Pa11 +niP/. 

Here 1) is the elastic-scattering process, 2) is 
the direct process (from left to right) -ionization 
of an atom by collision with an electron ( p~ = p~) 
or an ion ( p~ =Pi), the inverse process-recom­
bination upon collision of three particles; 3) is the 
process inverse to 2), and 4) is the inelastic­
scattering process. In all these processes, the 
number of particles with momentum Pa remains 
unchanged, all that takes place is a change in 

t ( I - II) momen urn Pa - Pa . 
In order to obtain an expression for the second 

term on the right side of (4,2), it is necessary to 
put in (2.3) a = p~ and {3 = m, make the substitu­
tion (2.9), and integrate with respect to Pb· As a 
result we obtain 

(Ja (Pa 1
, t))2 = (2!)3 1i (2:1i)3 ~ ~ dpb 1 dP" dw dk ; 2 J Pp, m 12 

X b (1ik- (Pa' + Pb 1
- P")) 

X b nw- _a- + -. _b- -Em- EP" ( ( 
p 12 p '2 )) 

2ma 2mb 

X {(6E 6E)wk lfm (P")- Nf(Pa 1
) f (Pb 1

)] 

4:n:ne" (w, k) f P" I I } 

- Je(w,k)J2 1m( )+Nf(Pa)f(Pb)], (4.4) 
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where we put p = (mbp~- maPb)/(ma + mb). 
After substituting the functions ( oE · oE lwk and 
E ( w, k), this integral breaks up in turn into four 
parts, which describe the processes: 

5) poc' + Pb' + Pta"+--> mP"' + Pta', 
6) Pa' + Pb' + m1Pt'' ++ mP" +Pta'+ Ptb', 
7) Pa' + Pb' + Pa" + Pb" ++ mP" + mtPt'', 
8) Pa' + Pb' + mtPt" +--> mP" + mtPt''. 

Here 5), 7), and 8) are recombination and ioni­
zation processes which change the number of the 
free charged particles, and 6) is an inelastic­
scattering process accompanied by particle ex­
change. 

We can also consider in similar fashion pro­
cesses described by the collision integral in (2.15) 
for the atom distribution function. 

It is important to note here the following. In 
the case of a zero degree of ionization, there re­
mains in the collision integral J n ( P', t) only one 
term, describing the process 

It represents elastic and inelastic scattering of 
the atoms. In order to take into account the possi­
bility of formation of bound states for atoms 
(molecules) it is necessary to take into account 
the possibility of production of bound complexes 
of four charged particles. 

It is known (see, for example, [11, 17]) that the 
equilibrium state is established in three distinct 
stages. Equilibrium if first established with re­
spect to the translational degrees of freedom-a 
Maxwellian distribution; this if followed by equili­
brium with respect to the internal degree of free­
dom-Boltzmann distribution-and finally by a 
state of ionization equilibrium. The actual picture 
of establishment of equilibrium in an electron-ion 
plasma is more complicated. This is due, in par­
ticular, to the large difference between the elec­
tron and ion masses. 

5. EQUATIONS FOR THE CONCENTRATIONS OF 
FREE AND BOUND CHARGED PARTICLES. 
IONIZATION AND RECOMBINATION COEF­
FICIENTS 

Let us consider the state of a plasma in which 
the nonequilibrium character is due only to the 
fact that the concentrations na, nb, and nab do 
not satisfy the ionization-equilibrium condition 

nanb _ ( 11xT f' 1 (5•1) 
--;;:; - 2nli2 I Z 

and are consequently functions of the time. 
Let us multiply (2.14) by nV(27rli) 3 and inte-

grate with respect to p~. Using the Maxwell­
Boltzmann distribution for the functions f ( Pa) 
and f ( Pb), and recognizing that the following 
condition 

~ /i(pa', t)dpa' = 0 (5.2) 

is satisfied for the collision integral (4.1), we ob­
tain an equation for the concentration na. To ob­
tain the equations for the concentrations na and 
nab it is necessary to take account of the fact that 
na = nb and na + nab = n. If the relaxation time of 
the spectral function of the field is of the order of 
or longer than the relaxation times of the functions 
na, nb, and nab• then it is necessary to add to this 
system also an equation for the function 
( oE · oE lwk· In the opposite limiting case the 
spectral function is given by (3.4), in which it is 
necessary to substitute the Maxwell-Boltzmann 
distribution for the functions fn ( P ), fa, and fb· 

Let us consider the case when the level of the 
fluctuations of the longitudinal electric field 
greatly exceeds the equilibrium level of the fluc­
tuations. Under this condition, nonequilibrium 
ionization takes place, at the expense of the energy 
of the longitudinal-field quanta. In order to deter­
mine the corresponding ionization coefficient 
(which we shall denote by a (II)), we use the equili­
brium relation (5 .1) for the concentrations. As a 
result we obtain the equation 

dna/dt = a<ll)na. (5.3) 

To determine the explicit form of the coefficient 
a(ll), we take account of the following facts: 

In the case of ionization by a longitudinal field, 
we can consider the limiting case when there is 
no spatial dispersion ( k = 0). The ionization co­
efficient is obtained in the form 

a<ID=~-V-~ ~ dpdw lrpmkl2 
1i (2nh) 3 m · Ji2 

X 6 ( hw - ( ~21-t- Em)) e-P'I2!!><T ( 6E6E) 

1 
X "'kz (e lirofxT -1)nab. 

We note that the ionization coefficient a (II) is 
expressed in terms of the imaginary part of the 
polarizability: 

f ~ Ubf11 

a<ll) =- -- (6E6E)rodw. 
nh nab 

(5.4) 

We now consider the recombination and ioniza­
tion processes which occur when plasma particles 
collide. To obtain equations describing these 
processes, we eliminate the functions (oE ·OE)wk 
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and E ( w, k). The equation obtained in this manner 
is written in the following fashion: 

dna/ dt = ( ananab - '~na3 ) + ( a1 nab2 - '~!na2nab) 

+ (aznab2 - ~2na2nb2) + (a3na2nab- ~3na2nab). (5.5) 

Here a is the impact-ionization coefficient; {3 is 
the triple-recombination coefficient (two electrons 
and an ion and two ions and an electron); {3 1 is 
the coefficient of recombination in triple collision 
of an electron, ion, and atom; a 1 is the corre­
sponding ionization coefficient upon collision of 
two atoms; {:J 2 is the coefficient of recombination 
in the collision of two pairs of charged particles 
(resulting in the formation of two atoms); a 3 and 

{3 3 are exchange coefficients. 
The coefficient a is given by 

= ~ ~ e z "" r dp' dP' dP" dpc' dpc" dw dk 
11 (2nh)3 LJ c LJ J 

c m 

X jPp•ml 2 6(P'+Pc"-(P"+pc')) 
k•je(w,k)j 2 

( p'2 p'z p"z _ ( p"z Pc'2 )) 
X c5 . 2!1 + 2M + 2mc Em+ 2M + 2mc 

( ( p'2 P'2 p"z )\ 
X 6(hk-(P'-P"))6 hw- -+--Em--- I 

2!1 2M . 2M J 

X 1 ~ { ( P'2 p/2 ) 1) 
{2n ( f1M) 'i•xTPZ exp - \Em + 2M + 2mc xTj · 

(5.6) 
The coefficients {3 and a are connected by the 

relation 
~ = (2nh2/J.txT)'"Za. 

We perform the calculations in (5.6) under the 
following assumptions: E (w, k) = 1, that is, 
polarization is disregarded; the ionization is pro­
duced by electrons; the thermal motion of the 
atoms is disregarded; the ionization proceeds 
from the ground level. Under these conditions, 
( 5. 6) takes the form 

210 35 -'/ a3f1e" xTe-If><T a-- e ,___ . 
- 31 na I 

(5.7) 

In deriving this formula, we used the expression 
given in p. 667 of [181 for the effective ionization 
cross section. 

When the ionization coefficient is determined 
within the framework of classical theory [17], the 
obtained formula differs from (5. 7) in the factor 
proceeding the exponent ( K T/I is replaced by 
(KT/I)i/ 2 ). This difference is equivalent to having 
the dependence of the effective cross section u (E) 
on the excess energy near the threshold not linear 
but of the form u f':l ( E - I) 312• We note that the 
Born approximation is also used for the numerical 
calculations of the effective cross sections (see, 
for example,[19 J). 
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