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A system of nonlinearly interacting oscillations with small nonlinearity in a dispersive 
medium is considered. A condition is derived under which such a system can be approxi
mately described by statistical means. A criterion is obtained for the randomization of the 
wave phases as a result of the nonlinear interaction, and the characteristic time of loss of 
the phase memory of the system is obtained. This makes it possible to derive a kinetic 
equation for the waves without assuming a priori that the initial phases are random. The 
spectral limits of applicability of the kinetic equation are found and a connection is estab
lished between the phase randomization time and the increment of the decay instability. 

THE derivation of a kinetic equation for waves in 
a nonlinear turbulent medium is based on the well
known assumption that there is no phase correla
tion between the Fourier amplitudes of the har
monic. An example is the kinetic equation for 
phonons in a solid and the kinetic equation for 
waves in a weakly-turbulent plasma (see, e.g., [1]). 

The assumption of the separation of the phase 
correlations is usually called the random phase 
approximation (RPA). As a result of the develop
ment of an instability or some other process, a 
very large number of waves is excited and inter
act with one another. The interaction has a decay 
character, i.e., the resonance condition 

~ niwi = 0 
j 

(where Wj are the wave frequencies and nj are 
some integers) can be satisfied in an infinite num
ber of ways. The complexity of the interaction and 
the large number of degrees of freedom lead us to 
expect a statistical ensemble of waves to be pro
duced and the phase correlation to be lost as a 
result. In this paper we investigate the conditions 
under which a system of nonlinearly interacting 
oscillations can be described, with a certain de
gree of accuracy, by statistical laws, and we ob
tain a criterion for the separation of the phase 
correlation of the waves. A criterion of this kind 
was derived for interacting harmonics of a non
linear string (the so-called Fermi-Pasta-Ulam 
problem [2]) by Izrallev and Chirikov. [3] The con
nection between that problem and the questions 
considered in the present article will be discussed 
later. A rigorous derivation of the main kinetic 
equation for a nonlinear wave field under the as-

sumption that the initial phases are random was 
obtained by Brout and Prigogine [4]. The system
randomization criterion presented below allows us 
to dispense with the a priori RPA. 

1. DERIVATION OF THE FUNDAMENTAL 
EQUATIONS 

We consider a one-dimensional wave packet, 
the potential energy of wave interaction being de
fined by 

V = ~ L; Wh 2uh2 + B ~ Vh,k,k,uk,uk,uh, 

h ht+k 2+h3=0 

+ B2 ~ Vk,h,k,l<,uk,uk,uh,uk, +... (1.1) 
kt+k2+k,+k4=0 

Here {3 is a small parameter and the kernels V 
satisfy the usual symmetry properties: 

Uk is the amplitude of the k-th harmonic. The 
spectrum is assumed discrete with a character
istic distance ~Ak between harmonic and with a 
distance between frequencies 

dw" 
Qk=dkl1k. (1.2) 

In addition we shall assume that the spectrum is 
of the decay type in first order. This means that 
simultaneously with satisfaction of the phonon 
momentum conservation law k3 = k1 + k2 there can 
be satisfied the following energy-conservation law 
(resonance condition): 

(1.3) 

We shall consider later the more general case of 
the spectrum Wk = w ( k). 

718 
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We confine ourselves in (1.1) to the terms 
written out, and take account of the fact that the 
term proportional to {3 2 gives rise to a nonlinear 
correction to the frequency: 

1 
.1.w~~. ~ ---=-~2 ~ v~~.~~.,u~~., 2 , v~~.~~., = v~~.~~.,~~.,~~.,t>k,.,t>~~.,~~.,.(l.4) 

The expression (1.4) for ~Wk is accurate apart 
from a numerical coefficient, the exact value of 
which is immaterial. We change to action and 
phase variables ( lk, cp k) and rewrite the total 
Hamiltonian of the system of interacting waves in 
the form [5] 

H = ~ (w,.lk + .1.w~t(I)I,.) + 13 ~ ( h,h,h, )'1' 
k k,+k,+k,=O Wk,Wk,Wk 3 

X { V~t,h,k,exp {i ( <p~t, + <p~t, + <p~t,)} 

+ 3Vk., h,, -k, exp {i(<pk, + <r~<,- <r~t,)} + c.c.} 

. Ho + V;nt; Ho = ~ Wk!,. 

k 

(1.5) 

Here .C:..wk (I) = ~Wk ( 11, 12, ••• ) and does not de
pend on the phases; the action (which has the 
meaning of the number of "quasiparticles") and 
the phase are defined by the relations 

• w_,, = wh, vh,h,k, = v_k,,-h,,-k, (1.6) 

the letters c.c. stand for terms that are complex
conjugates of those preceding them. 

We introduce the density function f ( I, cp, t) in 
phase space, satisfying the Louiville equation: 

!}__ + ~ Wh _!!_ = ~ ( oV;nt !i_ _ oV;nt _!!__) (1. 7) 
fJt " ii<p" " o<pk fJJ, of, o<pk 

and containing no additional information other than 
the solutions of the equations of motion 

<f~t=w~t+0(132), jk=O(I3). 

If we go over to the interaction representation, 
then the second term in the left side of (1. 7) 

vanishes, and it is necessary to replace cp k in the 
right side by 'Pk- Wkt throughout. Inasmuch as f 
is a periodic function of the phases cp k· we can 
write 

f(I,<p,t)= ~{j(nl(l,t)ei(n,<pJ+c.c. },, 
n 

(n, <p) = ~ nh<pk, _f{TI) = (j(-nl)", (1.8) 

k 

or, in the interaction representation, 

f(l,<p,t)= ~ {_f(nl(I,t)ei(n,<p-wt)+c.c.,}. (1.9) 
n 

We neglect temporarily the nonlinear correction 
to the frequency. Then substitution of (1.5) and 
( 1. 8) into ( 1. 7) and a changeover to the interaction 
representation yields 

of<n> =- il3 {Qn,n+d<n+1) e-ilw]t + On,n-d<n-1) eil"'H}, (1.10) 
at 
where 

In addition, only the resonant terms, for which the 
decay conditions ( 1.3) are satisfied and which make 
the main contribution to af/at, have been picked 
out in the expression for Q. 

So far, the derivation of (1.10) has been the 
same as that of the main kinetic equation for 
waves. [5] The main difference in what follows will 
be connected with two factors: 1) elimination of 
the random-phase hypothesis when choosing the 
initial conditions, and 2) allowance for the non
linear frequency correction .C:..wk. 

For t = 0 we put 

j(I, rp, 0) = ~ {j(n) (I, 0) ei(n, <p) + C .c.}. (1.12) 
n 

The RPA is usually equivalent to the initial condi
tion f(l, cp, O) =f(l), i.e., all f(n) = 0 with the 
exception of n = 0. 

Taking the Laplace transform of (1.10), we get 
(n) . (n-1) Q (n+1) } 

pjp - _f(nl(I, 0) = -ll3 {Qn,n-1 fp-i[w] + n,n+liP+ilw] · 
/(1.13) 

From (1.13) we get an equation for f~0 >: 

pj~)- j<0l(I, 0) =- il3 {Qo, -d~_l~[w] + Qo,d~~ilwJ}. (1.14) 

We iterate (1.14) up to terms in {3 2 inclusive: 

f (OJ - j(O) (I 0) = - iP.{ Q - j(-1) (I, 0) + Q t._1J (I, 0) } 
p p ' t' 0, 1 . [ l 0,1 + . [ l p-t (J) p l (t) 

2 j<OJ (I, 0) 
- 13 Qo, -10o,1 p2 + [wj2 · (1.15) 

Going asymptotically to t-oo, i.e., to p - 0, and 
transforming back to the t-representation, we get 
ultimately: 

aj<O) = - iP. {Qo -1 e-i[w]t j(-1) (I, 0) + Oo, 1 ei[w]t j(i) (I, 0)} 
at ~" · 
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( 1.16) 

The difference between (1.16) and the funda
mental Prigogine-Brout kinetic equation, which 
has the Fokker-Planck form, lies in the presence 
of terms in p, which conserve the phase memory 
of the system with respect to the initial conditions. 
We note that even if f <±n( I, 0) = 0, the terms 
containing the phase memory appear in a higher 
order in f3. Namely, they will be of the order of 
{Jn°, where n0 corresponds to the smallest number 
of the nonzero harmonic in the expansion (1.12). 

We introduce for future use the distribution 
function 4> ( I, t) obtained from f <ol ( I, t) by 
averaging over the initial phases cp k, ( O)= 

<D(/, t) = (2:rt)-N ~ dcpk,, (D) ••• dcpk N,(o)/<0l(/, t), (1.17) 

where N is the number of degrees of freedom, 
i.e., the number of oscillations excited in the 
plasma. When t = 0 we get 

<D (/. 0) = j<0l (/. 0). 

The equation for 4> can be obtained from (1.16) 
by integrating the latter over the initial phases. 
A most important fact is that under the assump
tions made in the derivation of (1.16) the equation 
for 4> ( I, t) has exactly the same form. In other 
words, averaging over the initial phases of Eq. 
(1.16) does not change this equation, and the phase 
memory of the system is conserved. This is 
connected with the fact that (1.16) does not contain 
as yet terms that depend on cp k, ( 0). The situation 
changes if account is taken of the nonlinear correc
tion to the frequency. It will be shown below that 
this makes the term of first order in {3 dependent 
on 'Pk,(O), and we shall obtain a condition under 
which averaging over 'Pk,(O) leads to a kinetic 
equation of the Fokker-Planck type. 

2. ANALYSIS OF EQUATIONS OF MOTION 

When the resonance conditions (1.3) are satis
fied there develops for a certain set of three 
waves a coherent, instability, called decay insta
bility, [SJ which leads to growth of the amplitudes 
of the oscillations having frequencies w2 and w3• 

The presence of a nonlinear frequency correction 
can lead to violation of the resonance conditions 
and to a cessation of the instability. The following 
situation, however, is also possible: violation of 
the resonance condition of a certain fixed oscilla
tion w1 with a pair of waves w2 and w 3, owing to 
the nonlinearity of the frequencies, makes reso
nance possible between w 1 and another pair of 

waves w2 and w3. In the case when 

dw" 
--M"·~Q", 
dh· (2.1) 

the harmonic with frequency Wk rapidly goes out 
of resonance with any pair of waves, owing to the 
strong nonlinearity, but on the other hand it always 
enters into resonance with some other pair of 
waves. The left side of (2.1) represents the change 
in frequency due to the passage through resonance, 
while the right side (according to (1.2)) represents 
the characteristic distance between harmonics; 
~Ik is the change in number of quasiparticles 
(action) on going through resonance. A condition 
similar to (2.1) was considered in [3• 7- 9] as a 
condition for the phase randomization of a non
linear oscillation in an external periodic field and 
for the transition from a dynamic description of 
the system to a statistical one. We shall study in 
detail this question for Eq. (1.16). 

We turn for the time being to the initial equa
tion (1.1), which leads (when (1.4) is taken into 
account) to the equations of motion 

uk+(wk+L'1wh) 2u" ~ F(t), 

F(t) =- 3~ ~ v""'"' uh,uk, oh,+h,, k· (2.2) 
k.,k,=l=k 

The right side of (2.2) can be regarded as the 
external force acting on the k-th mode. If we use 
for Uk the zeroth approximation: 

then 

(2.3) 

If we now assume that the characteristic distance 
between the harmonics of the spectrum Qk changes 
little over the interval of the excited wave packet, 
then it is easy to see that (2.3) is a Fourier ex
pansion of a certain periodic function with period 

27r/rlk· 
We now make the very important assumption 

that the frequency interval of the excited oscilla
tions is sufficiently broad: 

(2.4) 

where N is the number of excited oscillations, 
~1k and Wk pertain to the considered interval of 
frequencies, which are far enough from the right 
edge of the packet. Then the force F ( t) for such 
frequencies wk constitutes a sequence of very 
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narrow time pulses (of width ~ 1/N~k) that 
follow each other at a frequency ~ Qk· Each pulse 
is accompanied by a change in the adiabatic in
variant of the oscillation ("scattering") by an 
amount Olk. To estimate olk, we note that owing 
to the very narrow width of the pulse F ( t) (com
pared with the period of the oscillation 2rr/wk) it 
can be approximately replaced by a a-function. 
We then get in lieu of (2.3) 

-;.k + (wk + L'iwk) 2u" ~- Fo ~ B(t- 2nn/~2k), 
n 

From (2.5) we easily get 

Bh, (n) Fo . Vhh, (n) . 
--- ~ ---sm 2cpk,(n) = P , sm 2cpk,(n), 
h, (n) WkU(O) Wk2Qhu(D) 

h,(n) k,(n) (2.6) 

where the index n in the superscript pertains to 
scattering by the n-th pulse. In general, Eq. (2.5) 
can be replaced by the following finite-difference 
system: 

h, (n+l) = h, (n) + Bh, (n), 

Wit 2n "' OdWJt . 
Qlk, (n+l} = Qlh, (n) + 2n Q + Q LJ ~ 61 h',(n) Sill 2cpk', (n) 

k k h' k', (n) 

= Qlk, en>+ 2n ~it+~ Kkh', en> sin 2cp"'· <nh (2. 7) 
k k' 

2n flfiw" 
Khk', (n) = r>-;--] Bh•, (n)· (2.8) 

•<.k u h', (n) 

When K » 1 the oscillation phase changes rapidly 
as a result of scattering, and we can expect (this 
will be demonstrated below) transition to take 
place in this case from the dynamic description 
of the system to a statistical one. 

Formulas (2.6) and (2.8) can be rewritten in a 
more compact form by using the expression for 
the increment Vk of the coherent three-wave de
cay instability (see, e.g.,[i]): 

Bh,(n} Vk . 
---=- sm 2cpk, (n) ~ 1, 

h,(n) Wk 

1 VkVkf. Vkh, (n) 
Kkk,'(n) ~ n---, Vk = p (2.9) 

O<k WkWk• WkQku(D) 
k, (n) 

If we consider a narrow packet, such that NQk 
« Wk, then the characteristic width of the pulse 
F ( t) becomes much larger than the period of the 
wave. Such a force is adiabatic. The change or 
as a result of scattering is exponentially small: 

_l5h ~ exp{- t/ NQ" }. 
!, I Wk 

and consequently K is also exponentially small. 
The results (2.9) can be obtained also by 

another more general method. The solutions of 
(2.2) in the interval between two successive pulses 
can be represented in the form of the solutions 
that arise when the WKB method is used [81; the 
latter is applicable, in view of the smallness of the 
nonlinearity. Let A0 and B 0 be the complex am
plitudes of the solutions before the scattering and 
let A and B be the same quantities after scatter
ing. The general transformation relating (A, B) 
with ( A0, B 0 ) is [8] 

(;)=(b~:.)(~:). JaJ2-JbJ2=1, (2.10) 

where a and b are certain parameters charac
terizing the scattering. If we put B =A* and B0 

= A6, then 

(2.11) 

where 10 and I are respectively the actions before 
and after the scattering. From (2.10) and (2.11) 
we get 

I 1 + 2e cos(2cp0 + '¢) + e2 
(2.12) 

where 

Ao = JAoJei<Po, I ~ I = 8, 

When E « 1, a small change in the action takes 
place, ol = I - 10• In this case it follows from 
(2.12) that 

61/1 ~ 2e cos (2cpo + '¢). 

This expression is similar to (2.6). In particular, 
for (2.5) we have E ~ v!w and 1/J ~ -rr/2, so that 
we arrive at the formula (2.9). 

In concluding this section, we note the quantity 
.6.1k introduced in (2.1) characterizes the change 
of the action as a result of passage through a 
single resonance, and does not coincide with olk. 
Let us estimate .6.Ik. At resonance there is added 
to the main oscillation a forced oscillation with 
amplitude .6.uk' ~ ,BV kUk'2/ .6., where .6. is the 
deviation of the frequency from the resonant value, 
In this case the frequency deviation is connected 
with its nonlinear dependence on uk, i.e., 

OWR. 
L'i~-L'ih·. 

fJh, 
Hence 

or 

(2.13) 
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Substitution of (2.13) in (2.1) yields 

8W1t ~ V kUn•/n• 'V1t•2 'VIt = = /{kk, ~ 1. ( 
8/n• Q"2 Ulk'UlkQk 2.14) 

Thus, condition (2.1) denotes, according to (2. 7), 
a very rapid change in the phase of the oscillation 
as a result of the scattering. 

The foregoing results enable us to proceed to 
the solution of the main problem-the derivation 
of the condition under which a transition from the 
dynamic to the statistical description is possible 
for the system (1.5). 

3. DERIVATION OF THE CONDITIONS FOR THE 
WAVE PHASE RANDOMIZATION 

We return to Eq. (1.16) and take now into ac
count the nonlinear correction to the frequency, 
.C::.w. As shown in the preceding section, the inter
action between this oscillation and all others re
duces to an effective scattering of a phonon 
periodically in time and to a change of the action 
by an amount 6I per scattering act. This means 
that the quantity .C::.w (I) is a function of the time. 
Let us take this circumstance into account in the 
factors exp {±i[w]t} which enter in the terms 
proportional to {3 in (1.16). To this end we note 
that, according to ( 1. 6), 

(w + ~w)t = <p(t) - Cjl(O) = Cjl(m)- Cjl(Oh (3.1) 

where m is the number of scattering acts at the 
instant of time t, namely m ~ t Qk » 1. With the 
aid of (2. 7) we get 

( Wk + ~wli) t = Cjlli, (m-1) + 2:n ~It + ~ Khh' sin 2qJh•, (m-1) 
It li' 

- Cjlli, (O) = Cjlk, (m-2) + 4:n; ~li + ~· Klik' sin 2cph', (m-2) 
li li' 

+ ~ /{kk, sin z{ Cjlli•, (m-2) 
k' 

+ ~/{k'li"sin2cpk",(m-2)}-cpn,(O)= ... (3.2) 
h" 

After the iteration process in (3.2) is complete, 
the quantity ( Wk + .C::.wk)t becomes a function of t 
(of the number m) and of <Pk, ( 0). 

For the function <1>, as already noted in Sec. 1, 
Eq. (1.16) takes the form 

a <I> &t =- i~ {Qo,-1 {e-i[qJ(I)-qJ(O)J> j(-1)(/, 0) 

+ Qo, 1 { ei[qJ(t)-Qllo)l) j{1) (/, 0)} 

- Cjlk,, (0)- Cj)h, (t) + Cj)h,, (0), 
(3.3) 

where only the linear frequencies can be retained 
under the 6-function sign; this will be justified 
later. In addition, we have used the notation 

(.) = (2:n)-N ~ ... dcp1, (0) ••• dcp:v, (0)· 

We now consider two limiting cases. Let 
K « 1 in almost the entire frequency interval 
under consideration. Then 

(w + ~w)t = wt + O(K), 

!{ e±i[w+~wlt} = e±ilwlt ( 1 + 0 (K)). (3.4) 

It follows from (3.4) that the equation for <I> has 
precisely the same form as Eq. (1.16) for f <o>, 
and the phase memory of the system is conserved. 

Let now Kkk' » 1 for almost all k and k'. In 
this case, retaining in (3.2) the terms that vary 
most rapidly, we have 

Cjlh ( t)- Cjlk,(O) = ( Ulh + ~Wk) t ~ Wnt - Cjlh, (0) 

+ .~ K~tk, sin { ~ Kli,k, sin[ ~ Kh,k, 
h 1 k2 ks 

... sin ( ~Kii m-l, lim sin 2cplim, <o>) ... J } . (3.5) 
lim 

Recognizing that Kkk' » 1, we can estimate the 
required integral by the stationary-phase method. 
This yields 

{e±ilw+~wlt} ""e-t/1:, -r-1 = 1j2QNlnK, (3.6) 

where Q and K are certain values of Qk and 
Kkk' averaged over the packet. 

This result solves our problem. The term of 
(3.3) of first order in {3 vanish after a time on the 
order of T, and the equation for <I> takes the 
Fokker-Planck form. 

~~ = 6:n;~~ ~ I VIi,, kz, -k, ~ 6 [w] O[li], o[ !!__] 
k,k,k, wk,wk,wk, ai 

X fnJ,_,/p_, [-!__ l <1>. 
8L (3. 7) 

The time T can thus be regarded as the time of 
vanishing of the phase correlation in the system 
(1.1). The equilibrium solution of (3. 7) is that <I> 
for which [5] 

(I,Jwn) = const, (3.8) 

where the angle brackets ( ... ) denote averaging 
over <1>. 

The characteristic time To for the establish-
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ment of the stationary state is determined from 
(3.7), viz., r 0 ~ ,}Jw. This time should be much 
longer than the time connected with the smearing 
of 6 ( [w]) in (3. 7) as a result of the nonlinear fre
quency correction. According to (2.9), this yields 

'toro2/v3 "' ro/v ~ 1. 

The last inequality justifies the neglect of the 
nonlinear corrections to the frequency in the 
argument of the 6-function in (3.3). 

From (3. 7) follows immediately a kinetic equa
tion for the waves [1]. Indeed, multiplying (3. 7) by 
Ik and integrating over the entire phase space of 
the function <1>, we get 

a(IJ) = 18nflz ~ IVk~ok,,-k,lz 6(ro", 
at k,k,k, Wk,UJk 2 Wk, 

(3.9) 

Taking into account the symmetry properties of 
Vk k -k and of (1.6) and assuming, as usual, 

1> 2• 3 
separation of the moments, 

we get 

a (h) = 18nf12 ~ 
at "'"' 
+(I") (lk)- (I") (Ik)]6(wk + Wk,- W~t,)6k+k., "• 

-[(h)(/".)+ (I") (h,)- (/") (lk,)] 

(3.10) 

4. DISCUSSION OF RESULTS 

1. As shown in the preceding section, satisfac
tion of the condition (2.14) for almost all k and 
k' leads to randomization of the wave phases 
within a time of the order of T. This result has 
an intuitive interpretation. It is well known that 
the trajectories of motion are very strongly un
stable in a statistical system against small per
turbations of the initial conditions. This means 
that two phase points that start moving under 
nearly equal initial conditions can move arbitrar
ily far apart after a certain time. Let us consider 
for simplicity the change in the phase of a single 
oscillation. Let d cp k, (n) be the distance between 
two values of the phase on the unit circle at the 
instant of time characterized by the number n. 
Then, according to (2. 7), 

dqlk,(n:f::!) = Kkk•COS2(j!k•,(n) = Tn(k, k'). (4.1) 
d<j!k',(n) 

When Kkk' » 1 the transformation (4.1) is a 

stretching transformation, with the exception of 
a small region cp k' of dim ens ion ~ K - 1 « 1. In 
view of the large number of degrees of freedom, 
the statistical weight of regions of this kind is 
very small during the time corresponding to 
m » 1 steps. Therefore the transformation Tn, 
when applied a sufficiently large number of times 
for K » 1, 1> signifies the presence of the insta
bility discussed above. The condition K ~ 1 can 
be regarded as the limit of the stochasticity. 

2. Let us discuss the consequences of the 
phase randomization condition (2.14). We rewrite 
it in the form 

iJD.wk v" 1 
Kkk·=--h·--~1 

iJfR, Wk Qk- ' (4.2) 

or, as is the case for the majority of real systems 
in a plasma, b..w depends in power-law fashion on 
I, so that 

• D.ww ~ J~ 
Kkh' = ------~ 1, D.w" = 1,6 D.wkh'· 

Qk Wk k' 
(4.3) 

In addition, usually Kkk' is a positive power of k 
and k'. It follows therefore that oscillations with 
sufficiently large wavelengths do not become 
randomized. Below a certain limit k0 Eq. (3.10) 
becomes meaningless. The value of k0 can be 
estimated from 

(4.4) 

The action of the lower limit k0 is similar to the 
presence of a reflecting wall for the quasiparti
cles. [3] It follows also from (4.2) that in the 
regions of anomalous dispersion, where 

iJrok 
Qk = --D.k-+ 00 

iJk 
the stoichasticity may cease. In addition, the 
nonlinearity D..w should be sufficiently large if 
(4.2) is to be satisfied. 

3. In the model considered thus far, the reso
nance condition 

.... , 
L.J njulj = 0 (4.5) 

took the form 

0lk 1 = Wk, + Wk, k1 = kz + k 3. (4.6) 

Satisfaction of (4.6) is ensured by the correspond
ing form of the dispersion law w = w ( k). It may 
turn out that processes of the type (4.6) are for
bidden for the spectrum w ( k) under considera-

l)On going over to the continuous spectrum ilk ..., 0 the con
dition K » 1 would seemingly be always satisfied. Actually, 
however, such a transition calls for a special investigation. 
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tion, and the resonance conditions are satisfied 
only when the number of waves exceeds three. 
Thus, for example, assuming random phases, the 
kinetic equation for four-plasmon interactions was 
obtained in [1oJ. In the arbitrary case, the criterion 
( 4 .3) can be retained by making suitable subs titu
tions for .6.wk and Vk. The problem considered 
in [3] pertains to a spectrum w ( k) for which the 
process (4.6) is forbidden and decays are possible 
only in the next higher order. 

Satisfaction of the conditions (4.5) ensures the 
possible appearance of a "bare" (decay) instabil
ity. The latter leads to a radical change of the 
adiabatic invariant of the oscillation. 
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