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The scattering of an electron by an electron with exchange of a virtual photon (Moller scatter
ing), in the presence of the field of a monochromatic laser beam, is considered. It is shown 
that the effective cross section of the Moller scattering contains resonances connected with 
the discrete nature of the energy spectrum of the electron + plane electromagnetic wave sys
tem. The resonance infinities are eliminated with the aid of the total Green's function of the 
photon D(k1, kiA), calculated in the vicinity of the point k2 = 0, and the magnitude of the reson
ant Moller scattering is estimated. It is indicated that the effective interaction potential of two 
electrons in the field of a plane electromagnetic wave becomes an electron-attraction potential 
if certain relations are satisfied between the electron momenta, the electric-component inten
sity, and the electromagnetic-wave frequency. The polarization operator is calculated in the 
Appendix in second order of perturbation theory with respect to the interaction with the quan
tized electromagnetic field. The results are gauge-invariant. 

1. INTRODUCTION 

IT is presently possible to obtain with the aid of 
lasers electromagnetic fields in which the electric
component intensity reaches 108 VI em. The action 
of such fields on matter gives rise to new physical 
effects, which depend nonlinearly on the intensity 
of the laser beam, for example ionization of atoms 
at frequencies lower than 10/n (10-ionization en
ergy), [1] multiquantum dissociation of molecules,l2J 
multiquantum interband transitions in solids, [3] 

decrease of the coefficient of light absorption by 
conduction electrons in semiconductors with in
creasing laser-beam intensity,[4J and others. Most 
papers are devoted to a theoretical investigation of 
the elementary processes which occur in the pres
ence of an intense monochromatic laser beam, 
such as photon emission, annihilation and creation 
of electron-positron pairs,[5J pair production in the 
field of a nucleus, [6 J bremsstrahlung and absorptior 
in a Coulomb field, [7] Compton scattering, [B, 9] and 
coalescence of two laser-beam quanta into one of 
double frequency in a Coulomb field. [to] 

All the foregoing papers consider processes of 
not higher than first order of perturbation theory 
in the interaction with the quantized electromag
netic field. Analysis of higher orders is made 
difficult by the ultraviolet divergences which are 
characteristic of quantum field theory. At the same 
time, an investigation of processes of second and 
higher orders in the interaction with the quantized 

electromagnetic field, which occur in the presence 
of a laser beam, is apparently of greatest physical 
interest in connection with the resonant character 
of the probabilities corresponding to them. The 
appearance of resonances in the probabilities of 
processes occurring in the field of a laser beam is 
connected with the discrete nature of the energy 
spectrum of the electron + plane electromagnetic 
wave system. In spite of the fact that the potential 
of the electromagnetic field depends on the time 
(and consequently there are no stationary states in 
the usual sense in the system under consideration), 
we can speak of energy levels of a quasiparticle 
corresponding to the electron + electromagnetic 
wave system. The energy Ep - rw and the momen
tum p- rwn (r = 0, ±1, ... ) of this quasiparticle are 
connected by relation (15). It is this change of the 
electron spectrum in the electromagnetic field 
which leads to the resonant singularities in the 
probabilities of the processes such as Moller scat
tering, Compton scattering (with participation of 
two photons of the quantized electromagnetic field), 
and others occurring in an external electromagnetic 
field. 

We consider in this paper Moller scattering of 
electrons in the presence of an intense laser beam. 

In Sec. 2 we derive a gauge-invariant formula 
for the probability of the Moller scattering. An in
vestigation of the formula shows that under certain 
relations between the energy, momentum, and the 
scattering angle of the electron and the parameters 
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characterizing the electromagnetic wave, resonan
ces due to the discrete spectrum of the electron in 
the laser-beam field appear in the scattering proba
bility. At the resonance points, the scattering 
probability becomes infinite. To eliminate the 
resonance divergence, the free Green's function of 
the photon is replaced by the total Green's function 
of the photon, which takes into account the action of 
both the quantized and the external electromagnetic 
fields. 

In Sees. 3 and 4 we calculate the total Green's 
function of the photon and investigate with its aid 
the resonances in the Moiler-scattering cross sec
tion. The presented numerical estimate shows that 
the Moiler-scattering cross section may turn out to 
be quite large as a result of the resonances. 

In Sec. 4 we indicate also that under certain con
ditions the effective potential of interaction of two 
electrons in the presence of a strong electromag
netic field acquires terms corresponding to elec
tron attraction, and at electron momentum values 
near the resonance points these terms can exceed 
the Coulomb-repulsion potential. This gives rise to 
a possibility of pairing of electrons in a strong 
electromagnetic field. 

In the Appendix we calculate the polarization 
operator (in second order of perturbation theory 
with respect to the interaction with the quantized 
electromagnetic field) in the presence of an ex
ternal electromagnetic field, and renormalize this 
operator. 

2. SCATTERING OF AN ELECTRON BY AN ELEC
TRON IN THE FIELD OF A PLANE ELECTRO
MAGNETIC WAVE 

The collision of two electrons with exchange of a 
virtual photon (Moller scattering) in the presence 
of an external electromagnetic field is described 
in second-order perturbation theory with respect 
to interaction with the quantized electromagnetic 
field by means of the diagrams shown in the figure. 
The corresponding matrix element is written as 
follows: 

The dashed lines denote the free Green's function of the 
photon, and the solid lines the wave function of the electron 
in the field A. 

M = ~ 'Q 1111 (' d4 d4 d4k exp {- i (k, Zt- z2)} 
(2:rt)4 LJ g J Zt Z2 k2 + ie 

I" 

x {f1iir (1) y 111Jl;· (1)1 r'P1 (2) y111Jl; (2)J- r'1P1 (1) y111Jl;· (1)J 

x[1jir(2)yp.'ljld2)]}; ljlu(:l)=¢Pcx(z!), (a=i,i',f,f'), 

'llrx(1) =¢a+(1)yo, e-++0, z==(t,r), (kz)=kot-kr, 

g00=1, gii=-1 (i=1,2,3). 

Here 1/J (z)-wave functions of the electron in the 
extern£ electromagnetic field with potential 

( 1) 

A(A0, A); the normalization volume is V = 1; Pi• 
Pi', and Pf• Pf' are the 4-momenta of the electrons 
in the initial and final states, respectively. 

We shall henceforth use for the potential A 

A (z) = a cos (k' z), a= (a0, a), k' = (ko', k') = ron, 

n={1,n); (2) 

a, n, and w are respectively the 4-amplitude, 
4-vector of propagation direction, and frequency of 
the electromagnetic wave. For a field with poten
tial (2), the wave functions 1/Jp(z) of the electron 
take the form 1> [lt, 9 J 

ljJp (z) = ( 1-.:_~cos ro (nz)) Up exp {-iSp (z)- i(pz)}, 
2 (np) 

Sp (z) = X!p sin ([J + X2p (sin 2qJ + 2w (nz)), 
e (ap) e2a2 

qJ=w(nz), Xip= w(np), X2p=- 8w(np)' (3) 

up-Dirac bispinor. 
The integrations in (1), using the wave functions 

(3), yield 

4 

M = ie2 (2:rt) 4 ~ g~-'~-' ~ 6~[pt + Pt'- Pi- Pi' 

+ sk' + 2k' (X2f + X2f'- X2i- X2i•)] 

x{ [iit.R~-s, (!', i') ud [u1R.,"' (!, i) ut] 

[p;- Pt- s1k'- 2k' (xzt- X2i) J2 

[u1R~-•• (!, i') ud [u1.R.,"' (!', i) ui] } 
(p; - Pt•- srk' - 2k' ( X2f• - xz;) ]2 ' 

( 4) 

(0) (f) 1 ( 1 1 ~ ~ ~ 
R.~-'(1, i) = L. (!, i)y"' + Ls (!, i)-;- ----- eany"' 

2 (npt) (np;) 

e ~ ~ (ll 
- --(a"'n- n"'a)Ls (!, i) 

(npi) 

~ 1 
-nn 

"' 2 

l)we use a system of units in which c = 1i = 1. The fol
lowing notation is used: (a b) = a 0b 0 - a • b - scalar product of 
the 4-vectors a= (a 0 , a) and b = (b0 , b); a= a 0y0 - a• y, 
y f1 - Dirac matrices. 
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1 +" 
L!i) (!, i) =- ~ dcp S<il ( cp) exp {i [sin cp (x11- Xii) 

2:n 
-n 

+ sin 2cp ( Xzt- Xz;)- scp]}, s<o) = 1, 8(1) =cos cp,, 

The square of the matrix element, averaged over 
the initial and summed over the final spin states of 
the electrons, is calculated in the usual fashion 
(see, for example,[12 J). The final result is: 

_1 __ ~ IMI2 =- 1 e4(2:n)4 
-- Ll -- ~ 64 [pt+Pt•-pi-Pi•+sk'+2k'(xzt+xw-x2i-X2i•)] 
4 TV 2 e;e;•etet• ,, ,, ,, 

(1) y c 
{ <D •• s,, s, 1 + 1 

X [p; - Pt - Szk--,-= 2k' ( X21 - X2i) J2[p; - Pt - s1k' - 2k' ( Xzt - X2;) )2 

(2) + <D,, s,, s, Yz + Cz 
[p; -Pi'- s~k'- 2/c' (xw- x2;) )2 [p; - Pt·- s1k'- 2/c' (xz!'- Xz;) )2 

(3) 
<Ds, s,. s, Y3 + C3 } 

- [p;- Pt- Szk'- 2k' (xzt- xz;) ]2{p;- Pt'- s1k'- 2k' (xw- Xz,)J2 • 
( 5) 

We have introduced here the notation 

,.,... (1) = L (0) (f ')L (0) (f ')L(O) (/' '')L(O) (f' '') Ws,s 1,s2 sr ,l s2 ,l s-s1 .,t s-s2 ,l 1 

,.,... (2) L(O) (f' ') L(O) (!' ') L(O) (f '') L(O) (f '') 'Y:-'s, sl> 5 2 = s 1 , l s 2 , l s-st , l s-s2 , l , 

,.,... (3) L (0) (f' ') L(O) (f ') L(O) (/ '') L'O) (f "') '-Vs,s~,s2 == s 1 ,L s2 ,l s-s 1 J.l s-s2 ,l, 

Y t = 2m4 - m2 ( (p;pf) + (Pi'Pt•) ) + (P;Pi') (PtPf') 

+(PiP!') (P;•Pt), 

Y~ = 2m4 - m2 ( (PiPt•) + (Pi•Pt)) + (PiPi•) (PtP!') 

+(PiP!) (Pi'l'!•), Ya = -2tn4 - 2(p;pi') (PtPt•) 

+ mz [ (PiPt) + (Pi•Pt•) + (p; + P!> Pi' + Pt·) ], 

e.',t = Pao = l'Pa2 + m2 (a= i, i', f, f'), (6) 

Ci (i = 1, 2, 3) are certain func~ions of order ea/m 
compared with the functions <I>(l)yi (at s = St = s2 
= 0). 

It is easy to verify that expression (5) is invar
iant against the gauge transformation (A. is an arbi
trary constant) 

a-+a' =a+ A.k'. (7) 

For the differential effective scattering cross 
section we obtain (J-particle flux density) 

X/6 (Pt'2 - m 2) 6" [Pt +Pi'- p; - Pi• + sk' 

+ 2k' (X2j + X2f'- Xz;- Xz;•) ]{. · .}, 

{ 1• X> 0 
8(x)= 

0, x<O. 
( 8) 

In the last expression we make the following change 
of integration variables (the Jacobian of this trans
formation is equal to unity) : 

Pt + 2k'xzt =fit, Pt• + 2k'x2f' + sk' =fit· (9a) 

and integrate with respect to Pfo and Pf;: 

e4 1 ~ ~ aa- aa- 1 1 
da = -(2 )2 2-. -. Ll P t Pr -1 =-=-:n e,e,• s, a, 82 Et ef' 

X 64 Cii f + PI' - Pi - Pi') 

{ &~~) ..... y 1 + c 1 

X - - •2- - •2 (p 1 -p1 -s2k) (p;-pf-s1k) 
-(2) ~ -+ <D,, s,+s, s,+sY2 + C2 

(p;- Pr- s2k')2(ji;- Pf'-slk')2 

~(3) - -
_ <D,, s1+s, s, Y3 + Ca } • 

(ji;- Pt- s2k')Z (p;- Pr -s1k')2 ' 

Pa + 2k'xza = Pa (a = i, i'), ~ = (pa2 + m*2 ) 'I•, 

(a = i, i', f), '"Et· = sk0' + ((Pt• - sk')2 + m*2) 'I•, 

(10) 

(9b) 

The symbols ;j;(i), Y i• and Ci denote respectively 
the functions ci>(i), Yi, and Ci in terms of the varia
bles (9a) and (9b). 

From (9a) and (9b) we get 

Pa2 - m2 =Paz - m •z = 0 (a = i, i'' f) ' 

p1,2- m2 = (Pt•- sk') 2 - m*2 = 0 (s = 0, ±1, ... ). 
(9c) 

To simplify the derivation we change over, in 
the analysis of (10), to an auxiliary coordinate sys
tem, in which the following relations are satisfied 
(all the quantities pertaining to this system of co
ordinates will be designated throughout by a unity 
superscript, for example p~) 

Pi1 + Pi·1 = o, ill + P't·1 = o, 

2ei1 = el + ;;.1, 1Pi1,1 =1= iilt1 l for s * o. (11) 

The system defined by ( 11) goes over in the ab-
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sence of an external field into the ordinary c.m.s. 
of two electrons, so that we shall denote it the 
c-system. Carrying out in (10) integration in the 
c-system with the aid of a 0 function, we arrive at 
the expression 

k'lJi/ =I k'lll I>ll cos c'fi/- ( 12) 

Here the sum over IP'fl denotes summation over the 
roots of the equation 2E'i = 'E} + €}. The connec

tion between JP'}I and the laboratory-frame quanti
ties is given by formulas (20); d'?.l} is the solid
angle element in the direction of the vector p}. In 
the nonrelativistic case, in the absence of an ex
ternal field (ea = 0) this expression leads to 
Rutherford's formulas with allowance for ex
change[12·13] (v and e are the velocity and scattering 
angle of the electron in the c.m.s.): 

1 ( e2 )2 1 [ 1 1 
da = 16 4n:m ~ sin4(9/2) + cos•(e/2) 

- 1 J dQ (13) 
sin2(9/2)cos2(8/2) · 

Let us examine the denominator of one of the 
terms in the curly brackets in expression (10) in 
the c-system: 

Bs, = (p/- p/- s2k'1) 2 = 2[m* 2 - ~1 ;;j 1 

+ I P:1 il P/ I cos 8i - S2k'1 (p;1 - p/)]' 

cos 8 = PiP! I !Pi I !Pt \. (14) 

Using (9b), we can show that Bs vanishes when 
~1 2 ~1 

s = 0 only if e = 0. We note that the angle e goes 
over in the limit when ea = 0 into the electron 
scattering angle in the c.m.s. Thus, the case 
Bs2=o = 0 corresponds to the Rutherford seattering 
of an electron at zero angle. We can therefore 
state that the infinite value of the Moiler-scattering 
cross section at 81 = 0 is due to the properties of 
the Coulomb field and has no bearing on the action 
of the field of the plane electromagnetic wave. 

We shall consider henceforth the case 01 -.r- 0. 
Here, as can be shown by using formulas (19) and 
(20), the function Bs vanishes for certain relations 

2 ~ ,...._, r-v 

between the momentum Pi• the angles e and <Pf· and 
the parameters s and s 2 (s2 -.r- O); consequently, the 
effective Moiler-scattering cross section becomes 
infinite. 

The resonant behavior of the Moiler-scattering 

cross section in the presence of the field of a plane 
electromagnetic wave is explained in the following 
manner. The Fourier transform of the Green's 
function of an electron in an electromagnetic field 
described by the potential ( 2) contains poles at 
which the following relations is satisfied (see the 
Appendix): 

Ep- rko' = + l'(P- rk') 2 + m*2 (r = 0, +1, ±2, ... ). 
(15) 

The plus and minus signs pertain respectively to 
the electron and positron states. According to the 
usual treatment of Green's-function poles,[14 J the 
quantities Epr = Ep- rk0 and P r = p- rk' can be 
regarded as the energy and momentum of a certain 
quasiparticle corresponding to a electron + plane 
electromagnetic wave system2>. Thus, in spite of 
the fact that the potential ( 2) depends on the time, 
one can speak of a discrete energy spectrum of the 
system under consideration, consisting of an in
finitely large number of levels (15). Naturally, the 
discrete structure of the spectrum of the electron 
+ plane electromagnetic wave system causes the 
probabilities of the processes occurring in such a 
system to acquire a resonant character under cer
tain conditions. We note that the nature of the 
resonant infinities in the Moiler-scattering proba
bility in the presence of an electromagnetic field 
is the same as in the scattering of a photon by a 
bound electron (see, for example, [12 ])-in the latter 
case the resonances are connected with the dis
crete spectrum of the electron in the Coulomb field 
and appear whenever the energy of the scattering 
or scattered photon coincides with the difference 
between two atomic levels. 

The infinite value of the probability at the 
resonance points is connected with the use in (1) of 
the free photon Green's function D0(k). The reson
ant infinities are eliminated by replacing D0(k) by 
the total Green's function of the photon D(k1, kl A), 
which takes into account the action of the external 
and quantized electromagnetic fields. Unfortunately, 
the calculation of the total Green's function of the 
photon for all values of the arguments is a hopeless 
task. One can, however, sum approximately the 
entire perturbation-theory series for the total 
Green's function D(k1, kiA) in the vicinity of the 
point k2 = 0 and use the result (D(k1, kiA)Ik2=0) to 
eliminate the infinite at the resonant point. This is 
done in Sees. 3 and 4. 

2lA similar interpretation of the poles of the Green's func
tion of an electron in the field (2) is contained in a paper by 
Yakovlev [10], 
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However, the c-system introduced by us, which 
is convenient for the investigation of resonances, 
is not physical; indeed, it represents an infinite set 
(with respect to the number s) of coordinates. 
Therefore, to estimate the Moiler-scattering cross 
section we change over to the laboratory frame 
(l.s.) in which the i' electron is at rest, and the 
vectors a and k' take the form a= (0, a) and k' 
= wn, n = (1, n). In this system, the following rela
tions are satisfied: 

ezaz 
Bi,=m--, 

4m 

(k'f5t,) = (k'j5;)- (k'f5t) + wm, 

(k'j5;') = wm, 

Using the invariance of the scalar products of 
4-vectors in different Lorentz coordinate systems, 
we can establish the connection between the vectors 
and angles of the c-system and of the l.s. and write 
down an expression for the effective scattering 
cross section (12) in the l.s. It is simpler, how
ever, to go over the l.s. directly in (10). The 
formula for the effective scattering cross section 
in the l.s. will be derived in the nonrelativistic ap
proximation 

(j) -<1 (a=i,i',/,1'); (17a) 
m 

in addition, we shall assume that the most essential 
values of the parameter s (i.e., those values at 
which resonances take place) are small, so that 

lswl/m~1. (17b) 

We retain in the curly brackets of (10) only the 
terms that make the contribution of main magnitude 
at the resonance points. The final result is 

d e4 'V 'V m2 dQt I~ 12 
cr = -(2 )2 ~ ~ - ~ Pt 

n s, s, I P I vi e I e r 
f 

X ll!tl + \Pti-IP;IcosS~+(sw+e2a2/4m)cos(j5 1 ~-l 
e 1 er- sw 

(a= i, f), (18) 

All the quantities refer here to the l.s., with the ex
ception of E'l, E'j, P'l. p}, and 01; the sum over IP'fl 
denotes summation over all the roots of the equa
tion 'Ei + 'Ei'- Ef- Ef' = 0, which in the approxima
tions (17a) and (17b) have the form 

- 1 [ - - ( e2a2) _ J I Pt I = -2 I p;j cos 8 - S(i) + -~, cos (/)f 
' 4m, _ 

± ~ {[ I p; I cos 8 - ( S(i) + e:: ) cos ~f r 
- ( e2a2 \ ( e2a2 )2}'/. 

- 4swm • + 4np; sw +--I - 2 sw +-
4m / 4m 

(19) 

The quantities €'1, ~'}, and cos 01 are connected with 
the corresponding quantities in the l.s. by the re
lations 

_ f 1 [ ;i ( e2a2 \ e2a2 np; m*zl}'f, 
e; 1 -m1 -- 1--~ ·+--+-

'- 2 m 4m2 J 4m2 m m2 J ' 

el = 2;/ [ et ( ei + m- ::~2 ) -I P; II p 1 I cos 9 

' ~ e2a2 ] 
T npl 4m ' 

cosB1=- -1- {;r(;;-m+ e2a2_) 
21 Pi1 II Pt1 I · 4m 

-I Pi II il, I cos e 1- npt :~2 } • (20) 

When 
- -, p;2 cos2 8 ezaz - - _ _ 

sw ::;2; a = 4m + f6mz ( -21 P; I cos 8 cos (/)J + 4np;) 

(21) 

expression (19) becomes complex. Inasmuch as the 
positive values of the parameter s correspond to 
emission of light by an incident electron, the quan
tity Smax ~a' fw gives the maximum number of 
photons of energy w, which can be emitted by a 
system of two interacting electrons, one of which 
had been at rest prior to the interaction, and the 
second had a momentum Pi. The summation over s 
in the expression (18) is thus carried out from- oo 

to Smax· The connection between the electron scat
tering angle e in the l.s. and the angle 7J is given by 

- { eza2 ezaz 
cos 8 = I Pi II Pt I cos 8 - npl -- - np; --~ 

4np; 4 (np1) 

1 _ e2a2 } {[ e2a2 np; ( ezaz )2] •;, +- . p2----+ --
16 (np;) (npt) 1 2 (np;) 1 4(np;) 

[ ezaz np1 ( ezaz \ zl';,}-1 
X Ptz ____ + --1 

2 (nPt) 4(npt) ) J 
(22) 

3. TOTAL GREEN'S FUNCTION OF THE PHOTON 

The total Green's function of the photon in an 
external electromagnetic field described by a po
tential (2) can be represented in the form 

1 -too 
Dl1V (zz,zjl A)= (2n) 4 ~ d"ke-i(k, z,-z,) ~ Drl1V (k I A) e-irro(nz,). 

r=-oo 

(23) 
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The Fourier transformation of the Green's function 
of the photon is defined by the formula 

Dllv ( z2, Zil A) = +8) d4k1 d4k2e-i(k,z,)+i(k,z,}DI!V ( k'J.,. ki! A). 
( :n:) (24) 

From a comparison of the right sides of (23) and 
(24) we have 

+oo 

DllV(k2, k1IA) = (2:n:)4 ~ DrllV(kdA)Il(k2- k1- rcun). 
r=-oo (25) 

Relations analogous to (23)-(25) hold also for the 
polarization operator II fL v(z 2, z11 A) in the presence 
of an external electromagnetic field ( 2) . 

Using the last relations and Schwinger's equa
tion for the Green's function of the photon[15 ] (re
peated indices imply summation, for example 

4 

DmniTnk = ~ DmniTnk) 
n=1 

we can reduce 

DJJ.v (x, y I A) = D<0J!!V ( x - y) + ~ d4z1 d4z2D(O)!la ( x -- z2) 

X Ila~(z2,z1!A)Df:>v(z!,Y!A) (26) 

to the form 

Drllv (k !A)= D<0Jilv (k) Oro+ D<OWa (k +rum) 

X ~11r-r 1 ,aB(k+r1wn!A)Dr,~v(k!A) (r=O,+i, ... ). 

(27a) 

We write the solution of (27a) in the form of an 
infinite perturbation-theory series 

D,llv (k lA) = D<0Jilv (k) llro + D<0)1la(Jc + rwn) 

X'Ilr, aB (k I A) D(O)Bv {k) 

+D<0llla(k+rwn) ~IT,-r,,aB(k+r!wn!A) 

XD<OJBV(k + r!wn)Ilr,,v6(k!A) D<oJ6v(k) 

+ D<D)!la ( k + rwn) ~ IIr-r., aB ( k+r1wn I A) 

X IIr,, B•v•(k I A )D<D)v'v (k) + ... (28) 

For our purposes it is most important to clarify 
the behavior of the function ~v(kiA) in the vicinity 
of the point k2 = 0. In this region, the principal role 
in the sums over r 1, r 2, ... in the right side of (28) 
is played by the terms with r 1 = r 2 = ... = 0, since 
u<O>f.LV(k + r·wn) - oo as k2 - 0 and ri = 0, while the 

function II~~r-(k + riwniA) lk2=o (i = 1, 2, ... ) is 
1 

finite, as can be verified by using the results of the 
Appendix. If we retain only these terms in the 
series (28), then the resultant expression will 
satisfy the equation 

Dr(k iA) = D<11)ev (k) llro + D<0)1la(k + rwn) 

X Ilr, aB ( k I A) floP,v ( k I A) . (27b) 
From gauge-invariance considerations (see, for 
example, [i 5]) we get 

gllllkz1,,DilV ( kz, k1l A)= gvv Dllv ( kz, k1 I A) k1v = 0, 

glllllc21,III!v ( k2, k1l A) = gvvilllv ( kz, k1 I A) k1v = 0, ( 2 9a) 

which can be written in the form of relations of the 
type 

(ki +rwn)llDr,!lv(kdA)=Dr,!lv(kdA)ktv= 0. (29b) 

It follows therefore that the functions Ilr, J-Lv(k lA) 
and Dr, J-Lv(kiA) should be of the form 

I all 
Dr, 1tv(kiA) = llla(k + rwn)Dr (k!A)!Bv(k), 

kakll 
laB(k) = gaB- 'Ji2, lwx(l>+rwn) ]aiJ.(k) 

= 2 + [k(k+ rron)]2. 
k 2 (k + rwn)2 

(30) 

The function D~a(3 (k lA) will be sought in the form 

(31) 

To determine Dr(k lA) we obtain the following equa
tion (in the vicinity of the point k2 = 0): 

Dr(k lA) = D<0l(k) llro + D<0l(k + rwn) ITr(k IA)Do (k !A), 

(32) 

{ [k(k+rwn)]2 }-1 1all 
IIr(kiA)= 2+---~-- llla(k+rwn)Ilr (k!A) 

k2 (k + rwn) 2 

X Jflll(k) = {2 + ~2~: ~rr:~~ r~I'VIlr,!lv(k!A). (33) 

Hence (D <O >(k) = -1/k2) 

Dr(kiA) _: 

1 
[D<0l (k) ]-1- Ilo (k I A) 

D<Ol(k + rwn) ITr(k lA) 

[D<0l ( k) ]-1 -'Ilo ( k I A) 

for r = 0 

(34) 
for r =I= 0 

Using the results of the Appendix, we can show that 
the function gJ-!vrr~r(kiA) (r = 0, ± 1, ± 2, ... )at the 

point k2 = 0 are finite. Therefore, as follows from 
(33), Ilr(kiA)Ik2=o = 0 when r "'0. Thus, it is suffi
cient to take into account only Dr==o(k lA) in the ex
pression for the Fourier transform of the complete 
Green's function of the photon (25). From formula 

J.!V I (A.19) we get (gJ-LviiR (k) k2=0 = 0): 
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a 11 
Cj=-·-

3n: 90 ' 
(35) 

a is the fine-structure constant. 

4. DISCUSSION OF RESULTS 

We obtain the resonant infinities in the Moller
scattering cross section with the aid of the com
plete photon Green's function D(kk, kiA), which we 
calculated in the preceding section in the vicinity 
of the point k2 = 0. 

Let us consider the case when the denominator 
of one of the terms in the curly brackets of (18) 
vanishes for certain values of the parameters Pi• 
~ ~1 

0, s, or s 1 (0 ;r 0, s 1 ;r 0). Let, for example, 

(36a) 

As already discussed above, to eliminate the diver
gence at the resonance point it is necessary to 
make in (18) the substitution 

If the resonance corresponds to s = 0, then Eq. 
(36a) can be rewritten in the form 

- iP;1 i2 (1- cos S1) = -stiP;1 I ko'1 (cos ~i1 - cos S1 cos~/). 

(36b) 

Assuming that 1 - cos 81 ~cos {f~ - cos 81 cos 'fj, 
we obtain the resonance condition in the form 

- {i) - - -
IP;1 1::::::: Stko'1, ko'1 = --- (e; + m -I p; I cos qJ;). (38a) 

2e; 1 

For a numerical estimate of the resonance scat
tering cross section we put 

IEoi=105 V/cm, w = 2.7·1015 sec-1 (E = E0 cos w(nx)). 

(39) 

E and w are the intensity of the electric component 
and the frequency of the laser beam. At these val
ues of lEo I and w we get 

e2a2 m 
--2 = 4,7 ·10-12, - = 0,29 ·106, 

m w 

elal IPd 
Xtt-x!i:=::::- (xw-xw) ~ -----, 

m w 

X!f- X!i '?> X2f - X2;, 

(40) 

J s(x) is a Bessel function. We consider here the 

range of angles for which 

cos e cos e,- cos e; ::::::: 1, 

cos Sa= apa / iaiiPal (a= i, f). (41) 

Rec,_?gnizing that I:PII ~ IP'fl/2, k~1 :::::: w, and 81 

~ 20 (s = 0), we rewrite the resonance condition 
(38a) in the form 

(38b) 

We obtain for the scattering cross section du 
the formula (s = 0, s 1 ;r 0) 

-
cos 8 -

da., = ro2 ----Ps, dQt. 
sin8 8 

4 

Ps, = 26 (___!!!!____ \2 .!.!:___ ls,(X!f- 'Kti). (42) 
e2a2 J c t2 I v Is 

In this formula sin e ~ 1 (see condition (41)) and r 0 

is the classical radius of the electron. If the veloc
ity lv I of the incident electron is such that the 
resonance condition (38b) is satisfied for s 1 = 2 and 
3 ( lv I/ c ~ 2 x 10-5), then the numerical values of 
the functions Ps 1 are 

(43) 

At the chosen values of E 0, w, and pi' we get the 
inequality dus 1 ls;ra « dus 1 ls=O· Thus, the Moller-

scattering cross section can be very large if the 
resonance condition is satisfied at small values 
of s 1. 

In conclusion let us consider the effective inter
action potential of two electrons in the presence of 
an external electromagnetic field. 

As is well known, [is J the matrix element for 
exchange of a virtual photon by two free electrons, 
summed over the photon polarizations, can be 
represented in the form of a sum of two terms, 
one of which corresponds to instantaneous Coulomb 
interaction, and the other to an interaction due to 
the transverse waves (the second term is known as 
the Breit interaction). A similar analysis can be 
carried out also in our case. In fact, from gauge
invariance considerations we get the equality 

+oc> 4 

(lit ~ ~ gv.v.qs,v.R.,v.(f, i)u; )= 0, 
St=-oo ~=1 

which can readily be proved also directly by using 
(4a). 

Let us consider a coordinate frame in which the 
photon momentum vector qs 1=o is directed along 
one of the axes. Let RqO and Rtr be the projections 

s1 s1 
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of the matrices RJ.l on the direction of the vector 
St 

q0 and the directions perpendicular to it. We can 
then write 

+oo +oo 

L; L;g'-''-'q,, 11Rs/'= ~ (qo0Rs, 0 -lqoiRs~')+P, 

( 45) 
St=-oo 

We rewrite similarly the matrix element ( 4) (we 
write out only the first term of the curly bracket 
and omit the 6 function and the inessential numer
ical factors): 

~ Ciit~R~-s, (!', i') ui') (u,R,s0 (f, i) u;) 
M~ ~ 2 

qs, 
s, s1 

_ L; (iir Rs'I__'s, (!', i') U;•~ (iitRs,q'(f, i) ui) 

qs, 
·"· -"1 

- L; ( iirRs1!:.s, (!', i') U;•) ( u,R.,tr (!, i) U;) 

S,SJ qs? 
(46) 

It follows from ( 44) and ( 45) that we can make 
in the foregoing relation the substitution 

Um = qo0 Rm0 -I qo!Rmq' 

As a result we get 

lvJ ~ lvJC + lvJtr + M"; 

1 
lvJC = - ~ ~ ( urRs0 (/', i') ui') ( iitRo0 (!, i) ui), 

s 

M" = _ J!_ ~ (iirR~-s, (f, i') U;•) (litRs,o (!, i) ni) 

qo2 '· ,, q,,2 
(s,*Ol 

X [lit ( ~ am+ B) u; J + qor [lit ( .~ um' + B') 
m(*s,) m(*s-s,) 

X ui'J (iitRs, 0 (f,i)u;)l+ [ Uf' ( 2; am'+ B' )u/ J 
1n(=!=-s-s 1) 

Um = Um(/, i), 

The first term in this expression (Me) corre
sponds to the Coulomb interaction, and the second 
(Mtr) yields in the absence of an external field the 
particle interaction due to the transverse waves, 
while the third is the interaction induced between 
the charges and the currents by the external elec
tromagnetic field (this term vanishes when the ex
ternal field is turned off). 

Let us consider relation (47) in the nonrelativis
tic limit (17a). We separate in the expression for 
Mtr + M" the term with s 1 = 0. In a manner similar 
to that used to derive the Breit formula for the 
interaction of the free electrons, [!6] we can show 
that this term results in a small correction to the 
Coulomb interaction. Assume now that the vectors 
Pi• Pf· a, and the frequency w assume values such 
as to satisfy the inequalities (standard notation) 

( _!_!___ )2 
\ c ' 

In this case 

L,(O) (/, i) ~ fs (Xif- Xi;}, Rs'-' (/, i) ;:::;; YilJS (X if- 'Xii), 

B ~ -wn(x1f-X1;). 

We assume further that at the chosen values of 
the system parameters we get the inequality 
qj « q~ (s 1 "'1), and that the dominating term in 
the sum1 over s in the expression for Mtr + M" is 
term with s = 0 (an estimate of the Moller-scatter
ing cross section has shown that it is always possi
ble to satisfy this condition by properly choosing 
the system parameters). We then have 

lvJtr + M" ~ - - 1- 1 [u!'( qo0Yo ·- I f{o I Yq') ud q02 w2 _ q12 

Here 'Yqo is the projection of the matrices 'Yon the 
direction of the vector q 0• Recognizing that in the 
nonrelativistic approximation 

(uib are small components of the wave function and 
a are Pauli matrices) we can verify that expression 
(48) can be positive in a certain region of the elec
tron momenta, corresponding to attraction between 
the electrons. With this, at sufficiently small val
ues of qj, this expression can exceed the Coulomb 
repulsion of the electrons. In this case the total 

Um' = Um (/', i'), p' = B (!', i'). ( 47) effective electron interaction potential will corre-
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spond to attraction between the particles. From 
this follows the possibility of production of paired 
electrons in the presence of an external electro
magnetic field. 

The author considers it his pleasant duty to 
thank M. A. Krivoglaz for a discussion of the re
sults and V. N. Piskovo1 for useful remarks during 
the discussion of the article. 

APPENDIX 

Polarization Operator 

The self-energy part of the photon (polarization 
operator) in the presence of a field A has the fol
lowing form in the second order of perturbation 
theory with respect to the interaction with the quan
tized electromagnetic field: 

g"·>'Iinm (zz, Ztl A)= -ie2gnm Sp [ynG (zz, zd A) 

(A.l) 

G(z 2, z 1 IA) is the Green's function of the electron in 
the field A. 

We choose as the external electromagnetic field 
that of a plane electromagnetic wave described by 
the potential (2). The Green's function of the elec
tron in the field of a plane electromagnetic wave 
was obtained by Schwinger l17] and by Brown and 
Kibble. [s] In the case of the potential (2), it is con
venient to represent the function G(z 2, z 1 IA) in the 
form 

G(z? z1 iA)=-1- \ d'pe·-i(p,z,-z,JG(p,£ziA), (A.2) 
"' · · ( 2n) 4 J 

+oo e-isw(nz,) 

G(p,£ziA)= ~ Br,r+s(P)(p-rwn)2-m*2+ie' 
r,s=-oo 

(A.3) 

£z = (nzz), m* 2 = m2 - e2a2/2, e-+ + 0, 

~ (O) e ~ ~ A A A . (Z) 
B,.v(P) = (p + m)B,.v (P)--- (apn + mna)B,.v (P) 

2(np) 

A ( 1) n (3) 
- eaB,.v (p) + --·- e2a2B,.v (P), 

2(np) 

(i) (i) 
B,.v (p + swn) = BiJ.v (P), 

. 1 +n 
B~~ (P) = -- ~ drp1 drpz b<il ( qJ1, rpz) 

{2n)2 _, 

(j = 0, 1, 2, 3); 

b(O) = 1, b(ll = cos rp2, b<2l = cos (Pf- cos rpz, 

b(3) = cos rp1 (cos (jl1 - cos cpz), 

ezaz 
xz=----

Bw(np) ' 

e (ap) . 2 . 2 . . 
x 1 = ---, gz = sm (jl1- sm (jlz, g1 = smcp1- smcpz. 

w (np) 
(A.4) 

In order to eliminate correctly the ultraviolet 
divergence, we regularize the Green's function 
G(z 2, z 1 IA), following Pauli and Villars, in a form 
proposed by Bogolyubov et al. [l 5] In our case, the 
regularization of the Green's function consists in 
making in (A.3) the substitution 

1 +oo 
. 1 -=-~ dvexp{iv[(p-rwn) 2 

(p-rwn) 2 -m*2 +ie i 0 

1 +oo { [ e2a2 
- m*Z + ic,]} -+---;- ) dv exp iv (p- rwn) 2 + - 2-

L 0 

+ ie J} ( e-ivm' _ e-ivM'); (A.5) 

Here M is the auxiliary mass, which is allowed to 
go to the limit M-oo after the calculations. 

Substituting (A.2) and (A.3) with allowance for 
the regularization (A. 5), into the Fourier transform 
of the polarization operator, we get (we omit for 
the time being the terms that depend on the mass 
M) 

+oo 

=ie2 ~) d4p sd~dv ~ gnmSp{vnBr',s-s•(p+r'wn)vm 
s,r 0 r',s' 

X Br-s', r+r>(P- k1- s' wn)} exp {iv [ (p- k1- rwn) 2 

- m*2+ i8 ] + i~t(p2- m*2 + ie) }ll (k2- k1- swn). 

(A.6) 

We represent the function gnmnnm(k2, k 1 IA) in 
the form 

+oo 
gnmiJnm(kz,kiiA) = (2n) 4 ~~ gnmiJs,nm(k1IA) 

s=-oo 

X o(kz- kt- swn). (A. 7) 

From a comparison of the right sides of (A.6) and 
(A. 7) we obtain (we simultaneously make the fol
lowing change of integration variables: !J. = ..\(1 - ~), 

v = ..\~, p - ~(k1 + rwn) = p ', and sum over r' and s ') 

. 2 +n 1 +oo +oo 
gnm ITs, nm ( k I A)= ~: 6 ~ dept dcpz ~ d£ ~ d'A'A ~ eir<p,-i(r-s)<pz 

{ )_, 0 0 r=-oo 

X ~ d4p exp { i [T P+sh ( (jl!, cpz)- T P-(H)h ( <[Jt, (pz)]} 

X gnm Sp{yn [F(p + £k; (jlt, cpz) + £rw~] 
X Vm[F (p - ( 1 - s) k; cpz, cpt) - ( 1 - s) rw~]} exp { i'A [p2 
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+ ~(1- ~) (k + rwn) 2 - m*2 + ie]}, 

~ ~ ezaz 
F(p· <Pt (pz) = p + m + n-- b<•l(cpt, cpz) 

' ' 2(np) 

( ~ ~ e ( ap)) e ~ ~ ~ 
+cos cp2 - ea + n-- --- (p +m)nab<2l(cpt, (Pz); 

(np) 2(np) 

b<4l ( (Pt, cpz) = 1/2 - cos Cj)t cos cpz. (A.8) 

We integrate with respect to d\> in the following 
manner. We introduce the functional 

<D,1 [x(p)]= ~ d'px(p)exp(i(pq)+i/,p2 ). (A.9) 

Using for the function [y + (np)r1 the representation 

1 1 +oo 
----- = _ ~ da eict[(np)+v+iel 

y+(np)+ie i 0 

and taking Gaussian quadratures, we obtain the 
formula 

<D] [(v +~np) y (0 +~np) rJ 
= (---1--)1 ( 1 )k <Dq [1] 

y-(nq)/21., o-(nq)/21., 

(l,k=0,1, ... ), 

Here y and o are certain parameters which do not 
depend on p. 

With the aid of (A.lO) and the translation opera
tor La = exp{ a B/ ax} (the property of the operator 
La is as follows: Laf(x) = f(x + a) where a is an 
arbitrary constant and f(x) is an arbitrary function 
of x) we can easily obtain the following relation: 

<Dq [exp {i [T PHk ( cp~. cpz)- T p-(H.)k ( cpt, cpz)]}] 

\ .l/2 +It(- (aq)/2'). + ~(ak)) = exp ~ 
~(nk)-(nq)/21., 

_ tz+ft(-(aq)/2i,-(1-~)(ak))l} 

-(1-~)(nk)-(nq)/21., J 

{ . a2N 1 __ 1 __ 
xexp -~4;:-L ~(nk)-(nq)/21., 

- 1 ]2} <Dq [1], 
- (1- £) (nk)- (nq)/21., 

(A.ll) 

In the derivation of the last expression we used the 
identity 

a!... 1 = 0 
fJq b- (nq) /21., ' 

b = const. 

The integral with respect to d 4p in the relation 

(A. 8) is expressed in terms of the function (A.ll) 
and its first and second derivatives with respect to 
q, with subsequent transition to the limit q = 0. 
Simple manipulations lead to the formula (we cal
culate simultaneously the trace) 

2e2 +n 1 +oo 1 
gnmiTs,nm(kiA) =- ~ ~ dcp1 dqJz ~ d~ ~ dA,-

( 2Jt) 4 r _:_, 0 0 A 

{ [ (k'k) ]} x exp ir cpt-cvz+2A,s(1-~)-m2 

( ·{ e2a2 gz ezaz m2 giz }) 
X exp 1 -8(111~)~~_.::_-1)- (k'k)24A[·~~-=1)1z 

x[ -2i ~2+2m2-~(~--1)k2-R J {e-i~+e-i~M'Im' 
_ e-iA[H{l-slM'/m'l _ e-i~[(l-sl+sM'/m'l}, k' = wn. 

(A.12) 

We have restored here the terms containing the 
auxiliary mass M, and made the change of integra
tion variable A.- A./m2• The function R is of the 
form 

e"a" 1 
+ ~ ~ ( ~ _ 1) ( 1 - 2 cos cp1 cos cpz) 

(A.13) 

We note that the expression (A.12) is invariant 
against the gauge-transformation (7), and also 
satisfies the Furry theorem (see, for example, l15J). 

In fact, the expansion of the function gnmnnm in 
powers of ea contains only even powers of ea. 

We renormalize the polarization operator in ac
cordance with the formula [18] 

- nnrn(kz, ktiA) IA=O- ~gi-l>' 
1-' 

(A.14) 

Here n~m(k) is the renormalized polarization 
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operator in the absence of the external field A. 
The summation over r in (A.12) can be carried 

out with the aid of one of the formulas 

+oo k'k 
~ exp { ir [ <p1 - <p2 + 21,~ ( 1 - £) ( mZ) ]} 

r=~oo 

[ (k'k) J 
2:n:o <j)! - <pz + n~ ( 1 - £) -;;;;:- ' (A.15a) 

2 ~ [2"-~(1-\;)(k'k)/mz]n an 
:n:L...J --o(<pt-cp2)· 

n! 8<ptn 

(A.15b) 

When taking the limit M - 00 it is convenient to 
use relation (A.15b) and also the following inte
grals: 

+oo 1 
I d"- _ ei~<a+ie) 
• \ f,_n 
0 

-ln(a+ie)+c1 for n=1 

-ia ln(a + ie) + cza + ca for n = 2, 

az 
-ln (a + ie) + c,.a2 + c5a + c6 
2 for n = 3 

(A.16) 

a < 0, E - + 0. The constants ci are related by 

c1 = -1- icz, Cz = -i(1/z + 2c,.), ca = -ic5. (A.17) 

Calculation shows that the constants ci do not enter 
in the final expression for the renormalized polar
ization operator, since their multipliers vanish. 

Let us calculate the polarization operator in the 
limiting case: 

(A.18) 

To take the limit M-oo correctly, it is necessary 
to replace cp2 in the expression for R by cp1 

+2i\~(1- Wk'k)/m2• In the limiting case (A.18) it 
is sufficient to take into account only the first 
seven terms of the series (A.15b). The final result 
at a = 0 will be 

{ 1 r £2(1-£)2 11 r k2J 
X 2j~ (d-1)2 +:d d£L 2 -~(£- 1)m2 

0 0 

~2(1- ~)2 - 1 r ~<1- ~>} 
X (d- 1)3 3 ~ d£ (d- 1)2 ' 

(A.19) 

We can calculate in similar fashion gnmnR~ with 
s "'0. 

It is easy to verify that (A.19) satisfies the 
following condition, which follows from the gauge
invariance of the polarization operator: 
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