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The motion of a conducting gas in the vicinity of the zero line of a magnetic field is considered 
within the framework of the equations of magnetohydrodynamics. A class of exact solutions of 
the nonstationary two-dimensional problem is obtained. The time dependence is such that after 
a definite time interval a singularity sets in, corresponding to unlimited growth of the velocity, 
of the magnetic field intensity, of the gas density, and of the electric current density. The cur
rent density increases more rapidly than the gas concentration; this corresponds to realization 
of the conditions of dynamic dissipation of the magnetic field. The solution obtained for the im
mediate vicinity of the zero line can be regarded as the principal term in the general solution 
of the rigorous boundary-value problem. 

1. INTRODUCTION 

IN connection with the problem of collisionfess 
dissipation of magnetic energy and the acceleration 
of fast particles in a plasma, it is of interest to in
vestigate the behavior of an ideally conducting gas 
in the vicinity of the zero line of a magnetic field. 
Special attention is paid presently to this question 
in astrophysics (seeft- 3] and the literature cited 
there). Dungey[! J has concluded, on the basis of a 
qualitative investigation of the equilibrium state of 
a plasma near the zero-field line, that such a state 
is unstable. The exact particular solution of the 
equations of magnetohydrodynamics for an incom
pressible liquid was subsequently obtained by 
Chapman and Kendall. [2] This solution has a per
fectly defined character. Ultimately, a cumulative 
effect is developed and arbitrarily large energy 
densities are attained. With this, a fixed mass of 
the gas near the zero line receives energy from the 
outside in the form of an electromagnetic-field 
energy flux. 

of the zero line. Until appropriate numerical cal
culations that permit inclusion of the immediate 
vicinity of the zero line into consideration become 
available, it is of interest to find particular exact 
solutions. In this paper we find a class of such so
lutions within the framework of the magnetohydro
dynamics of an ideally conducting gas. These solu
tions are similar to those obtained in [2 J for an 
incompressible liquid, and were pointed out to us 
by M. A. Leontovich. Allowance for compressibility 
leads to a greater variety of initial conditions. In 
addition, in this case a finite mass of gas becomes 
compressed in a region of limited dimensions, 
whereas in the case considered in[2J the dimension 
of this region was unbounded in one direction. 

A characteristic property of the solutions ob
tained in the present work is that a singularity 
corresponding to an unbounded growth of the mag
netic field intensity, of the electric current density, 
and of the gas concentration is attained after a 
finite time interval. With this, the ratio of the cur-
rent density to the gas-particle concentration also 
increases without limit, corresponding to realiza
tion of the conditions discussed in[3] for dynamic 
dissipation of magnetic energy. 

It must be noted that the interpretation of the ob
tained results in terms of the instability of the 
equilibrium state of the plasma does not seem very 
appropriate. As shown in[3J, under definite boun
dary condition there develops in the plasma a unique 
motion which also has essentially a cumulative 2· 

FORMULATION OF THE PROBLEM AND ITS 
REDUCTION TO A SYSTEM OF ORDINARY 
DIFFERENTIAL EQUATIONS. 

character. These boundary conditions and the be
havior of the plasma sufficiently far from the zero 
line were investigated in [3] . However, the method 
used there is not suitable for the immediate vicinity 

We write down the system equations of magneto
hydrodynamics for planar flow (in the x, y plane) 

656 



TWO-DIMENSIONAL FLOW OF AN IDEALLY CONDUCTING GAS 657 

of a non-viscous infinitely-conducting plasma (see 
Note added in proof): 

adA adA -a;; (it= o, Ty dt = o, ( 1) 

dvx 1 aA 
p--=- 'l!-xp--~-L1A, 

dt 4:n: ax 
dvy 1 aA 

p--=- Vyp----L1A, 
dt 4:n: ay 

( 2) 

dp ( avx avy ) -+P --+-- =0. 
dt ax ay 

(3) 

Here A is the z-component of the vector potential, 
and the components of the magnetic field are 

a A 
Bx=7JY• 

a A 
By=---;;;-• Bz=O. ( 4) 

The operators d/dt and 6. in Eqs. (1)-(3) are de
fined in the usual manner: 

d a a a 
-=-+vx--+vy-
dt ot ax ay 

We assume that the pressure p is a function of the 
density only: p = p(p). This condition is satisfied 
by any polytropic equation of state, and in particu
lar by isentropic and isothermal plasma motions. 
Thus, the results that follow can be extended to in
clude also a plasma that loses energy by radiation 
from its volume. 

It will be shown later that, for the class of solu
tions of interest to us, the plasma density, and 
consequently (by virtue of the foregoing assumption) 
the plasma pressure, depends only on the time. 
Therefore the spatial derivatives of the pressure 
in (2) vanish, and will no longer be written out. 

We seek a solution of the system (1)-(3) under 
the following initial conditions: 

1) The density of the matter is constant: 

p(x, y, 0)= po, ( 5) 

2) The magnetic field is hyperbolic: 

A (x, y, 0) = A0(x2- yz). ( 6) 

Such a vector potential corresponds to the vicinity 
of the zero line of a potential magnetic field (cur
rent density jz = 0). Accordingly, there are no 
ponderomotive forces in the initial state. 

3) The initial velocity depends linearly on the 
coordinates, so that there is no flow of gas across 
the coordinate axes: 

v.,(x,y,O)=Ux, Vy(x,y,O)=Vy. ( 7) 

Thus, the initial conditions are defined by the 
four independent quantities p0, A0, U, and V. We can 
construct from them three independent combinations 

with the dimension of time: 

U, V, to= (:n:po) 'I•/ I Ao I ( 8) 

and not even one combination with the dimension of 
length. We introduce new variables (with dimension 
equal to a certain power of the length): 

't = t/to, Ux = tovx, Uy = tovy, 0' = p/ po, a= A/ Ao. 

(9) 

In terms of these variables, Eqs. (1)-(3) take the 
form 

a da 
--=0 
ax d-r: 

dux 1 aa 
a-= ---L1a, 

d-r 4 ax 

a da 
ay d't = o, 
duy 1 aa 

0'-= ---L1a, 
d-r: 4 ay 

da ( aux auy ) 
-+cr -+- =0. 
d-r: ax ay 

The initial conditions (5)-(7) then become 

a(x,y,0)=1, a(x,y,O)=xz-yz. 

(10) 

(11) 

(12) 

ux(x,y,O)=vox, Uy(x,y,O)=boy, (13) 

where 

(:n:po)'l• 
Yo= UIAoi, (:n:po) '/, 

bo=V~. ( 14) 

The problem is thus completely determined by 
the two dimensionless parameters of (14). As to the 
choice of the unit of length, Eqs. (10)-(13) impose 
no limitations whatever. The unit of length can be 
chosen arbitrarily and the coordinates x andy, 
together with all the variables in (9), can be chosen 
dimensionless. 

It is easy to verify that our problem has the 
following solution: 

a(x, y, -r)= a(,;)x2 - ~(-r)y2 , a(x, y, -r) = cr(t), 

Ux~x.y,-r)=y(t)x, uy(x,y,-r)=b(t)y. (15) 

In fact, when (15) is substituted in (10)-(13), the 
latter reduce to a system of ordinary differential 
equations for the functions o:, {3, y, and o (the dot 
denotes differentiation with respect to T): 

~X+2ay=O, ~+2~b=O, cr(t+Y2)=a(~-a), 
·a+ cr(y +b)= 0, cr(b + b2) =~(a-~), (16) 

with initial conditions 

a(O) = 1, ~(0) = 1, y(O)= yo, <'\(0)= <'lo, cr(O)= 1 

( 17) 

The system (16) has one integral. Namely, 
eliminating the functions y and o from the first two 
and last equations of this system, we get 
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iz ~ o--+--2-=o. 
a ~ a 

(18) 

From this, using the initial conditions (17), we get 

(19) 

In obtaining the integral (19) we have assumed 
that a, {3 and a are not equal to zero. Since the ini
tial values of these quantities are positive, the 
subsequent results will pertain to a time interval T 

for which these quantities remain positive. 
The foregoing method of obtaining the particular 

solution (15) is unsatisfactory from the point of 
view that it is similar to an accidental guess. In 
particular, it raises the natural question whether 
there are no other solutions of this type. To answer 
such questions we can obtain the solution (15) by 
another more consistent method, by using dimen
sionality theoryr4J. In our problem there are only 
two parameters, Po and A0, that enter into the initial 
conditions with independent dimensionalities. Under 
these circumstances we can construct from dimen
sionality considerations a self-similar solution[4J 
which, using the established terminology, belongs 
to the first type[5J 0 . It is more general than the 
solution (15), because the vector potential of the 
magnetic field is represented in it by a general 
quadratic form, and the velocity components are 
represented by general linear expressions in terms 
of the coordinates x and y. But the role of the self
similar variable is also played by the dimensionless 
time T. If we rotate the coordinate frame through 
an arbitrary angle cp in the x, y plane, then the so
lution (15) is obviously transformed in precisely 
such a way that the velocity components become 
dependent on both coordinates, and the vector poten
tial becomes dependent on the product xy besides 
the squares of the coordinates x2 and y2• It is easy 
to show that such a transformation of the expression 
is contained in the self-similar solution, but does 
not constitute all of it. For example, the self
similar solution contains a rather simple solution 
in which all the dependences are obtained in finite 
form. According to this solution, the magnetic field 
force lines are concentric circles, and the entire 
plasma rotates with a constant angular velocity 
around the axis of the system. The densities of the 
axial current and of the plasma are constant. At a 
certain ratio of the angular velocity of rotation to 
the magnitude of the magnetic field, the centrifugal 

1 )The self-similarity exponent for it is determined from 
dimensionality considerations, and not during the course of 
solving the ordinary differential equations as for the second 
type of self-similar solution. 

force is balanced at all points by the ponderomotive 
force. 

We shall not present here the self-similar solu
tion, a particular case of which is the solution (15), 
since, first, its additional physical applications are 
not clear, and, second, it is very cumbersome. 
From dimensionality considerations we can also 
conclude that in the compressible case under con
sideration it would be impossible to take into con
sideration, within the framework of the self-similar 
solutions, the gradient of the gas pressure. In fact 
such a problem would contain a third parameter 
with independent dimension-the speed of sound
and in this case there can be no self-similar solu
tion[4,5]. Therefore the solutions for an incom
pressible liquid[2J and solutions of the type (15) for 
the compressible case cannot be combined into one 
more general self-similar solution, and must be 
considered independently. 

3. QUALITATIVE ANALYSIS OF THE ORDINARY 
DIFFERENTIAL EQUATIONS OF THE PROB
LEM 

To investigate the behavior of the solutions of 
(16), it is convenient to introduce new functions ~ ( T) 

and TJ( T) such that 

(20) 

Without loss of generality, we shall assume that 
these functions are positive. From the first two 
equations of the system ( 16) and from ( 19) we get 

v = ~/s, b = ~/1], a= (sTJ)-1• (21) 

The system (16) then reduces to two second-order 
differential equations for ~ ( T) and TJ( T) : 

.. ( 1 1) 
tj=s -~-~, (22) 

with initial conditions 

£ (0) == 1, ~ (0) = vo, 1J (0) = 1, 1] (0) = bo. ( 23) 

Equations (22) are invariant to the replacement of 
TJ by~: 

s-+TJ, 1]-+s, 

a-+ ~. ~-+a, 'Y-+ b, 1\-+ 'Y· ( 24) 

Such a replacement simply corresponds to rotation 
of the axes of the spatial coordinate system through 
an angle 7r/2 and to reflection. It is therefore suffi
cient to consider only the initial conditions with 

'Yo 2': Do· 
Let 'Yo> o0. Then for small time intervals T > 0 

we have g > rj and~ > TJ, and by virtue of (22) we 
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have ~ > 0 and~< 0. It follows therefore that ~ > 1) 

always, and the second derivatives cannot change 
the sign until the singular point T == T0 , at which 
1)( T0) vanishes, is reached, with ~ ( T) > 0. Since ~ is 
always rigorously smaller than zero, such a singu
lar point is reached after a finite time T0. 

The instant T == To when the singularity is at
tained can be determined only by numerical calcula
tion (see Sec. 4), but the character of the behavior 
of the solution near the singularity can be deter
mined analytically. Namely, recognizing that when 
T - To the quantity ~ ( T) tends to a finite value ~ ( T0), 

and 1)(T) - 0, we retain in (22) only the principal 
terms: 

The solution of these equations, for the region 
T < To of interest to us, is 

(25) 

YJ(-r)=(9/zs(-ro))'ia(-ro--r)'h+ ... , £(,;) = £(-ro) + ... , 

(26) 

where the terms of higher order of smallness in 
To - T have been omitted. Therefore, returning to 
the variables (20) and (21), we obtain the asymptotic 
behavior of the unknown functions as T - To: 

( 2 )'/a a!'/, 
~-+- ----

9 (To-'t)'1' ' 

'Y-+ 'Y!, 
2 

6-+------, 
3(To-'t) 

a--+ (~)'Is ( _a_! )'h 
!J To-T 

(27) 

Here the quantities T0 , a 1 == a(T0), andy1 =y(T0) de
pend on the initial conditions of the problem and 
their values should be determined by integrating the 
complete system of equations ( 16) and ( 17). 

We shall discuss the solutions (27) later, to
gether with the results of the numerical integration. 
We turn now to the case 'Yo == D0 . 

In this case we have ~ == 1J and € == ~ when T == 0, 
and by virtue of (22) we have r = 0 and~ = 0. 
Hence, using the initial conditions (23), we obtain 
the singular solution 

£ = 11 = 1 + Vo't, 

Yo v= B =----
1 + YoT ' 

1 
a = ~ = {1 + VoT )2 - ' 

1 
a=-----. 

(1 + VoT)2 
(28) 

The solution (28) has a simple physical meaning. It 
corresponds to unlimited cylindrically-symmetrical 
expansion (when 'Yo > 0) or contraction (when 'Yo < O) 

of the plasma without excitation of an electric cur
rent in the plasma (jz = a - {3 = 0). 

The solution (28) delineates in natural fashion 

two regions of solutions with opposite current di
rections: 1) a - {3 < 0 when 'Yo >Do and 2) a - {3 > 0 
when 'Yo < Do; the latter case reduces formally to 
the former with the aid of the transformation (24). 
When 'Yo == Do > 0 the solution (28) is unique in the 
sense that the plasma density vanishes asymptotic
ally as T- oo. For all other values of 'Yo and Do the 
density becomes infinite after a finite time T0 . For 
the solution (28) with 'Yo== Do< 0, this instant is 

'to = 1/ I 'Yo 1- (29) 

4. NUMERICAL SOLUTION OF TIME-DEPENDENT 
EQUATIONS 

The numerical solution of the problem entails 
no difficulty. The main results of the numerical 
calculation are contained in the table. With the aid 
of this table and the asymptotic relations (27) we 
can describe the motion of the gas and the variation 
of the magnetic field near the instant of singularity. 

For each pair of the defining parameters 'Yo and 
Do the table lists the instant of the singularity To 
and the value of a 1• When 'Y 0 > Do the motion near 
the singularity is determined by ( 27), and in this 
case a - a 1 and {3- 00 • For the values 'Yo< Do the 
asymptotic behavior of the solutions is determined 
by the equations (27) transformed in accord with 
(24); in this case we have near the singularity 
a - oo and {3 - a 1• Thus, the quantity that increa
ses without limit is the one (a or {3) corresponding 
to the algebraically smaller initial velocity 'Yo or Do· 

For convenience, the table lists not Do but the 
ratio Do/'Yo· and therefore the condition 'Yo > Do 
corresponds to Doi'Yo > 1 if 'Yo < 0 (upper right part 
of the table) and Doho < 1 if 'Yo > 0 (lower left part 
of the table) . 

For the critical case 'Yo == Do the table includes 
the results of the analytical solution (28). When 
'Yo == Do < 0 the time of the singularity is determined 
from (29), whereas when 'Yo== Do> 0 (lower part of 
the table) we have T0 == oo. The value of a 1 for the 
critical case is taken to be the common value of 
a == {3 when T - T0• 

The eleven variants marked in the table with an 
asterisk were not calculated separately, but were 
determined on the basis of the relations of the in
variant transformation (24). The same relations 
were used to check on the calculation accuracy. In 
the last two lines, for D 0/')1 0 equal to 0. 9 and 1.11, 
the value of To was not determined in the numerical 
calculation, which extended only to T = 10.0. 

We note the monotonic dependence of To and a 1 
on the ratio Do/'Yo on the two sides of the critical 
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Values of T 0 (upper line) and a 1 (lower line) 

Yo I -2.0 I -1.0 I -0.5 I 0 I 0.5 I 

-2.0 r360 0.370* 0.390* 0.400 
0,159 0.370 0.466 0.873 

0,420* 
2.44 

-1.0 {0,560 0.590* 0.620 0.650 
0,196 0.335 0.472 0, 769 

0,710 
1,63 

0 5 {0.800* 0.870 0.910 0.970 
- ' 0.244 0.355 0.46'1 0.652 

1.08 
1.07 

0.5 {0.620* 0.870* 1.08 1.45 
0,472 0.355 0.289 0.206 

2.25 
0.117 

1.0 {0.390 0.590 0.800 1.22 
0.466 0,335 0.244 0.144 

2,41 
0.0505 

1.5 {0.280 0.460 0.650 1.10 
0.469 0.313 0.218 0.109 

2.73 
0.0241 

2.0 {0.220 0.370 0.560* 1.02 
0.465 0.370 0.196 0.0869 

3.20* 
0.0119 

2.0 1,6 

I 
I I 
I 

,_,o __ 

2 3 4 5 
't 

FIG. 1. 

FIG. 2. 

a. 9 1 1.0 1 

0.460 
22.30 
0.820 
7.51 
1.31 
2.74 
5.01 
0.035.4 
9.55 
0.004.08 

>10 
-

>10 
-

1' 
2.0 I 

0.500 
00 

1.000 
00 

2.000 
00 

00 

0 
00 

0 
00 

0 

I 00 

0 

w 
/·2.0 

1.11 

0.420 
26.42 
0. 760 
8.92 
1.23 
3.16 
5.35 
0.0274 

12.05 
0.00223 

>10 
-

>HJ 
-

~ 
~ 

1.5 2.0 

0.300 0.230 
5:44 3.17 
0.550 0.420 
3,48 2.44 
0.900 0,710* 
1.91 1.63 
3.11 2.41* 
0.0464 0,0505 
4.67 3.20 
0,00880 0.0119 
7.94 4.66 
0.00166 o:oo3o7 

10.08 7.34 
0.000723 0.000772 

~ 
0 4 s 6 

T 

·10 

2.0 

~ 2.0 

FIG. 3. 

value o0/y0 = 1. At a fixed value of o0/'y0 > 0, the 
dependence of r0 and a 1 on 'Yo also has a monotonic 
character, whereas when o0/y0 ~ 0 the monotonic 
behavior is lost: To reaches a maximum near 
'Yo r::::J 0, and the dependence of a 1 is even more com
plicated. 

To illustrate the time variation of all the func
tions, Figs. 1-5 show plots of a(T), {3(7'), y(r), o(r), 

and u( T) for 'Yo = 1 and for several different values 
of the parameter o0. The main properties of these 
plots are clear from the foregoing qualitative analy
sis of the equations. We call attention here to the 
change in the density u( r) . When 'Y 0 = 1 and o 0 > -1 
the density decreases before starting to increase 
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1.5 

5 5 FIG. 4. 
'( 

0.5 

., 

without limit. It is easy to verify with the aid of 
(21) that in the general case this occurs when 
'Yo+ o0 > 0. The density minimum is attained at 
instants of time close to T0 , and the closer we are 
to the critical case o0/r 0 = 1 the deeper the mini
mum. 

5. SOME PROPERTIES OF THE SOLUTION 

We shall assume for concreteness that A0 > 0._ 
Then the force lines of the magnetic field corre
sponding to the potential (6) have the form shown in 
Fig. 6. 

2.0 

-2.0 

FIG. 5. 

X FIG. 6. 

For the gas motion described by the obtained 
solution, an arbitrary function in the form <I>(a ( T)x2, 

{3( T)y2) = const determines the Lagrangian line on 
which the same gas particles are located during the 
course of the entire motion. Namely, as follows 
from (1;,>) and (16), the total derivative is 

d<l> a<t> a<t> a<t> 
-=-+ux---+ny-=0. 
dt {h ax {)y 

In other words, the gas particles which at the ini
tial instant T = 0 were located on the line <I>(a(O)x2, 

{3(0)y2) = C, will be located at any subsequent instant 
Ton the line <I>(a(T)x2, {3(T)y2) = C, where Cis the 
same constant. 2> In particular, the Lagrange lines 
are obviously the magnetic force lines a( T)x2 

- {3( T) y2 = const (lines of constant values of the 
vector-potential A(x, y, T)). 

Let us consider the fraction of the gas that is 
located during the initial instant T = 0 within a cir
cle of radius equal to unity. The corresponding 
Lagrange line is the line a(O)x2 + {3(0)y2 = 1. 

Therefore, at any subsequent instant of time this 
gas will be located inside the ellipse 

x2 y2 
a(r)x2+Hr)y2= £2(-r) + 'YJ2(r) = 1, (30) 

where the functions ~(T) and TJ(T) introduced above 
have the simple meaning of semi-axes of this de
forming ellipse. We recall that the choice of the 
unit length, and consequently, of the radius of the 
initial circle, is arbitrary. Therefore Eq. (30) 
describes the behavior of an arbitrary gas cylinder 
with initial circular cross section and with an axis 
coinciding with the zero line. 

As follows from the obtained solution, the semi
axis whose direction corresponds to a smaller ini
tial velocity vanishes at the instant To; at the same 
time, the second semi-axis remains different from 

2 )It must be stipulated that the derivatives of <I> with re
spect to both arguments must exist in the entire domain. 
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zero and bounded. Thus, any initial circle is trans
formed at the instant To into a segment of the x-axis 
(if Yo > o) or y axis (if Yo < o0), with ends at the 
points± a1 112 (see Fig. 6). It is seen from the table 
(see Sec. 4) that the length of this segment can be 
smaller as well as larger than the diameter of the 
initial circle. The area bounded by the Lagrange 
curve (30) is equal to 'Tr~TJ and tends to zero as 
T - T0 , and the gas density cr = (~ T))-1, as already 
noted, becomes infinite. 

Let us examine the behavior of the magnetic 
field intensity B = 2A0{-py, -ax} (see (4), (9), and 
(15)). As TJ- 0 we have on the line (30) y = ± TJ, 
with the exception of the nearest vicinity of the 
points x = ± ~ . Therefore in the limit as T - T0 the 
magnetic field is equal to 

B = 2Ao{+1/1'], -x/£2}, (31) 

where the minus and plus signs correspond to the 
regions y > 0 andy < 0, respectively. As follows 
from (31), when T - T0 the magnetic field :is always 
tangent to the x-axis segment into which the ellipse 
degenerates, increases in magnitude without limit, 
and experiences a discontinuity on the x axis: 

The appearance of the discontinuity in the mag
netic-field component transverse to the compres
sion corresponds to an unbounded increase in the 
density of the electric current. Indeed, calculating 
the current density 

c c 
j, =-(rot B),=-- -L'1A, 

4:rt 4:rt 

we get from (9), (15), and (20): 

. cAo cAo ( 1 1 ) 
Jz=2;(~-a)=2; ~-F . (32) 

From this and from (26) it follows that when T - To 

the current increases like 

(33) 

An essential circumstance here is that the current 
density increases more rapidly than the gas density 
and accordingly the particle density is n oo cr 
= (T0 - T)-2/ 3. The specific (per particle) current 
density is 

(34) 

where n0 is the initial gas concentration. 
Within the framework of the obtained solution, 

the ratio jz/n tends to infinity when T - T0• Ac
tually, however, when a sufficiently high current 

density is attained, new effects arise, not accounted 
from by magnetohydrodynamics. First, when 

(where cr' is the plasma conductivity and Eg~ the 
critical particle-runaway field) an intense runaway 
of electrons begins, and causes current instability 
in the plasma. This process leads to a decrease in 
the effective conductivity of the plasma, but appar
ently still does not impose any essential limitations 
on the applicability of magnetohydrodynamics to the 
description of the macroscopic plasma motions 
(see Note added in proof). 

However, as the current is increased further, 
and the value 

j J j cr(21 = xnec 

is attained, ( c is the speed of light and K a numer
ical coefficient to be determined later) direct ac
celeration of the particles by the strong electric 
field sets in (seer3J for details). In this case the 
magnetohydrodynamic description of the processes 
in the plasma is no longer suitable. It is important 
to emphasize, however, that the magnetohydrody
namic flow considered above leads in the vicinity 
of the zero line of the magnetic field to realization 
of the conditions of dynamic dissipation of the mag
netic field, which were discussed in [3] • 

6. REGION OF APPLICABILITY OF THE SOLU
TION 

It is quite difficult to determine the exact condi
tions under which the derived plasma motion oc
curs. It is actually necessary for this purpose to 
solve the essentially more complicated problem of 
the establishment of an assumed velocity profile for 
a sufficiently broad class of physically acceptable 
boundary and initial conditions. In fact, the most 
difficult question is that of the realization of the 
assumed initial linear velocity distribution. 

Such a distribution could be realized in practice 
as the principal part of a small perturbation of an 
initial stationary state, a part which does not change 
the position of the zero point (/y0 / « 1, /o 0/ « 1). 
One might therefore assume, as was done by 
Chapman and Kendall [2 J, that the entire process 
has the same character as ordinary instability. 

It can be shown by linearizing (16) that a solu
tion increasing linearly in time exists. If the initial 
perturbations of the magnetic field are equal to 
zero and Yo and o0 are sufficiently small, then the 
linearized Eqs. (16) have the following solution: 
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a(-r) = 1l.(6o- Yo) (e2~- e-2')- (yo+ 6o)-r + I, 
~(t) = 1I•(Yo- 6o) (e2'- e-2')- (yo+ 6o)-r +I, 

y ( -r) = 1 I" (yo - 6o) ( e2~ + e-2') + 1 I 2 (Yo + bo) , 
b(t) = 1/,(bo- Yo) (e2' + e-2') + 1lz(Yo + bo). (35) 

We can consider a more general linearized 
problem, without confining ourselves to an initial 
velocity as given by (7). In an unbounded system, 
it is reasonable to take as the small perturbations 
only quadratic dependence of the increment of the 
vector potential on the radius, although an arbitrary 
dependence on the angle is admissible. We can 
then, for example, obtain a solution independent of 
(35), in which the dependence of the velocity on the 
coordinates has a form more complicated than in 
(7), 

Vx 00 X COS <p, Vy 00 -iJ COS <p, 

and an exponential increase with time takes place 
again. Such a solution no longer has a nonlinear 
continuation. In all probability there exist also 
other solutions of a similar kind. 

Thus, in this situation there is a certain outward 
analogy with the universally accepted instability 
concept. The initial velocity perturbations (if suffi
ciently small) and the potentials increase exponen
tially in time. The qualitative departure from the 
initial character of the motion increases with time 
continuously, and the dependence of the motion on 
the initial conditions is not very strong after a suf
ficiently long time interval. The nonlinear continua
tion of the solution (35) corroborates this conclu
sion. During the last stage of the motion, near the 
instant of the singularity, only the constant coeffi
cients depend on the initial conditions (in accord
ance with (27)). These are the features of the out
ward similarity to the ordinary concepts of insta
bility development. 

The solution, however, has also significant 
peculiarities, which are quite unusual from the 
point of view of these concepts. First, motion of 
this type develops in an infinitely-dimensional sys
tem under a very special linear law of velocity
perturbation. The perturbation energy density for 
the initial instant increases without limit at infinity 
(lxl, IYI -co). When the initial velocity has a lineal 
distribution one might then think that the instability 
is more likely to be characteristic of this plasma 
current, and not to the stationary initial equilibrium 
state. As shown by M. A. Leontovich, in a system 
of finite dimensions (in a circular cylinder with 
rigid walls) the linearized equations no longer have 
exponentially growing solutions. In addition, energy 
considerations also argue against treatment of the 

obtained solution as proof of the instability of a 
stationary initial equilibrium state. 

Indeed, let us calculate the kinetic and magnetic 
energies in a cylindrical volume bounded by the 
Lagrange curve (30). With the aid of (8), (9), (15), 
(20), and (21) we obtain the energy per unit length 
of the cylinder 

w = -- + - dx dy = -- ~2 + 11 2 + - + - . ~ ( pvz B 2 ) A0 2 ( · • 11 ~ ) 
2 8n: 8 6 11 

(36) 

It follows therefore that the energy inside the 
specified Lagrange line (meaning the energy per 
unit mass) tends to infinity like (To - Tr213 as 
T- T0 . The internal energy of the gas, which is 
not taken into account in (31), also increases with
out limit. For example, in an adiabatic process the 
internal energy is 

1 Po ( ) 1_,. 
c = ---- £11 ', 

Xo -1 Po 

where p0 and 1-'o are the initial spatially-homogene
ous pressure and density of the gas, and K0 is the 
adiabatic exponent. It is seen therefore that E in
creases in this case more slowly than w if K0 < 2. 

Thus, the motion under consideration can be 
realized only as the result of influx of energy from 
the outside. It can be shown that the influx of 
kinetic and magnetic energy is assured by the 
Poynting vector of the electromagnetic field. In 
this connection, the solution under discussion, so 
long as we are not considering a rigorous boundary
value problem including the sources of the electro
magnetic field, is more likely to have the proper
ties of a cumulative effect, and not instability in the 
usual sense. 

The possible occurrence of a cumulative effect 
in a plasma situated in a hyperbolic magnetic field 
between two identical parallel currents was dis
cussed in [3]. In this case the symmetry line pass
ing between two such currents is the zero line of 
the magnetic field and formula (6) approximates in 
a vicinity sufficiently close to it the exact expres
sion for the vector potential of such currents. A 
characteristic cumulative effect arises, according 
to[ 3], when the currents producing the hyperbolic 
magnetic field change or move rapidly. However, 
the method used in [3 ] did not make it possible to 
include the immediate vicinity of the zero line into 
consideration. 

One can imagine that the linear velocity distri
bution assumed above occurs in the vicinity of the 
zero line after the converging shock wave, pro
duced for example by displacement of the currents, 
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is reflected from the symmetry axis. In this case 
the initial values of Yo and o0 need not necessarily 
be regarded as small perturbations. The obtained 
solution can be regarded in this connection as the 
principal term in the expansion of the still-unknown 
rigorous solution of the problem in powers of the 
small distance r from the zero line. Indeed, accur
ate to terms of highest order in r 2, the expression 
for the potential, corresponding to the obtained 
solution, is quite general. We can therefore as
sume that the obtained solution is the limiting ex
pression for a sufficiently broad class of inhomo
geneous solutions of the boundary-value problems 
as r 2 - 0. It may turn out to be useful also in sol v
ing such problems by numerical methods, as a 
limiting expression in the direct vicinity of the 
zero line. 

The authors are grateful to Academician M. A. 
Leontovich for valuable remarks and advice. The 
authors thank also N. I. Gerlakh and M. G. 
D'yakokhina for obtaining the computer solutions 
of the ordinary differential equations of the prob
lem. 

Note added in proof (March 15, 1967). The class of solu
tions obtained above remains also in force if the coordinate
independent viscosity and conductivity of the plasma are 
taken into account. This can be easily verified by recognizing 

that in this solution the magnetic field and the velocity de
pend linearly on the coordinates, and therefore the correspond
ing terms in the magnetohydrodynamic equations vanish. For 
an incompressible liquid this circumstance was noted in [6 ' 7 ]. 
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