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The interaction of off-axis modes in a helium-neon gas laser is investigated experimentally 
and theoretically. The laser resonator consists of spherical mirrors and can be represented 
by an equivalent confocal resonator. It is shown that in such a case the laser emits modes 
with large transverse subscripts. The locking of off-axis modes with close frequencies has 
been observed and is given a theoretical explanation. 

INTRODUCTION 

THE most widely used at this time are gas lasers 
with confocal resonators or their equivalents, since 
such lasers do not require the precise alignment 
necessary for plane mirrors. The theory of "hol
low" confocal resonators and their equivalents is 
quite well developed[t- 3]. On the other hand, in
sufficient attention has been paid to lasers with 
such resonators, in which the situation reduces to 
interaction between the off-axis modes via the ac
tive medium. 

The present paper deals with the theoretical and 
experimental investigation of mode interaction in a 
gas laser with a near-confocal resonator. 

THE EXPERIMENTAL SETUP 

The experimental setup is shown in Fig. 1. We 
used a helium-neon gas laser 1 having a length 
L ~ 100 em and a plane-sphere resonator. The 
spherical mirrors had radii R equal to 200 and 
400 em. Spherical mirror Z1 had angular alignment 
pivots operating with an accuracy of ~0.2 angular 
sec, and mirror Z2 (plane) had a longitudinal move
ment with an accuracy of ~2 x 10-4 em. 

The laser beam was split by semitransparent 
plate 2. The following data were recorded simul
taneously: 

a. The emission field structure at the laser out
put mirror, using camera 3. The distances from 
the camera lens to the output mirror and to the 
film were double the focal distance. 

b. The beats spectrum of the off-axis modes, 
using FEU-12A photomultiplier 4, amplifier 5 hav
ing a bandwidth from 25 Hz to 12 MHz and a gain 
of 103. ASChKh spectrum analyzer 6 (frequency 
band from 20 Hz to 20 kHz) and SCh- 8 spectrum 

FIG. 1. Experimental setup. 

analyzer 7 (frequency band from 18 kHz to 30 MHz). 
c. Relative emission power, using an FEU-12A 

photomultiplier and an M-95 microammeter. 

EXPERIMENTAL RESULTS 

Beats were not observed within the frequency 
range up to 20 kHz under any experimental condi
tions. 

We plotted the laser emission power as a func
tion of the angle of inclination of the spherical 
mirror (Fig. 2). The numbers in the plot indicate 
the places where we photographed the emission 
field structure and the beats spectrum in the range 
above 20 kHz (using the SCh-8 spectrum analyzer) 
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FIG. 2. Emission power as a function of spherical mirror 
angle for a laser with a plane + sphere resonator (R = 2m). 
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FIG. 3. Variation in emission field structure and beats 
spectrum due to spherical-mirror (R ~ 2 m) rotation. 0 - zero 
frequency, M - marker for 2 MHz. 

(Fig. 3). Fig. 3 shows that the laser generates the 
TEM00q mode when the inclination of the mirror is 
large. When the mirror is turning toward its opti
mum position the TEMooq mode vanishes, to be re
placed by a more complex mode that, in turn, be
comes still more complex until the optimum posi
tion of the mirror is reached. At the same time 
beats appear whose number reaches maximum at 
the optimal alignment. 

As we steadily observe the emission pattern 
grow more complex (unfortunately this paper can 
be illustrated only with individual still photographs) 
we can see that the development consists mainly 
of the disappearance of the preceding modes and 
their conversion into modes with larger transverse 
subscripts. This is particularly noticeable at the 
beginning of mirror rotation, i.e., in the case of 
low-order modes. When a fairly complex pattern 
is reached (the mirror is close to its optimum 
position) the previous modes do not disappear and 
new modes with larger transverse subscripts are 
added. 

The above results were obtained with a laser 
equipped with a near-confocal resonator (radius R 
of the sphere was 200 em), but not precisely equiv
alent to the confocal type. The deviation from 
confocality in length was ~o.l-0.2 mm. Such a 
deviation removes the degeneracy in the mode fre
quency and the beats spectrum between transverse 
modes should begin (according to the hollow 
resonator theory[1J) with ~ 10 kHz. Similar results 
were obtained for non-confocal resonators 
(R = 400 em) that have (according to[2]) a confocal 
equivalent (Figs. 4 and 5). Lasers with resonators 
that do not have a "confocal" equivalent (plane 
type and the concentric type conjugate to the plane 
resonator[3]) emit a prevailing mode with the 
smallest transverse subscripts (TEM00q) [4-7]. 

It should be noted that observations were made 
also with ideally aligned mirrors and with a dia
phragm inserted into the resonator (near the 
spherical mirror) ; the initial diameter of the dia
phragm was such as to generate the TEMooq mode. 
Gradual opening of the diaphragm produced a field
pattern development that was fully analogous to the 
above. The results can in no way be brought into 
agreement with the "hollow" resonator theory 
since the latter fails to predict mode interaction. 

We now consider the theory of interaction of 
off-axis modes in a laser with a resonator close to 
the confocal type. 
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FIG. 4. Emission power as a function of spherical mirror 
angle (R ~ 4 m). 
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FIG. 5. Variation in emission field structure and beats 
spectrum due to spherical-mirror (R = 4 m) rotation. 0 - zero 
frequency, M - marker for 2 MHz. 

THEORY 

Lamb[s] investigated the interaction of axial 
modes in a laser with plane mirrors. Following 
Lamb's method, we consider simultaneous genera
tion of two general modes in a resonator close to 
confocal. We assume that the light is linearly 
polarized. We describe the modes after Boyd and 
Gordon[t] with an accuracy up to the normalization: 

Uqmn (r) = XmY nZq, 

Xm = 2-mf2(m!)-'I•Hm(x/pqmn)exp[-x2/2p2qmn], 

Yn = 2-n12(nl)-'hHn(y/pqmn)exp[-y2/2p2qmn], 

Zq =sin {6 [(n/4) (2q + m + n + 1) + tj2(x2 + y2)/ p2qmn] 

-(m + n + 1) (n/2- ¢)+(n/4) (2q + m + n + 1)}, 
,pqmn = [b(1 + s2 )/2KqmnJ'h, £ = 2z/b~ 

Kqmn = (n/2b) (2q + m + n + 1), 

'll = arctg[(1- s) I (1 + s)] 

(b is the distance between the mirrors and Hm and 
Hn are Hermite polynomials). The origin of coor
dinates lies in the center of the resonator and the 
Z axis coincides with the optical axis of the reson
ator. The functions Uqmn(r) are normalized as 
follows: 

When the field and polarization of the medium are 
expanded into a series in terms of the natural 
modes of the hollow resonator 

E(r, t) = ~E1(t)cos[v1t + cpl(t)]Uq 1m1n 1 (r), 
l 

P(r, t) = ~ P1(t) Uq1m1n 1 (r), 
l 

P1(t) = 3 [ql + 1/2(m1 + n,l + 1)} b-3 ~ P(r, t) Uq1 m1 n, (r) dr, 

P~(t) = C1 (t) cos [vzt + cp1 (t)] + S1 (t) sin [v1t + cp1 (t) ], 

Maxwell's equations in the approximation of a 
slowly-varying amplitude are reduced to a system 
of ordinary differential equations[B]: 

(vi- Qz + <P1)E1 = - 1/2(v/eo)C,,, 

E1 + 1/2(v/Q'1)E1 = -1/2(v/eo)S~, 
( 1) 

where Q z and Q z are the natural frequency and Q 
of the Z-th mode of the resonator respectively; 
E z, v z, and cp z are the unknown amplitude, fre
quency, and phase respectively of the generated 
l-th mode; v is the mean frequency of laser emis
sion, and Eo is the dielectric permittivity of vac
uum. 

At low pump powers perturbation theory can be 
used to represent coefficients S z and C z as a series 
in powers of the mode amplitudes EJ.L. The problem 
is thus broken down into two parts: computation of 
the polarization of the medium and solution of the 
system of nonlinear equations (1). We depart from 
Lamb's theory[B] in the first part by taking the 
transverse mode structure into account and in the 
second by considering the interaction of modes 
with close frequencies, a phenomenon significant in 
spherical mirror resonators. 

In the computation of the polarization of the 
medium we assume that the latter consists of mov-
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ing two-level atoms having a transition frequency 
w, decay constants Ya and Yb· and a dipole moment 
d. According to Lamb, the projection of the polar
ization on the l-th mode is written in the first order 
of perturbation theory as follows: 

pj'l (t)= -3/2i{d2/h2b3](qt+'/2(mt+nt+ I)]· 

X~E11 (t)exp(-i(v 11t+<p .. (t))] ~drdvN(r, t)W(v)· 
J.l 

XU1(r) U:11 (r- VT') exp[- Vab + i(w- Vu)]T' + c.c., 
where (2) 

Vab = (Ya + Vb) /2, N (r, t) = Aa/Va- A.b/yb, 

Aa(r, t) is the number of atoms excited to the level 
a (a = a, b) in unit time at time t in unit volume, 

W(v) = n;-'l•u-3exp[- (vi+ vi+ v,2)/u2] 

is the Maxwellian velocity distribution of the atoms, 
and u is a velocity parameter <%mu2 = kT). 

We now make some simplifications. The quanti
ties Pqmn can be assumed equal in typical optical 
resonators, since the maximum difference between 
the mode subscript sums 2qll + miL + niL + 1 is of 
the order of several times ten, while the average 
magnitude of these suytts is ~106. 

Introducing the mean wave number for the modes 
under consideration, 

K = (n:/2b) (2q + m + n + 1),Pqmn ~ p = [b(1 + 62)/2K]'I•. 

and, in addition, neglecting the differences between 
p(~) and p(~- 2vzT'/b) and between ~W and 
~(~ - 2VzT'/b), the function products Zq z(r)ZqJ,' 
x (r- vr') in (2) can be written in the form 

1/2 cos A cos K .. 'v,T' - 1/2 sin A sin K/v,r;' 

+a term rapidly oscillating in z, 

where 

(3) 

K/ = K .. {1 + 2[(x- Vx't'') 2 + (y- Vyt') 2] / b2 (1 + 62)}, 

A= (b/2) (6 + 1) (K<- KJ.L) + K 11U't'1 [vx(2x- Vx't'') 

+ vy(2y- vyT')J· [bu(1 + 62)]-'- [n/2- <p(6)] 
(4) 

Integrating (2) with respect to Vz, we can readily 
show that the major contribution from further inte
gration with respect to T' is due to an area in 
which the parameter K' u T' is of the order of sev
eral units. In view of the above and of the fact that 

[vx(2x- L'x't'') + Vy(2y- VyT')]/ub(1 + 62) ~ 1 

within the region of integration with respect to T', 
x, y, vx, and Vy, we neglect the second term in (4), 
considering that the portion of (3) slowly varying in 

z is independent of transverse coordinates and 
velocities. If we further assume that the pumping 
is homogeneous, it is easy to integrate with respect 
to x, Vx, y, and vy· As a result, (2) is transformed 
into 

P}1> (t) = - '/2 [d2jhKu] ~. E .. (t) exp [-i(v11t + <fJJ.L)] 

X { Nq 1-q 11 m 1+n1-mJ.I-nJ.It'>m1,mJA.bn 1 JA.Z(1;) 

~z > +Nq1-qJ.I m1+n1-mJA.-nJ.I d£2 (Sil 

X [t'>m 1,m11t'>n1 ,nJ.I(mt+nz+ 1) 

+ 1/zt'>m 1, m11 (6n1, nJ.L-2[n11(n11-1)}'/• 

+ bn1, nJ.L+2 [nt(nz- 1)]''') 

+ 1/2 bn1 ,nJ.I (t'lm, m 11-z£m .. (ml1- 1)]'1• + bm1 ,mJA.+2 

X [mt(mt -1)]''•)]} + c.c. 

where 

3 +I b 
Nq(-qJ.I'm1+n1-m"'-n J.L = 8 ~ cos{-z<s + 1) (K1 - KJ.L) 

-1 

(5) 

-( ~-cp(6)) (7n,J+nt-m 11 -nJ.L) }<1+~,2)N(~)d1;, 
3 +I b 

Nq 1-q J.L m1+n 1-m .. -n .. = 16Kb ~ N(s)cos[ -z<s + 1) (Kt-KJ.L) 
-1 

-(; -cp(s) )<mz+nz-m .. -n .. ) J d1;, 

i~ 

Z (1;) = 2i ~ exp [- (t2 + 1;2)] dt, 

ell. 
d£2 zm= 2(26-1)Z(6)+46. 

The second term in the braces in (5) is small in 
comparison with the first, since it contains a large 
parameter Kb ~ 106 in the denominator. Further
more, this term turns to zero if the sums (mz + nz) 
and (miL +niL) are neither both odd nor both even. 
Therefore only the modes of the same transverse 
structure as the l-th mode make a significant con
tribution to the polarization p~1>. The natural fre
quencies of such modes are well separated from 
one another in comparison to the resonator line 
width: thus the basic contribution to the slowly 
varying part of PT is derived from the l-th mode 
alone. 

We use the same assumptions for the computa
tion of the polarization projection on the l-th mode 
in the case of modes with small transverse sub
scripts in the third order of perturbation theory. 
Omitting intermediate computations and neglecting 
terms with transverse components of atomic veloci-
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ties (which is allowable in the case of modes with 
small transverse subscripts), we write the result 
as 

(3) i:rt'-'• d4 ~ , 
P 1 = -- --- LJ E~..EvEa 

8 ftKu 

X exp { -i [ ( 'VJ.I- Vp + Va) t + ( cpJ.I- (j!p + rpa)]} 

]+H D(-1/2v .. - 1/zva+vp)}-tc.c., -vo . /J.IC.fl r 

where 

HlJ.Ipa = 1/4Nq1-qJ.I-qp+qa, m1+n1-mJ.I-nJ.I-mP -np+ma+n,1Tl!Lpa, 
X y 

TiJ.Ipa = TlJ.IpaTlJ.Ipa, 

Tz~a = :n:-'1•(ml!mJ.I!/mp!ma!)'l• ~ {f[(-mt+mJ.I 
q=O 

+Imp-mal -t2q-t1)/2]/[(-mp+ma 

+Imp-mal -t2q) /2]1}. 

X {11(-tn~,z-mJ.I+ Imp-mal -t2q-t1)/2]/{(mp-ma 

+I mp-mu- I -t2q) /2]!} 

X {r{ (mz+m~-~-1 mp-ma l-2q-t1) /2}/[ (mp+ma (7) 

-I mr-ma l-2q) /2]!}; 

TY is obtained by substituting n form in (7): 
lfJ.pU 

D( ro) = ('Yab + iro)-1, Da( ro) = ('\'a+ iro )-1 (a= a, b)· 

The coefficients C l (t) and S z(t) can be readily 
separated from Eqs. (5) and (6) in the first and 
third orders of perturbation theory. In the general 
case these coefficients depend on the amplitudes of 
all the modes under consideration. 

We now consider the generation of two modes. 
There are two cases characteristic of a laser with 
a resonator close to the confocal type: a) the 
separation between modes (in terms of frequency) 
is greater than the resonator line width, and (b) the 
mode separation is considerably smaller than the 
line width. 

1. Frequency pulling and repulsion can be 
neglected in the case of modes greatly separated 
in frequency. The mode amplitudes can then be de
termined by the following system of equations: 

i!;1 = a1E1 - ~1E1 3 - 812E1Ez2, 

where 

at= 1/z(v/Q){[Zi(Vt- ro)/Zi(O)N-1}, 

l3tz = xTuuU + '\'ab2L(vt- ro)] (l = 1, 2), 

(8) 

812 = 1/2T112zx{2'\'ab2 [L(ro- (v1 + vz) /2) + L( (v2- Vt)/2)] 

-t ('V1-V2)[La(V2-VI) -tLb('Vz-'Vt)) 

X [N0:5 N2(q,-q,), 2(m,+n,-m,-n,)L( CJ) - Vt) ( CJ) - vt) 

(9) 

x = 2-4:n;'l•(v/Q)[d2N jft2va'\'bZi(O)], N=N0,o[d2QZi (0)/eoftKu], 

L(ro) = ('\'ab2 + ro 2)-1~ La= (ya2 + ro2)-1 (a=a,b), 

821 is obtained by interchanging indices 1 ~ 2 in 
the expression for 812 . The Q factors of the modes 
have been assumed to be equal. 

The system (8) has been analyzed by Lamb. Our 
coefficients a, {3, and 8 differ from Lamb's coeffi
cients only by the presence of the coefficients 
Tz and N , which reflect the difference in the fJ.pa p,q 
transverse structure of the modes. With symmetri
cal tuning we have 812 = 821 = 8, a1 = a 2, and {31/{32 

= T 1111/T 2222· 
According to computations based on (7) modes 

with large transverse subscripts have lower coeffi
cients Tzzzz and consequently, other conditions being 
equal, lower coefficients {3. When the coupling is 
weak ({31{32 > 82) a stability check of the solutions 
of (8) shows that the mode having a larger coeffi
cient {3 is either completely attenuated or is weaker 
than the second mode: when {31 > {32 > 8, 

(E1/E2) 2 = (~?~- 8)/ (~1- 8) < 1, 

and when {32 < 8 < {3 1 

E1 = 0. 

When the coupling is strong ( 82 > {31{32) either one or 
the other mode is excited in steady-state operation, 
depending on the initial conditions. 

The coefficients Tizzz were found for the first 
eight TEMmo modes. The results are as follows: 

TEMmo TEM00 TEM1o TEM2o TEMso TEM40 TEMw TEMeo TEM7o 

~11 : 1 0,750 0,641 0,574 0\528 0,500 0,465 0.443 
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We see that, as the mode numbers increase the a= 2-1 Qv N { Zr [ ()vk-: liQ J / Zi (0) } ~ n-'1• ~ N[~v1 ;u Ml]. 
coefficients Tmz• and consequently {3, tend toward 
"saturation," i.e., modes with sufficiently large (11) 

transverse subscripts are not more capable of Representing the coefficients T 1111 and T2222 as 
competing than modes with smaller transverse 
subscripts. The damping of one mode by another Tuu = T +liT. T'/22.2 = T -liT 

is less probable in this case, leading to the simul- and taking (11) into account, we can readily obtain 
taneous generation of many modes with large trans- from (10) in the zeroth order in .6T the following 
verse subscripts. These conclusions are confirmed relations for the amplitudes, frequencies, and 
by experiment. Figures 3 and 5 show that as the phases in the stationary case: 
mirror begins to turn (or as the diaphragm diame-
ter in the laser increases) the change in the em is- E12 = E22 = 6.QjxT 1122 ( 1 + JJ.) sin 2lit:po, liv1 = liQ, 

sion field structure consists of increasing trans- (a/liQ)sin 26.t:po+cos2lit:po=- (2T+3Tu22)/(1+~.t)Tu22· 
verse subscripts of the modes. Beyond a certain (12) 
point (photo 6 of Fig. 5, for example) the emission 
field structure becomes more complex by simple 
addition of new more complex modes to the prev
ious pattern. 

2. In the case of modes whose natural frequen
cies are close to one another, we are mainly inter
ested in the width of the "locking" region. "Lock
ing'' can be due to the scattering of modes by 
inhomogeneities and stem from the linear polariza
tion terms obtained when molecular motion is taken 
into account, and also from the nonlinearity of the 
medium. We confine ourselves to locking due to 
the latter cause. We look for a single-frequency 
case of two modes with close natural frequencies 
and with transverse subscripts of opposite parity, 
such as TEMo,o,q and TEM1,1,q- 1• TEM0 , 3,q and 
TEM1,o,q+ 1, etc. According to (5), there are no 
linear terms in system (1) to cause locking in such 
pairs; therefore locking is due only to the nonlinear 
properties of the medium (we neglect scattering). 

We assume that we have symmetrical tuning, 
that the mode Q factors are equal, and that pumping 
is homogeneous along the axis and over the cross 
section of the laser. The system (1) then assumes 
the following form in single frequency operation 
for the case of two modes whose transverse sub
scripts have opposite parity, recognizing that the 
coefficients T 1222 and T 2221 vanish for such a pair: 

(~1 + l>v1-,a)E1 = EWz2xTu22(1 + JJ.) sin2lit:p, 
(~2 + &v1 - 2.£\Q - a)E2 = -E2Et2x1'u22(1 + JJ.)sin 2.£\!p, 

E1 = aE1 - 2xT1111Et3 - EtE22xT1122[3 + {1 + JJ.)cos 2.A!p], 

E2 = aE2 - 2xT~z3 -EzEt2xTuzz[3 + (1 + JJ.)co:s2lit:p], 

(10) 

where 

6v1 = Vt - Qt, 6.t:p = t:p2 - t:pt, Vt = v2, 

b,.Q = (Q2 - Qt)/2, JJ. = H2(q1-q1), 2(m1-m2+n 1-n,/Hoo, 

According to the last equation of (12), mode locking 
is possible only if 

li~~ < a[(2T + 3Tu22)2/T;t22(1 + ~.t2 ) -1]-'t., 

or, if the explicit form of 0! (9) is taken into ac
count when ov1 = .6Q, 

l\Q < 2-t(v/Q) (N -1)[(2T + 31'1122) 2/~122(1 + ~.t2) -11-''•. 

(13) 
When T 1111 = T 2222 = T, the stable solution is the 
one with equal mode amplitudes and with phase dif-
ferences 

t:po = n/2- 2-1 arcsin[1 +(a/ 6.Q) 2]-''• 

+ 2-1 arcsin { (2T + 3T1122) Tu22( 1 + ~.tH1 + (a/ liQ) 2]''•}. 

When the difference between T 1111 and T2222 is taken 
into account in the first order of .6T, we see that 
the phase difference .6cp0 does not change and the 
common frequency of generation shifts toward the 
mode with the lower coefficient Tzm, its amplitude 
becoming larger. 

A numerical estimate of the width of the locking 
range, based on (13), at twice the threshold pump 
power gives .6 Q ~ 20-30 kHz for modes with 
moderate transverse subscripts; this is in good 
agreement with experimental data. 

CONCLUSION 

1. The experiments showed that modes with 
large transverse subscripts are excited in a laser 
with a resonator consisting of spherical mirrors 
and equivalent to a confocal resonator. 

A theoretical analysis of mode interaction in a 
laser with such a resonator showed that modes 
with large transverse subscripts are more competi
tive than modes with smaller subscripts. The num
ber of the maximum transverse mode appears to be 
determined by the tube diameter (if the volume dis
tribution of the excited atoms is uniform). 
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2. The experiments show that beats are absent 
if the radio-frequency spectrum is low enough (up 
to 20 kHz). A theoretical analysis of the interaction 
of modes with close resonator frequencies (.D. Q 

« v/Q) showed that there exists a "locking" region 
whose width is in a good agreement with experi
ment. 
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