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It is found that the maintenance of phase memory in nonadiabatic collisions results in corre
lated broadening of various spectral components. This is manifested in a number of effects 
such as an additional line shift that is quadratic in the density, the allowing of forbidden tran
sitions, and the merging or narrowing of some spectral components. The last two effects can 
be observed when the splitting of components is commensurable with their broadening, where
as the quadratic shift remains of considerable magnitude even in the case of very much grea
ter splitting. 

INTRODUCTION 

THE effects of the phase coherence of different 
stationary atomic states represent a qualitatively 
new factor in the nonadiabatic theory of spectral 
line broadening as compared with the adiabatic 
theory. It is well known that adiabatic collisions 
alter only the phases of atomic states without mix
ing them. Therefore only the diagonal elements Sii 
of the scattering matrix, which determine the 
widths and shifts of the corresponding i-th levels, 
are nonvanishing. All levels therefore are broad
ened independently, and the width of a spectral line 
is composed simply of the widths of the levels in
volved in the corresponding radiative transition. 

Nonadiabatic collisions present an entirely dif
ferent situation. Here not so much the phases as 
the amplitudes of stationary states are changed, 
thus inducing transitions between energy levels. 
This is a qualitative change, because nonadiabatic 
collisions affect not only lsiil, that is state popula
tions, but also lead to the appearance of nonvanish
ing off-diagonal elements Sik· The presence of the 
latter indicate that stationary states interfere and 
therefore cannot be changed independently of each 
other. Following a collision a system is no longer 
a simple statistical mixture of stationary states, 
so that the reaction of the system to a particular 
collision depends greatly on the result of the pre
ceding collision. 

The theoretical possibility of phase coherence 
between states in the nonadiabatic theory of line 

*Translator's note: Rega_rding phase memory see E. L. 
Hahn, Phys. Rev. 80, 580 (1950). 

broadening is realized only when averaging over all 
possible impact parameters does not cause the 
vanishing of all terms containing off-diagonal ele
ments of the scattering matrix. In this case we can 
affirm that the system maintains the phase memory 
of the state arising from a collision. 

The most important consequence of the conser
vation of phase memory is obviously the fact that 
the broadenings of individual spectral components, 
as well as of different energy levels, can no longer 
be regarded as mutually independent. We therefore 
find a number of phase effects that establish a cor
relation between the widths, shifts, and intensities 
of different components in a complex spectrum. 

In the present work we investigate these effects 
in the simplest quantum systems, determining 
their magnitudes and the conditions of their real
ization. 

1. GENERAL THEORY OF THE LINE SHAPE 

We know that the spectral composition of radia
tion absorbed by an atomic system is the Fourier 
transform of the correlation function 

K(t) = SpF(t)F(O) = Fil<(t)Fn;(O) (1.1) 

of the operator F that induces radiative transi
tions.rtJ Averaging, denoted by a bar, is performed 
over the random realizations of thermal distur
bance V(t) of the system. In a gas this disturbance 
consists in a sequence of collisions interspersed 
with periods of free flight. 

The overall analysis of the spectrum can be 
performed conveniently in the impact approxima
tion when the collision time is much shorter than 
the time of free flight. In this case we do not des-
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cribe correctly the outlying statistical wings of the 
lines, but achieve our purpose most quickly by util
izing the available results obtained in the impact 
theory of relaxation. 

It has been shown recently[2] that the behavior 
of a system having the Hamiltonian H = H0 + V(t) 
can be represented in the impact approximation by 
the relaxation equation (with ti = 1) 

~ =-i[Ho,"PJ-Gp, (1.2) 

where all necessary averagings over V(t) have al
ready been performed. A similar equation is ob
tained for the average operator F(t) in (1.1): 

F;h = (iw;h,lm- Gi:,ih)Fcm, 

·Wih,lm == Wcm6i~hm, ·Wcm = Hu0 - H!.m. ( 1 · 3) 

In both instances the time-independent relaxation 
matrix Gik, lmi that contains all relaxation times 
and frequency shifts resulting from collisions is 
represented by 

Gih, lm = (6il6hm- S;cS~tm"). (1.4) 

The change in the atomic state that results from an 
individual collision is indicated in this equation by 
the S matrix, which in the interaction representa
tion couples the wave functions existing before and 
after a collision as follows: 1/Ji(+oo) = Sikl/Jk(-oo). 
The angular brackets denote averaging over all im
pact parameters of an individual collision. 

The general solution of (1.3) is 

(1.5) 

where a and b are collective indices that provide a 
successive enumeration of all permutations within 
(ik) and (Zm). Inserting this solution into the corre
lation function (1.1) and performing a Fourier 
transformation, we finally obtain a formula for 
the frequency spectrum of the system: 

I ( oo) = Re{[A -t]abF a* (O)Fb (0)}, (1.6) 

where 

(1.7) 

This result contains in the most general form all 
information about the structure and shape of the 
spectrum in the impact approximation. The spec
trum represented by (1.6) is a set of lines corre
sponding to transitions between all pairs of levels 
together with a series of lines grouped about the 
center frequency and corresponding to the relaxa
tion of the populations at each level. 

In the special case when we must consider light 
absorption by two degenerate or almost degenerate 

multiplet terms, as in[3-5], the general equation 
(1.6) can be simplified by assuming that there are 
no radiative transitions among components of a 
single term, but that collisions, on the other hand, 
induce transitions only within a multiplet group of 
levels. The only nonvanishing matrix elements 
Fa'{3' and S-matrix components Sa'a" and S{3'{3" 
are then those for which a numbers the states of 
the upper multiplet term and {3 those of the lower 
multiplet. We introduce the collective indices 
a= a'a", b = a'{3', cA= {3'a', and d = {3'{3". We easily 
find that the matrix A can be divided into four sub
matrices: 

A (Aa•a• 
A= 

0 

(1.8) 
Ac'c" 

with radiative transitions corresponding only to the 
matrices Ab'b" and Ac'c"• which alone are multi
plied in (1_.:6) by nonvanishing elements of the 
operator F (Fa = F d = 0). Moreover, the matrix 
Ac'c" differs from Ab'b" only in a sign reversal of 
the frequency and through complex conjugation, 
i.e., these matrices are essentially identical spec
tra that are mutual mirror images with respect to 
the center frequency. Since the line widths are 
usually small relative to the frequencies, the con
tribution of the spectrum on the negative half-axis 
of the frequencies can be neglected; the general 
equation (1.6) then becomes 

(1.9) 

This formula, derived within the framework of the 
correlation theory in[!l-5], has provided a reference 
point for investigating the structures of multiplet 
spectra. 

Because of the formulation of the problem 
whereby the structure of this formula is defined, 
together with a number of assumptions made by 
the authors for concrete systems, the phase terms 
appearing formally in (1.9) disappeared upon aver
aging. When any one of these assumptions is 
dropped the phase memory is manifested by sev
eral effects that will be described here. 

On the basis of the general formula (1.6) and its 
simplified version (1.9) wherever possible, we shall 
study, in order of complexity, systems of two, 
three, and four levels. 

2. TWO LEVEL-SYSTEMS 

The two-level model is the simplest quantum 
system that is able to absorb radiation. This ideal
ization is seldom applicable to real optical prob-
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lems, although it is customary in magnetic and 
radio spectroscopy. Since only two states are in
volved, we cannot exclude from consideration the 
relaxation between the levels involved in radiative 
transitions. Thus the basic simplification of mul
tiplet theory is unsuitable here and we must con
sider the general equation (1.6) directly. 

The assumption (V(t)) = 0 leads to considerable 
simplification. This occurs, for example, for a 
vector interaction between colliding particles 
(interaction between a charge and a dipole, between 
two dipoles etc.), which vanishes as a result of 
averaging over the angle variables. In[:t-5] such 
averaging led to complete disappearance of the 
phase memory. In the present problem however, 
averaging does not produce such extreme results 
even for a vector type of interaction. Angular aver
aging causes vanishing of only those elements of 
the matrix (2.1) that are linear in S12 (since S11 is 
an even function of V(t) and S12 is odd). At the 
same time the matrix is not diagonalized, because 
the elements A12 and A21 , which are bilinear in St2, 

are retained. These elements represent the phase 
memory, which does not vanish as a result of aver
aging. 

After inserting the averaged matrix (2.1) into 
(1.6) we obtain the spectrum 

{ IFtzl 2 +iR IF12I 2 -iR 
/(w) = Re + -=--~---

i(w-Qt)+ft i(w-Qz)+r2 

IF11I 2 + IF22I 2- 2 Re(F11Fz2")} 
+ iw+2(1-ISHI 2 ) ' 

where 

Q1,2 = + Rel'a.2 ____:_ I~ 12, 

ft,a = Re (1- Su2> ± lml'a.2 - I fll 2, 

R = Re(~F1z2) /l'a2 -l~l 2, 

a= roo- Im (1-SH2>, fl = (Stz!>. 

(2.2) 

(2.2a) 

When the frequency exceeds the line width, reson
ance absorption can be described by the first term 
alone. For {3 = 0 we then obtain the ordinary 
Lorentz line of width r = Re(1- sj1) with a shift 
~ 0 = -Im(1- Sj1). 

The foregoing equations show that the mainten
ance of phase memory does not affect the width of 

We must first remember that because of norm
alization only three of the four density-matrix 
components Pt2, P2t, p 11 , and p 22 are independent. 
It is therefore sufficient to retain the three com
ponents Pt2, P2t, and n = p 11 - p 22 in (1.2), denoted 
by the collective indices 1, 2, and 3; we thus re
duce the fourth-order matrix G to the third order, 
and obtain (w 0 = w2t> 

(2.1) 

the Lorentz line but leads to an additional shift 
-I(Sj2)1 2/2w 0, which unlike the ordinary quadratic 
shift depends on the gas density. To evaluate the 
contribution of this new term to the total shift we 
consider the potential V(t) = C/R2 corresponding 
to broadening induced by charged particles. From 
perturbation theory, using rigid spheres of diame
ter p0, [S] we then obtain the shift 

f2 ( 2n.2N()2 v ) 
fl =flo--= flo 1----ln2-- • 

2wo \ vwo 2wopo 
(2.3) 

With values of the parameters that are typical for 
broadening induced by plasma electrons: v = 108, 

w0 = 1014, and C = 1 cm2/sec, it then follows that 
the additional phase shift equals the usual shift at 
the density N ::::::1020 cm-3• 

The phase memory also induces some asymme
try of the line shape resulting from the term 
(w - Q1) I [(w - Q1) 2 + Jil. which is odd in (w - Qt). 
Its amplitude (Sh)/w 0 = rjw 0 equals the amplitude 
of the Lorentz line under about the same conditions 
as for a fairly large quadratic shift. 

In addition to the resonant absorption represen
ted by the first term in (2.2), with a relatively 
insignificant second term describing a line shift 
into the negative frequency region, a "loss term" 
also appears. The latter, which describes absorp
tion near the center frequency and results from 
population relaxation, is observed, for example, 
when paramagnetic relaxation in longitudinal fields 
is investigated (Fu. F22 ¢0, Ft2 = O) .[?] 

We note that a contribution to this last-men
tioned effect could also come from transverse 
fields if the interaction should be such (scalar, 
quadrupole etc.) that all matrix elements (2.1) re
mained nonvanishing following angular averaging. 
The spectrum would be influenced very much more 
by the phase memory if these matrix elements 
were retained. In that event the problem would, of 
course, be more complicated, and it would be 
necessary to solve a characteristic third-order 
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equation for the purpose of determining the spec
trum. 

3. THREE-LEVEL SYSTEMS 

This problem is the simplest example that per
mits application of the simplified formula (1.9) of 
multiplet theory. Indeed, in correspondence with a 
situation often encountered in optical theory, re
laxational transitions between ground and excited 
states can be neglected by comparison with relaxa
tion within a nearly degenerate doublet term 
(Fig. 1). Making this assumption, we have a much 
simpler problem than in the preceding case. The 
matrix A is now given by 

( A12,12 A12,1a) 

A1a,12 A13,1a 

=(t(w-wo)+(1-S22*) -(S2a") ) 
(S23) i(w-wo-L\w)+ (1-S22) 

(3.1) 

and the corresponding spectrum consists of two 
lines with completely identical structures repre
senting the transitions 1 -- 2 and 1 -- 3. We shall 
write out only the formulas for the 1 -- 2 transition: 

r 
J(w)=lo (w-wo-L\)2+f2 , 

lo=_!(i+ a )1F12I 2 

2\ 1"a2+1~12. 

+-~ ( 1 _ a ) IF13 I2 + i(~*F21"Fa1- ~Fa1"F21) 
2 l"a2+1~12' l"a2+1~12 

(3.2) 

where 

r = Re(i- s22>, L\ = L\w/2 -l'a2 + I~ 12, 
a=L\w/2-lm(1-S22), ~=(S23). (3.2a) 

It is noteworthy that in the present problem, un
like the preceding one, when angular averaging 
causes vanishing of the interaction all phase ef
fects are completely eliminated. Of course, aver
aging never actually causes an interaction to vanish. 
If the dipole terms vanish higher order terms, es
pecially the quadrupole terms, must be taken into 
account. It can be shown that the phase memory 
resulting from quadrupole interactions makes an 
appreciable contribution to line shifts under actual 
experimental conditions. 

We shall now evaluate the magnitude of phase 
memory effects for a low-temperature neutral 
plasma. Here the dipole shift results from adia
batic collisions with ions and from nonadiabatic 
collisions with electrons. The quadrupole shift 

vanishes because the ionic and electronic contri
butions cancel each other. [8 l Therefore the ordin
ary line shift Ao (neglecting phase memory effects) 
depends only on the dipole interactions between 
atoms and charged particles: 

L\o = -10C''•( ~)''•N-n'C2N, (3.3) 
L\w2 2ve 

where vi and v e are the mean velocities of the ions 
and electrons. 

Collisions with ions make no contribution to the 
atomic phase memory because, as was indicated in 
our Introduction, the latter does not appear in an 
adiabatic interaction. The phase memory is thus 
generated only in collisions with electrons, and 
averaging of the dipole terms leaves only the con
tribution C/R3 caused by dipole interactions. It is 
easy to perform a perturbation calculation based on 
the rigid sphere model:[S] 

~ = (S2a> = -4niNC In De/ poi\w. (3.4) 

From (3.2) we find the total line shift when l/31 
« Aw/2: 

( I~ 12 ) 
L\ = L\ o 1 + I L\o I L\ w . (3.5) 

Calculations of {3 and Ao using typical values of the 
parameters: C = 1 cm2/sec, C:: = 10-7 cm3jsec, 
ve = 108, vi= 6 x 105, Aw = 1014, and Po= 10-8, 

show that the correction term in (3.5) is ~4 
x 10-19 N and thus approaches unity for entirely 
feasible densities. The added shift resulting from 
the phase memory is easily distinguished from the 
normal shift because the latter is characterized by 
quadratic pressure dependence. 

In addition to its influence on line shifts, the 
phase memory causes one additional effect. Let us 
assume that the 1 -- 2 transition is forbidden 
( F 12 = 0) . Then if the phase memory is maintained 
the corresponding line still appears in the spectrum 
with the intensity l/31 21 Ftsl 2/ Aw 2• If the memory 
results from a quadrupole interaction the foregoing 
values of the parameters yield the ratio 10-40 N2 

between the line and its allowed component. With 

-~--.----4 

-.--+--+--r-- 3 

-+----'---f---1..- 2 

FIG. 1 FIG. 2 
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N = 10 19 this constitutes 1% of the allowed line in
tensity, thus supplying evidence that it is actually 
possible to observe this phase effect. 

4. FOUR-LEVEL SYSTEMS 

This model (Fig. 2) is especially interesting be
cause it enables us to investigate the correlated 

where 

'\'1 = 1 - <SuS33 • ), '\'2 = 1 - (SuSaa>, 

(4.1a) 

The phase memory, which, as always, is represen
ted by the off-diagonal elements of this matrix, is 
maintained despite the averaging procedure, be
cause these elements are bilinear in the interac
tion. The phase memory vanishes in this case only 
if there are no transitions in one of the doublet 
terms (when either S12 = 0 or S34 = 0). The pres
ence of paired phase terms relates the transitions 
1 - 3, 2 - 4 and 2 - 3, 1 - 4. Both pairs of lines 
are described similarly but independently, so that 
it is sufficient to present only the result for the 
first one: 

_ 1 { (1 +A) IFad 2 + (1- A) IF42I 2 + 2iiD 
l(w)- Re -2 i(w- Q_) + r~ 

+ (1 +A) IF•zl 2 + (1- A) 1Fad 2 - 2iCD}. 
i(w- Q+)+ r+ ' 

Q'~' = iO" =F Rel'at2 -I ~d:r. r'~' = Re '\'1 + Im 1'a12 -I ~~1 2 , 
~1Fa1*F42 + ~t"F42*Fa1 

$= 
1'at2 -I ~~1 2 

a1 = llw + Im '\'1, 2w = wa1 + W42, 2/lw = W42- Wat. 

(4.2) 

The result for the second pair of lines is obtained 
herefrom by permuting the indices 1 and 2. 

As in the preceding case, a forbidden line can 
become allowed because the phase memory is main
tained. If the 1 - 3 transition is forbidden, it fol
lows from (4.2) that the intensity of the correspond
ing line is given by 

( llro+Imyt ) 
Ita= IF4zl2 '1- [( llw + Im '\'1)2 -I ~tl2]'/• . (4.3) 

The difference from the preceding case consists in 
the fact that the line is allowed despite angular 

effects of collisions on different multiplet terms. 
For this purpose we must take into account the re
laxational transitions within both doublet levels 
with no limitations on their relative magnitude. 

Considering only vector interactions, in the in
terest of simplicity, we obtain the angle-averaged 
matrix A: 

0 
0 

i ( (J) - (1)32) + '\'2. 

~2 

(4.1) 

averaging, i.e., even for dipole interactions between 
colliding particles. 

The existence of relaxational transitions within 
both pairs of levels results in an entirely new ef
fect, which is manifested most clearly when these 
transitions occur in an entirely identical manner: 
S11 = S33 and S12 = S34. In this situation we have 
Im 'Yt = 0, f3t = 'Yt = (1St212), and (4.2) is somewhat 
simplified, easily yielding two limiting cases. At 
low densities [.81 is small and the radical in (4.2) is 
real] we have t~o lines with the frequencies 
Q± = w ± -J l:!.w 2 - f31 and width {3 1; the latter increa
ses with the density of the gas. However, if these 
line widths are comparable with the splitting 
({3 1 = D.w) and the lines merge, broadening of the 
spectrum terminates. With further increase of 
density ({3 1 > D.w, and the radical is purely imagin
ary) the spectrum centered at the mean frequency 
w is of width D.w 2/2{3 1; it thus narrows with in
creasing pressure (Fig. 3b). 

The narrowing arises because of a special phase 
correlation of quantum states that is maintained 
despite relaxation. Since the relaxational transi
tions 1 - 2 and 3- 4 are completely identical 
with respect to both their transitions probabilities 
<IS11 1 = IS33 I) and phases (arg S11 = arg S33), they 
only transform the two-level system 1-3 into the 
system 2-4 without affecting the phase state of the 
former. Thus the system as a whole resembles a 
harmonic oscillator that occasionally undergoes a 
change of frequency unaccompanied by a phase 
change. Such systems are often encountered in the 
investigation of magnetic resonance. The equations 
describing the narrowing of their spectra that were 
previously proposed with {3 introduced phenomeno
logically[9, to] are completely identical with those 
obtained from (4.2) when 812 = S34 and F13 = F24· 

It is somewhat surprising that narrowing is 
maintained even if one of the investigated lines is 
forbidden (for example, F 13 = 0, F24 ¢ 0). In this 
case, as can be seen from the general equations 
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Low density 

a b 

(4.2), the narrowing effect consists in a displace
ment of the allowed component towards the spectral 
center of gravity followed by narrowing. 

When S12 "' 834 narrowing may become impossi
ble. In the case of maximum multiplet nonequiva
lence, i.e., in the complete absence of transitions 
in one of them (812 "'0, S34 = 0), the phase memory 
for a vector interaction is averaged ({3 1 = 0) and the 
broadening becomes normal. The spectrum con
sists of two lines with the frequencies n1 = w31 

- Im y 1 and n 2 = w42 + Im y 1 of width Re y 1 that in
creases continuously with the gas density. After the 
lines merge (Re y 1 > .t.w + Im y 1) the overall width 
of the spectrum continues to increase (Fig. 3a). 

The general equations in (4.2) describe all situa
tions that lie between the already considered limit
ing cases and in which the phase memory is either 
maintained entirely or is completely absent. We 
derive herefrom the general conditions for the oc
currence of narrowing when relaxation proceeds 
differently in the two multiplets. First of all, the 
term {3 1 representing the phase memory must be 
sufficiently large: 

(4.4) 

The spectral width is then 

Rev1-l~tl + 1/2(~w+Imvt) 2/l~d· (4.4a) 

If the first two terms in this expression cancel, i.e., 

the remaining last term describing narrowing. The 
conditions ( 4.4) and ( 4.5) are necessary and suffi
cient for determining narrowing in gas spectro
scopy. Narrowing can be observed both through 
density increase and temperature reduction, since 
f3 ~ N/v. 

It must be kept in mind that the two other lines 
corresponding to the transitions 1 - 4 and 2 - 3 
behave somewhat differently than the already con
sidered lines. These differences are associated 

FIG. 3. Transformation of the spectrum with 
changing gas density. (a) S12 f, 0, S34 = 0; (b) 

s,. = s •• ,;, 0 

with the fact that the parameters y and f3 for these 
lines are defined differently. Specifically, in the 
limiting case of identical relaxational transitions 
(812 = 8 34) y 2 and /32 are complex and unequal to each 
other; therefore narrowing of these lines requires 
the condition ( 4.5), which is trivially fulfilled for 
the pair 1-3, 2-4, because {3 1 = y 1. A physical ex
planation of the difference in broadening of the two 
line pairs can be found in the fact that even when 
S12 = 8 34 the frequency change from w 41 to w 32 dur
ing relaxation is linked to the interruption of the 
phase memory, which does not occur for the trans
formation w 31- w42• 

The conditions required for narrowing S12 ~ 834 
of an arbitrary multiplet spectrum can be fulfilled 
only accidentally. However, it is easy to indicate 
the real physical situations when identity of the re
laxational transitions is a direct consequence of the 
spectral structure. For example, in the Zeeman 
effect the hyperfine structure is involved, because 
magnetic relaxation between Zeeman sublevels 
having identical spin projections does not depend 
on the other quantum numbers. Therefore the 1r 

1i 

lli A 
\ 

4 
J 

2 

1 

1i 
I I 
Ia I 
I I 

I 

a 

+'l'2 
-r2 

+'l'2 
-r2 

c 

A 
'ii I I 'ii 

A/\A 

" - 'l'2 
3 

I I +Y2 
I 

'ii 1a1 
I I 
I I 

2 + 'l'2 
-r2 

b 

FIG. 4. Narrowing in the Zeeman hyperfine structure. a) 
Identical order of the levels, S12 = s •• ; b) inverted order of the 
levels, S12 = S34 • 
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components are narrowed, while the a components 
are broadened normally. Since the Zeeman splitting 
of both terms is identical, one of the two pairs of 
lines merges. For the same sequence of quantum 
numbers, in both multiplet terms the 1r components 
merge (~w = 0); their relaxational width<% ~w 2j{3) 
vanishes because of the narrowing effect (Fig. 4a). 
When the levels of one term are inverted (Fig. 4b) 
the a components merge, while the 1r transitions 
are represented by two outer lines, which are nar
rowed. The afore-described effects permit direct 
experimental observation when collisional broaden
ing is dominant over Doppler and spontaneous 
broadening. 
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