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It is shown that the disruption of magnetic surfaces in toroidal traps, due to the presence of 
external disturbances or to imperfection of the coil design, should result in plasma leakage 
of the order of the Bohm leakage in a wide range of variation of the plasma parameters. 

1. INTRODUCTION 

IT is known in toroidal magnetic traps of the 
''Stellar a tor'' type there is observed an anomalous 
leakage of plasma, with a lifetime T close to the 
so-called Bohm lifetime: T = 7Ta2eH/cT, where a is 
the radius of the plasma column, T the tempera­
ture, and H the magnetic field[ 1•2J. The only excep­
tion so far is[~], where much better containment of 
a cesium plasma was observed, with a lifetime 
close to the classical valuetl (we do not consider 
here axially-symmetrical systems of the Tokamak 
or Levitron type). To explain the anomalous leak­
age of the plasma, one customarily introduces in­
stabilities of the drift type, which lead to effects 
such as turbulent diffusion, and in systems that are 
strongly elongated in the H direction the corres­
sponding diffusion coefficients can approach the 
Bohm values. However, the surprising closeness 
of the experimentally observed lifetime and the 
Bohm lifetime in a very wide range of temperature 
variation and plasma-density variation suggests 
that the plasma leakage can be connected with 
larger-scale effects. It is shown in this paper that 
disruption of the magnetic surfaces, due to imper­
fection of the magnetic system, can lead to a leak­
age of the Bohm order of magnitude. 

2. QUALITATIVE CONSIDERATION 

We consider the case when there are no closed 
magnetic surfaces inside the plasma. In other 
words, we assume that each force line sooner or 
later emerges from the plasma, "piercing" as it 
were the plasma column, entering it on one side 
and leaving on the other. If we mentally straighten 
out the plasma column and neglect the influence of 
the curvature of the force lines on the motion of the 

l)A confinement which was somewhat better than that of 

Bohm was observed also in [•]. 

electrons and ions, then we can visualize, as the 
simplest model of the situation under consideration, 
a cylindrical column with a magnetic field which is 
inclined somewhat to the cylinder axis: H = H0 + h, 
where h is the transverse component of the field 
and H0 is directed along the cylinder. In the mag­
netohydrodynamic approximation, the plasma in 
such a field should scatter along the force lines 
with a velocity on the order of the thermal velocity 
of the ions vi= v'T/mi. Outwardly such a scattering 
would look like the broadening of the column along 
h with a velocity vi ~ hvifH0• 

However, this picture is realistic only at not too 
small an inclination of the force lines, that is, not 
too small h/H0• In fact, since the plasma electrons 
and the ions drift in an aximuthal direction with a 
velocity vd ~ Pivi/a (where Pi= vi/QHi = vimic/eH 
is the average ion Larmor radius and a is the 
transverse dimension of the plasma pinch), the 
magnetohydrodynamic approximation becomes 
invalid when the scattering velocity becomes com­
parable with vd. When Vt < vd, that is, 

h/Ho <pi/a, (1) 

the magnetohydrodynamic approximation cannot be 
used and it is necessary to employ either the equa­
tions of two-fluid magnetohydrodynamics, if the 
particle collision frequency is insufficient to main­
tain the Maxwellian distribution, or the kinetic 
equations, if the plasma is rarefied. We consider 
here the case of a sufficiently dense plasma, al­
though this is perfectly inessential. 

We assume for simplicity that the temperature 
of the electrons is constant over the section of the 
column. In addition, we assume that h is not too 
small, namely 

!!_ > ~ = ( me)''' f!!_ ·• 
Ho a m; a 

(2) 

where Pe is the average Larmor radius of the elec­
trons. Condition (2) is equivalent to the assumption 
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that hve/H0 > vd, where Ve = T/me is the average 
thermal velocity of the electrons. This means that 
the electrons have time to enter into equilibrium 
along the force lines of the magnetic field, that is, 
they satisfy the equilibrium equation 

\/ (nT) =- enE- enc-1 [v.R], (3)* 

where Ve is the average (hydrodynamic) velocity of 
the electrons. Inasmuch as T = const, Eq. (3) can 
be represented in the form 

1 (Tlnn) E = --[veH]- \7. ~-- . 
c . e 

( 4) 

Substituting this expression in Maxwell's equation, 
we get 

oH/Ot =- crotE = rot[v.R]. ( 5) 

It follows therefore that the magnetic field is 
frozen into the electrons. This means that even if 
a plasma that is standing still is produced at the 
initial instant, the frozen-in magnetic field inside 
the plasma will be dragged by the electrons, as 
shown by the dashed lines in Fig. 1, and the 
stretching of the force lines will set the plasma 
rotating at a speed on the order of vd ~ Pivifa. The 
angular momentum is transferred here, obviously, 
from the external winding. Plasma rotation of this 
type was considered by Thonemann and Kolb[S,6] as 
applied to 8-pinches. If the kinetic energy of the 
rotation minv2 /2 ~ pinT/a2 is much smaller than 
the energy h2J87r of the transverse field, that is, 

( 6) 

then the perturbation of the transverse field due to 
the rotation can be neglected. Inasmuch as accord­
ing to (2) we have h2a2/H20p~ > m /m., the condition 

1 e 1 
(6) is certainly satisfied when {3 < me/mi. 

FIG. 1. 

Thus, if h/H0 > Pe/a, then the low-pressure 
plasma should start rotating with a velocity of the 
order of the drift velocity, and when h/H0 < pifa 
the ions will not have time to move appreciably 

along H during the time of one azimuthal revolution. 
However, the rotation itself leads to the appear­

ance of a centrifugal force mig~ miv~/a 
~ miv{p{/a3. Since nothing prevents the plasma 
from expanding along h in the absence of magnetic 
surfaces, this centrifugal force should lead to an 
outward scattering of the plasma with a speed on 
the order of ...fga ~ ViPi/a. In other words, the 
plasma should decay with a lifetime T ~ a 2/viPi 
~ a 2eH/cT. Since the electrons escape in this case 
principally along the force lines and the ions trans­
versely to the force lines, the entire process is 
similar to the diffusion of a weakly ionized plasma 
in a tilted metallic chamber[?], where Simon's 
short-circuit effect takes place. [B J 

We shall present below a more detailed analysis 
of the stationary state of a plasma and the develop­
ment of flow as a result of the centrifugal instabil­
ity. 

3. FLOW OF PLASMA WITH COLD IONS 

An examination of the oscillations which develop 
as a result of the centrifugal instability is best 
started with consideration of the simpler case of a 
plasma with cold ions (Ti = O). In addition, we shall 
consider first flows that are homogeneous along the 
column and then proceed to the more general case 
of two-dimensional flow. 

We introduce a rectangular coordinate system 
with a z axis coinciding with the plasma-column 
axis and an x axis directed along h. Assuming 
homogeneity, that is, a; az = 0, we get from the 
projection of the balance equation for electrons (3) 
on the direction of the magnetic field H 

that is, 

f) fJcp 
-nT.=en-, ax ax 

Te 
cp =-Inn+ cp0 (y), 

e 

where cp is the potential of the electric field: 

(7) 

( 8) 

E == -Vcp. (The electron temperature Te is as­
sumed constant over the cross section of the col­
umn.) For ions, we can use at Ti == 0 the equation 

dv en ( 
m;n- =-en \7 cp + -[vR], 9) 

dt c 

where v is the ion velocity and dv I dt = av I at 
+ (v · 'il)v. 

When h/H0 < cs/aQHi where cs =-JTe/mi is the 
speed of sound we can neglect the longitudinal ion 
velocity (along H), and in the same approximation 
we can take H in (9) to stand for H0. In other words, 
in our approximation Eq. (9) describes two-dimen­
sional flow with v z == 0. 
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If we neglect the small inertial term in the left 
side of (9) and take (8) into account, we obtain 

v=.cTe [H0 Vn]+u, (10) 
eH2n 

where u stands for the quantity (c/eH2) [H0 x V'cp0). 

In our case, when the oscillations are homogeneous 
along z, the only nonvanishing component of u is 
along x, with ux = ux(t, y). Substituting (10) into the 
continuity equation and recognizing that the first 
term in (10) does not lead to a change in density, 
since the corresponding current lines are on the 
surface n = const, we get 

On/Ot+ Ux On/Ox= 0. (11) 

We see therefore that in the stationary state ux = 0, 
that is, the potential cp0 should be constant. 

We now turn to Eq. (9) with an inertial term, 
which is small enough to be able to replace v by 
(10). In order to obtain a closed equation for ux, we 
must take into account the following circumstance. 
It follows from Eq. ( 3) with a I [Jz = 0 that the 
equilibrium along the magnetic field leads auto­
matically to compensation of the electron pressure 
gradient along x by the electric field Ex, that is, to 
relation ( 7), from which it follows that v ey = 0. In 
other words, the electrons can move along the axis 
and along the force lines, but not transversely to 
the magnetic surfaces, which in our case coincide 
with the surfaces y = const. From this, taking the 
quasineutrality into account and assuming that the 
circuit for the currents is not closed by external 
conductors (such as a conducting chamber), we ob­
tain the following relation for the ions: 

~ nvydx = 0, (12) 

that is, the flux of ions through any magnetic sur­
face should also vanish. 

Integrating the x-component of (9) and taking ( 8), 
(11), and (12) into account, we get 

) dvx Dux cT. Dux (' on d 
n- dx=N-+-~-- J- x 

dt at eH oy ax 

+ czr.z ) (On~_ on 82n) dx = O, (13) 
e2H2 oy ox oy ox oy2 n 

where N = Jndx is the running density. 
Let us assume that the plasma column does not 

touch the walls. Then 

~ an 
-dx= 0, 
OX 

and (13) takes the form 

(14) 

In the stationary state, the integral on the right 
side of (14) should vanish. It is easy to see that it 
vanishes, in particular, for any state that is sym­
metrical with respect to the x plane, i.e., n(x, y) 
= n(-x, y). Let us assume now that a small pertur­
bation n' is superimposed on the symmetrical 
equilibrium state n, and let us consider the evolu­
tion of this perturbation in the linear approximation. 
Linearizing (14), and then differentiating it with 
respect to t and taking (11) into account, we obtain 
after integrating by parts 

azux c2Te2 a {Dux s 1 (On )z } 
N ---;)t2 =- ~znz oy Oy ----;:;,Ox dx . (15) 

Since this equation is of the elliptic type, it corre­
sponds to instability, that is, to solutions that in­
crease exponentially with time. For example, for 
one of the simplest distributions, n = n0exp(-r2/a2), 

Eq. ( 15) takes the form 

f)2ux 2c2Te2 f)2ux 
--=-------, 

atz e2HZa2 ayz 
(16) 

from which we get, for perturbations of the type 
exp(-yt + ikyy), a small-perturbation growth incre­
ment 

- cTe '\' = 1"2--ky. 
eHa 

( 17) 

In order of magnitude, for large-scale perturba­
tions with ky ~ 1/a, we have "Y ~ cTe/eHa2 ~ DB/a2, 

where DB= (1/16)cTe/eH is the Bohm diffusion 
coefficient. 

In order to visualize more clearly the mechan­
ism of the instability, let us consider a column 
deformation in which the profile n = const becomes 
elliptical (Fig. 2), and let us isolate an individual 
layer AB. We see from Fig. 2 that the curvature 
of the curve n = const, which coincides in first ap­
proximation with the current line, is larger at the 
point B than at the point A. Therefore the centri­
fugal force FB at the point B exceeds the centri­
fugal force FA at the point A, and consequently the 
layer AB becomes accelerated along the x axis, 
that is, the initial perturbation increases. Total 
cancellation of the forces applied to the given layer 

y 

FIG. 2. 
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is possible only for particular types of distribu­
tions, for example for symmetrical ones n(x, y) 
= n(- x, y). In the general case, a rotating plasma 
cannot be in equilibrium, and its separate layers 
should "glide" along the magnetic surfaces, that 
is, in our case along x. Since the characteristic 
velocity of such slippage is of the order of cT el eHa, 
the plasma leakage time should be of the order of 
~ eHa2/cTe· 

We have considered here one-dimensional 
"platelike" flows, corresponding to the slipping of 
plasma layers which are homogeneous along z. 
Flows that are periodic in z are also possible. Let 
us choose a certain section z = 0 and let us exam­
ine the picture of two-dimensional flow in this 
plane. From the equation for the equilibrium of 
the electrons along the magnetic field 

( an an ) ( arp arp ) 
Te Ho-+h- =en Ho-+h-az ax \ az ax 

( 18) 

we get 

Te ( h J rp = -ln n + q>o x - -H z, Y , 
e . o 

(19) 

so that in the z = 0 plane the potential c:p0 can be re­
garded as an arbitrary function of x and y with a 
period d = hL0/H0 along x ( L0-length of column) . 
Taking (19) into account we obtain from the equil­
ibrium condition (3), accurate to terms of order 
h/Ho 

v = __!___ [H v 1 = _:__ {- arpo arpo_ !!__ arpo I 
e H2 q>o H ay ' ax 'H0 ay J. (20) 

We see that the electron velocity is directed 
along the equipotential surface c:p0 = canst, that is, 
the flux of electrons through such a surface should 
be equal to zero. And by virtue of the quasineutral­
ity, when the currents are not short circuited by 
the chamber, the flux of ions through the surface 
<fJo = canst must vanish. Thus, if we multiply (9) by 
Ve = cir2[H x V'<p 0] and integrate over the surface 
<fJo = canst, which is a cylinder of arbitrary cross 
section with generators along H, then the last inte­
gral will vanish, since it reduces to an integral of 
nv · V'<p0. The integral of the first term in the right 
side of (9) also vanishes, since, when (8) is taken 
into account, it is the integral of a surface diver­
gence taken over a closed surface. We thus have 

\ n [ dv · H] V' rp 0 dS = 0. 
. dt 

<pi)=const 

(21) 

H can be taken here to mean H0, since we neglect 
the longitudinal motion of the ions. Together with 
the continuity equation 

an c [Ho V rpo] --+ 'Vn=O iJt fl2 

Eq. (21) provides a complete description of arbi­
trary two-dimensional flow. In the particular case 
when Bc:p0/Bx = 0, it reduces to the equation of mo­
tion ( 14) given above for one-dimensional flow along 
the x axis. If we choose <fJo in the form <fJo 
= c:p0(t, y- a (x - hz/H0)), then the equipotential 
lines in the z = 0 plane should again be straight 
lines, y = ax +canst, but now inclined to the x axis. 
The flow is here again one-dimensional and repre­
sents slipping of plasma layers, while the equations 
of motion must have the form (11) and (14), but in 
a rotated system of coordinates. It follows, in par­
ticular, that stationary state takes place only in the 
case of axial symmetry, when the surfaces 
n = canst represent coaxial cylinders of circular 
cross section. 

In the general case, the flow represents convec­
tion in which the electrons move in individual tubes 
arranged along the force lines, as in the case when 
flute instability of a plasma develops in magnetic 
traps[9J. It can be thought that such a flow is tur­
bulent, and in this case the small factor 1/16 in the 
expression for the Bohm diffusion coefficient 
DB= (1/16)cTe/eH corresponds to smallness of 
the mixing length compared with characteristic 
plasma dimension a, as is the case in hydrodynamic 
turbulence[to]. 

4. CONVECTION OF PLASMA WITH HOT IONS 

Inasmuch as convection due to centrifugal in­
stability is similar, with respect to electrons, to 
two-dimensional convection in flute instability, it 
is necessary to take into account when Ti ~ 0 the 
effect of the finite Larmor radius, which leads in 
the case of flute instability to stabilization of small 
oscillations[11 ]. 

To describe this effect we can use the equations 
of two-fluid hydrodynamics with allowance for 
"oblique" collisionless viscosity[ 12 J. In our case 
of incompressible two-dimensional flow, the equa­
tions of motion for the ions can be written in the 
form 

dv T; { T;n ( avy avx )} m;n- ---. ([Ho V n]V)v- V -- ----·-··--
dt QHiH 2QHi \ox oy 

en 
= - V nT; - en V rp +- [vHo]. 

c 
(22) 

Let us consider again one-dimensional and homo­
geneous flow along z. Substituting for <p in ( 22) the 
expression (8) and neglecting small terms in the 
left side of (22), we get 
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c(T+ T·) 
V = e 1 [H V ] + eH2n o n u, (23) 

where u again has only an x component u that is 
independent of x and z. x 

Integrating (22) with respect to x, we obtain, 
taking quasineutrality into account, again an equa­
tion similar to (13): 

i ( dvx cT; ) .l ndt- eH2 [Ho'Vn]Vvx dx=O. (24) 

Substituting here the approximate value of v from 
(23) under the assumption that the plasma does not 
touch the walls, we obtain 

N OUx- - c2Te(Te + Ti) i (on iJ2n on o2n) dx - .l ------ - (25) 
ot e2H2 oy ox oy ax fJy2 n . 

This equation differs from ( 14) only in the fact that 
T5 is replaced by Te(Te + Ti). 

Thus, when Ti >" 0 the convection has exactly the 
same character as in a cold plasma, except that the 
flow velocity, and consequently also the coefficient 
of turbulent diffusion, increases by a factor 
(1 + Ti/Te) 112 , that is, D ~(cTe/eH)(1 + Ti/Te) 112. 

We see that in the case of a "layered" flow along 
the magnetic surfaces, the effect of the finite 
Larmor radius not only fails to stabilize the small 
oscillations, but also does not change the character 
of the flow at all. 

5. DISCUSSION OF THE GENERAL CASE 

We have considered above a very simple system 
without magnetic surfaces that are closed inside 
the plasma, namely, we have assumed that the mag­
netic field is homogeneous. However, the assump­
tion of the homogeneous field is utterly unrealiza­
ble, and the conclusion that convection develops in 
the absence of magnetic surfaces is more general. 
In fact, to deduce the presence of instability of the 
stationary state it would be important only to as­
sume that the force lines do not remain within the 
plasma, that is, that there exists a certain trans­
verse magnetic-field component penetrating through 
the plasma column in a transverse direction and 
causing it to rotate, and that the electrons have a 
Boltzmann distribution. The first assumption holds 
in any case of disrupted surfaces or surfaces that 
emerge from the plasma pinch to the outside, since 
the "disruption" is taken here to mean precisely 
the ability of the force lines to emerge from the 
plasma to the outside. As to the second assumption, 
it is justified in a rarefied plasma, if within the 
timet ~a2/p.v. ~a2/p v of the drift oscillations 

1 1 e e 
the electrons have time to travel along the force 
lines, that is, if the length LH of the force line 

prior to the emergence from the plasma does not 
exceed v0t ~ a2/pe: 

(26) 

This condition is equivalent to (2). 
In a dense plasma there may appear, owing to 

the finite conductivity, an additional electric field 
when the electrons flow along the force lines, 
Err ~ jrr/O". Taking account of the fact that 
jrr ~LHj1/a, the potential ofthis field, cp ~ErrLH, 
amounts to cp ~ L2Henv.p./a2 when j ~enD/a 

1 1 1 
~ enpivi/a. From the condition that this potential 
be small compared with Te/e, we obtain the condi­
tion for establishment of a Maxwellian distribution: 

LH < a yQH•'fe, ( 27) 

where QHe = eH/mec and T e is the average time of 
electron-ion collisions. 

When applied to the already performed experi­
ments, the conditions (26) and (27) are very lenient, 
that is, the conditions (26) and (27) are satisfied 
even in the case when the force line goes through 
very many revolutions along the torus before em­
erging from the plasma. 

As to the concrete details of decay of the mag­
netic fields, they are not significant, it merely 
suffices that it be possible to construct on the force 
lines emerging from the plasma certain magnetic 
surfaces along which the electron tubes could glide. 
(Since the ends of these tubes are situated outside 
the plasma, the crossing of the force lines does not 
change 9-ualitatively the convection picture.) 

To complete the picture, let us consider also the 
opposite case, when closed surfaces exist in the 
plasma. Since the electrons easily enter into 
equilibrium and assume a Boltzmann distribution, 
their temperature at any specified magnetic surface 
can be regarded as constant, and from the longi­
tudinal component of the equilibrium condition (3) 
we get cp =- (Tel e) · ln n + cp0, where T e and cp0 are 
functions of the magnetic surfaces only. It follows 
therefore that the vector Y'(nT e) - enY' cp is perpen­
dicular to the magnetic surface, and consequently, 
as seen from (3), the electron velocity component 
normal to the surface, Yen• vanishes. In other 
words, in the presence of a Boltzmann distribution 
the electrons cannot move transversely to the mag­
netic surfaces. It is obvious that this statement is 
equivalent to the freezing-in of the force lines in 
the electrons. 

Thus, anomalous diffusion can result only from 
a deviation of the electrons from a Boltzmann dis­
tribution, that is, either from friction of the elec­
trons against the ions, or from interaction with the 
oscillations of resonant electrons. Since all these 
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effects are small in a high-temperature plasma, 
that the confinement in the presence of magnetic 
surfaces is expected to be much better than in ac­
cordance with Bohm' s formula. 

The foregoing explains one more question. As is 
well known, Bohm diffusion is observed only in 
toroidal systems, and plasma confinement :is much 
better in open traps provided the flute instability 
is suppressed (see, for example, [i3]). If the Bohm 
diffusion is connected with the disruption o:f the 
magnetic surfaces, this situation can be readily 
explained. In fact, if the column pinch of Fig. 1 
were not a torus but a cylinder of limited length, 
then it could exist also without rotation. Here, as 
usual, a radial electric field E = V'p/ en should be 
produced inside the plasma to balance the ion 
pressure. As to the slight disparity between the 
surfaces n = const and the force lines, in a very 
strongly elongated cylinder it would lead simply to 
small oscillations of the drift type, which would 
have the macroscopic appearance of rotation of the 
cylinder around a central force lines in the direc­
tion of the electron drift. There would be no real 
rotation of the ions in this case. 

When the column is closed on itself (or made 
very strongly elongated) the picture changes 
greatly-the radial electric field E = V'pi/en can no 
longer be established, for this would give rise to 
electron currents. The electrons freeze to the force 
lines, the column begins to rotate, and a centri­
fugal instability develops. Thus, in the absence of 
closed magnetic surfaces, a toroidal column differs 
essentially from a plasma column that is bounded 
on the ends. 

Let us consider one more effect which can ap­
pear on going over to a geometry more complicated 
than in Fig. 1, namely, the effect of the minimum 
average magnetic field. If we add to the centrifugal 
force dealt with above also the force due to the 
diamagnetic effect, which leads to additional stabil­
ization of the plasma, then we obtain, in order of 
magnitude, 

Vt2 v-2 y. "'-- k2p 2- _l -
a2 ' aR ' 

(28) 

where Y is the growth increment of the small per­
turbations, and R is the average radius of curvature 
of the force lines. The first term in (28) corre­
sponds to the centrifugal instability (see ( 16) and 
(17)), and the second takes into account the inhomo­
geneity of the magnetic field. It is seen from (28) 
that when the average magnetic field has a suffi­
ciently deep minimum, stabilization of the long­
wave pertur})ations takes place, but the instability 

. h 2 2 remams w en k p. > a/R. It is natural to assume 
that this effect de~rease the effective diffusion 
coefficient by a factor 1/ka ~ (pi 1 a)'/R/ a. 

6. CONCLUSION 

We have shown in this paper that even a small 
disruption of the magnetic surfaces, such that the 
length of the force line LH prior to the emergence 
from the plasma does not exceed (26) or (27), 
centrifugal instability and convection develop in the 
plasma; the convection leads to a leakage of the 
same order as the Bohm leakage, if LH > a2/Pi· 
Since the corresponding conditions can be very 
easily satisfied, the Bohm diffusion should be ob­
served in a very wide range of variation of the 
plasma parameters. Inasmuch as it is very diffi­
cult to close the magnetic surfaces in toroidal sys­
tems of complicated geometry, preference should 
be given to axially-symmetrical systems such as 
Tokamak, Levitron, etc, where it is easier to pro­
duce closed magnetic surfaces under identical re­
quirements with regards to the precision of winding 
construction. 
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