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The absorption coefficient of long-wave ultrasound (longitudinal and transverse) in an "impure" 
superconducting alloy in the mixed state is calculated in the local approximation. The mag­
netic field is assumed to be not very large, He 1 < H0 « Hc2• The total absorption consists of 
two parts-the absorption due to the viscosity of the electron gas and the absorption due to the 
viscosity of the vortex lines. The local value of the sound absorption coefficient due to the 
first absorption mechanism is determined, independently of the polarization, by a certain iso­
tropic function of the temperature and the velocity of the superconducting condensate; this func­
tion is not identical with the local value of the BCS function 2(eD./T + 1)-1. After averaging over 
the vortex lattice in a weak field, the absorption coefficient is computed from Eqs. ( 19) and (20). 
The second absorption mechanism is connected with oscillations of the vortex lattice by the 
sound wave and with the losses due to the viscous motion of the vortices. This part of the ab­
sorption is strongly anisotropic in its dependence on the direction of propagation of the sound 
wave and the polarization, and is characterized by a complicated dependence on the magnetic 
field. 

ULTRASOUND absorption in metals represents an 
effective means of study of the features of the en­
ergy spectrum of the conduction electrons. In par­
ticular, the threshold dependence of the ultrasound 
absorption in a superconducting metal on the tem­
perature has been shown to be one of the direct ex­
perimental confirmations of the existence of the 
energy gap in the spectrum of a superconductor. [1•21 

In the further development of the microscopic 
theory of superconductivity, it has become clear 
that the presence of the energy gap is not a neces­
sary condition for the superconducting state. In 
superconductors with a sufficiently large number 
of paramagnetic impurities, the gap in the spec­
trum disappears for a superconducting ordering of 
the electrons that differs from zero. [31 The cor­
responding calculation of the ultrasonic absorption 
in such superconductors[ 41 shows that this vanish­
ing of the gap can be found experimentally by meas­
urements of the sound absorption coefficient. 

Another important case of gapless superconduc­
tivity is realized in type IT superconductors (in 
particular, in "impure" alloys) in the mixed 
state. [ 51 In such superconductors, in a magnetic 
field larger than Hc1 , the Meissner effect is ab­
sent: the magnetic flux penetrates partially into 
the interior of the bulk superconductor in the form 
of vortex current lines, forming a regular lattice 
in the equilibrium state. Here the parameter of 

superconducting ordering is a function of the co­
ordinates, and vanishes at the center of the vortex 
line. Calculations show[ 61 that in the center of a 
vortex with radius a of the order of 60 I K ( 60 is the 
penetration depth of a weak magnetic field and K is 
the parameter of the Ginzburg- Landau theory[ 71 ) 

the gap in the spectrum of the superconductor is 
populated by densely distributed local levels, which 
are close to the electron levels in the normal 
metal. The presence of these gapless regions in 
type II superconductors in the mixed state was 
confirmed by direct observation of the dissipa­
tive current states in a magnetic field. [ 8 1 Evi­
dently the existence of these regions should also 
be indicated by the ultrasonic absorption in the 
superconductor. 

In the present paper, the coefficient of electron 
absorption of long-wave sound is computed (q l 
« qo0 « 1, where q is the wave number, l the 
length of the free path of the electrons)1> in the 
mixed state for "impure" superconducting alloy 
(T Tc « 1, where T = l /v0 is the relaxation time, 
T c the temperature for the superconducting tran­
sition, and v0 the velocity on the Fermi surface). 

1lin what follows, the much more rigid condition qd << 1 
will be assumed, if d > o0 , where d is the distance between 
the vortex lines. 
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The external magnetic field is assumed to be not 
too large: Hc1 < H0 « Hc2• This allows us to re­
gard the current structure of the superconductor 
in a mixed state as a lattice of isolated vortex 
lines parallel to the external field. [S 1 

The enumerated conditions make it possible to 
use as the basic calculation the so-called local 
approximation in the electrodynamics of type II 
superconductors. [ 91 The essence of this approxi­
mation is that locally, at distances less than Oo, 
the superconductors in a magnetic field are con­
sidered as being in a homogeneous current state 
(analogous to the state of a thin film) and all 
quantities, for example, the superconducting flow 
and the ordering parameters, can be regarded as 
local functions of the velocity of the super con­
ducting condensate at the given point, v s(r), deter­
mined by the expression v s = (V'X - 2eA) /2m, 
where li = c = 1, e and m are the charge and mass 
electron, x the phase of the superconducting order­
ing parameter, A the vector potential of the mag­
netic field, and H = curl A. The shape of the func­
tion v s (r) for the mixed state is then determined by 
the solution of the Maxwell equations, just as had 
been done by Abrikosov. [ 51 Application of the local 
approximation materially simplifies the calculations 
while at the same time guaranteeing the necessary 
accuracy, as will be seen from what follows. 

For the calculation of the electronic absorption 
of the ultrasound, it is necessary to determine the 
work done by the sound wave on the electron gas 
per unit time. For long-wave sound, in the hydro­
dynamic approximation, this work can be repre­
sented in the form [ 10 ' 161 

(1) 

,.. I ,.. A 

Here j = ev 1/J + 1/J is the current operator (2mv = p 
- p'- 2eA, p = -i\7; 1/J and 1/J+ are the electron an­
nihilation and creation operators at the given point); 
T ik = mVi Vk 1/J+' 1/J is the stress tensor, Eik 
= 1j2(8u./8xk + 8uk/8xi) is the deformation tensor, 
u is the1 vector displacement of the ionic lattice; 
E = -A is the effective electric field in the system 
of coordinates connected with the lattice. The dot 
denotes differentiation with respect to time, the su­
perior bar indicates the time average, and the angu­
lar brackets denote thermodynamic averaging. 

In the mixed state, the sound wave generally pro­
duces oscillations of the vortex lines relative to the 
ionic lattice, which is accompanied by great changes 
in the magnetic and electric fields. For low-fre­
quency sound ( w T « 1), these changes in the field 
take place slowly. It is not difficult to generalize 
the Kubo technique [ 11 1 to the case of large fields 

that change slowly with time. Then, with account 
of (1) we obtain the expression for the thermody-

' 2) namic means of the current and the stress tensor: 

(j;) = (j)o + a;k {vs} Ek, (r;k) = (ril)o- T]ihlm {vs} ~lm, 

(2) 

where the conductivity tensor u ik and the viscosity 
coefficient tensor 17iklm are defined by the follow­
ing expressions 

d 
a;k =- i-(j;; jn) (w) for w-+0, 

dw 

d 
1liklm=- .i- (r;k; trm) (w) for ffi---'>0. (3) 

dw 

In Eqs. (2), the expressions (h)o and ( T ik )o de­
note averages over the equilibrium Gibbs distribu­
tion with the instantaneous value of the Hamiltonian 
of the electrons, describing the given distribution 
of the vortex currents and the magnetic field in the 
mixed state at the given instant of time. The ex­
pressions (h; jk) and ( Tik; Tzm) are the well­
known time correlation functions in the Fourier 
representation (w is the frequency) computed by 
means of the same equilibrium Gibbs distribution 
with the instantaneous value of the Hamiltonian. 

In the general case, the correlation functions 
(h; jk) and ( T ik; Tzm) are themselves integral 
operators of the conductivity and viscosity; these 
operators are local in the time, and nonlocal in the 
space, coordinates. However, in the limit of long­
wave sound, coordinates that are nonlocal in space 
can be neglected. Moreover, these correlators 
are also nonlocal functions of the velocity v s (r) of 
the superconducting condensate, but, in the local 
approximation used in this research, one can con­
sider them as functions of the local value of Vs(r). 

With the aid of Eqs. (2), we transform Eq. (1) 
for the dissipation of energy to the following: 

(4) 

Physically, the first term describes the possible 
ohmic losses due to the incomplete attraction of 
the electrons by the ionic lattice, and the noncom­
pensation of the electron and ion currents. The 
second term is the loss of sound energy in the 
electron gas. 

1. We first consider the contribution to the ab­
sorption made by the viscosity of the electron gas. 
To calculate the tensor of viscosity coefficients 

2)In the approximation considered in this paper, the mixed 

terms <ji; rkl> Ekl and <rik; iz> Az in Eq. (2) are equal to 
zero. 



648 V. P. GALAIKO and I. I. FAL'KO 

11iklm• one can use a technique analogous to the 
techniques of [ 12 • 41 . The correlation function ( T ik; 
Tzm) (w) can be found by analytic continuation of 
the temperature correlation function < Tik; T zm> T 
(vn) with discrete frequencies vn = 2nTn (n = 0, 
± 1, ±2, ... ) to the physical frequency w: 

ivn-+ w + iO. 

We determine the temperature correlation function 
as previously[ 41 by means of the variational deriv­
ative: 

Here Uzm (x) is the elastic field of external 
sources; K(x1, x2) is the matrix Green's function: 

( G F\ , 
K(x1,x2) = p+ GJ(x~,x2); 

G, F, F+, and G are the functions introduced by 
Gor 'kov, [ 131 and az is the Pauli matrix. 3 > 

In the presence of a current state given by the 
superconducting velocity vs, the Gor'kov equa­
tion[131 for the Green's function K(xl> x2) in the 
field of external sources can be written in the form 

[ a ~ 
K-t (x~, x2; U) = iht + O"z~ (Pt + crzmV8)- ax~ (x1; U) 

- azUin(xt)m;!i;tk J 6(Xt- x2) 

(6) 

where w(r) = (2n) - 3 J d3p I v(p) l2eiP · r, K- 1(x1> x 2) 

is the inverse Green's function, ~ (p) = p2/2m- JJ. 
(JJ. is the chemical potential), ax the Pauli matrix, 
ll the parameter of superconducting ordering (D. 
= gF(x, x), g < 0 is the coupling constant). The last 
term in Eq. (6) describes the scattering of the elec­
trons by the randomly distributed impurities (in 
the volume of the metal), over the positions of 
which the averaging is made; v(p) is the Fourier 
transform of the scattering potential by the impuri­
ties and n is the concentration of the impurities. 

The form of the Green's function K(p; wn) in the 
Fourier representation (see the Appendix) for the 
case of a current state in a superconductor with 

3 )We note that in the given case (nonparamagnetic impurity) 

the spin matrices have already been separated in the Green's 
functions and G, F, F+, and G do not depend on the spin 
variables. The Pauli matrices, as also the matrix fonn of 
K(x,, x,), are used for the sake of convenience. 

impurities was found by Maki. [ 151 According to 
[ 151 , it follows from Eq. (6) that, for the case 
uik = 0 (as iwn- z): 

<Yz~- O"x~ + Z 
K(p, z) = (7) 

~2+~2-:z2 

The functions z (z) and ll(z) in the equations for 
the correlators enter in the form of the combina­
tions u = z/ t;, and € = ..J !:::.2 - z2 • According to [ 151 , 
for an "impure" alloy in the principal approxima­
tion in the small parameter T T c « 1 ( T Po v s 
:S -fT T c « 1, Po being the Fermi momentum) the 
explicit z dependence of the introduced function is 
determined by the following relations: 

~ ~ __!__ z = u( 1--~-) . ~ = ~l't (pous)Z 
2't ' ~ l' 1- u2 ' 3 r ~ ' 

1 1 1 1 nmpo (' do 2 -=~-~,-=--.)-iu(e)j cosne ('to='t). 
Ttr T Tt Tn :rt 41t 

(8) 

In the last line we give the usual definitions of the 
free path times of the electrons (do is the element 
of solid angle). 

Transforming in (5) to the Fourier representa­
tion for the long-wave sound (q- 0), we get: 

(9) 

(10) 

Calculating the variational derivative 
6K(x1, x2)/6Uik(x3) by means of Eq. (6) and the iden­
tity jdxK(xl> x)K-1(x, x2) = 6(x1 - x2), substituting 
its Fourier representation in the definition (10), 
and neglecting the variations of the ordering pa­
rameter ll (i.e., the contribution from the collec­
tive excitations, [ 161 we find the equation for Lik: 

(11) 

where for brevity we put K ± = K(wc~:). 

The matrix tensor Lik can be represented in 
the form of the following expansion: 

G;n = muo;Von ( crzii + crzcrxiit)+ mvo26;k ( crzQ + CJzaS2!). (12) 

Substitution of this expansion in Eq. (11) gives a 
set of algebraic equations for the scalar functions 
IT(w+, w_), II 1(w+, w_), Q(w+, w_), and Q1(w+, w_), 
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the solution of which, with account of Eqs. (7) and 
(8), has the form 

ll=~' u+u-+l'(1-u+2)(f-u_2 ) -1 Q=- 1TI 

2 y(1-u+2)-(f-u_2 ) 3 

(13) 

Combining Eqs. (3), (9), (12) and (13), we find 
(after performing the analytic continuation) the 
final expression for the tensor of the viscosity 
coefficients: 

'l)iklm = 'l)i~lmf(T, Vs), 

oo~ sh2y d z 
j(T, v8 )= dz . dz th-

ch2y- sm2a 2T 
zm 

z/11 =sin a(ch2 y- cos2 a)/chv 

cos a ( ch2 v- sin2 a)= ~ ch y, 
{ 11(1- ~'Ia)'/, ~ < 1 

z -
m- 0 ~>1 

(14) 

where 1J?klm is the tensor of the viscosity coeffi­
cients of the normal electron gas: 

'l)ik7m = 1/sNpoVo"tt/ ( 8ilbkm + b;mbkz- 2/ab;k8tm). 

The absorption coefficient for a plane sound 
wave Ut = uq, w exp [i(q · r- wt)] is determined 

f(T, Vs)-+ 

where .6.0(T) is the BCS gap. [ 1l 

As is well known, [51 for isolated vortex lines, 
the super conducting velocity v s(r) behaves in the 
following fashion as a function of the distance r 
from the axis of the vortex: Far from the center 
of the vortex (r » a ~ 60 /x ) 

V 8 (r) ~ 2!60 K1( i;) 
(K1 (x) is a Bessel function of the second kind); at 
small distances, vs(r)::::: l/2mr. Then, in accord 
with Eqs. (15) and (16), it follows that at the center 
of the vortex (v s ~ v cr), the ultrasonic viscous ab­
sorption is identical with the absorption of normal 
electrons. 5> At zero temperature, as is seen from 
the asymptotic values of (16), the normal excita­
tions outside the center of the vortex "freeze," 

S)Close to the field Hc 2, when the density of lines is 

great, (a.Jan\is = 1. 

from the dissipative function (4) by the well-known 
-.,-- t -t -t 1 

relation a = (ilt) /2E , E = h V Pion w2 1 u 12 is the 
mean energy of the sound wave, V the volume of the 
metal, Pion the. ion density. It then follows that for 
the viscous part of the ultrasonic absorption coef­
ficient in a mixed state, independently of the polar­
ization and direction of propagation of the sound 
wave, the following relation is valid: 4> 

( as) - 1(' 
- . = f(T, Vs) = -, .J dS-J(T, V8 ) 

an VlS /:) 
(15) 

Here the superior bar denotes averaging over the 
spatial distribution of the vortex currents, which 
actually means averaging over the vortex-lattice 
cross section perpendicular to the external mag­
netic field H0• 

Proceeding to the discussion of the results ob­
tained, we first note that the function f(T, vs)(15) 
does not coincide, as one would expect, with the 
local value of the function 2(e.6./T + 1) - 1 which, in 
the BCS theory, represents the ratio of the coeffi­
cients of ultrasound absorption in the supercon­
ducting and normal states. Using Eqs. (14), (15) 
and the corresponding equation for the parameter 
of ordering as a function of vs,[ 151 it is not diffi­
cult to find the asymptotic values of the function 
f(T, Vs): 

(16) 

and all the remaining absorption is entirely deter­
mined by the normal cores of the vortices. With 
account of these remarks, we find from Eq. (15) 

T = 0, (~) = k(O)__!!_____ 
an vis Hr2 

( - Jt 1 ) B = H = n~<Do = n.-, Hc2 ~ --
e ea2 ' 

(17) 

where B is the magnetic induction in the supercon­
ductor, nv is the density of the vorticallines, c~> 0 
the quantum of magnetic flux of the vortex, and k(O) 
a numerical factor of the order of unity. The accu­
rate value of k(O), however, cannot be obtained in 
the local approximation used here, since the latter 
is not applicable at distances a~ 60/K. 

4 )Jn the time averaging of the viscous term in Eq. (4) for 
the dissipative function, one can assume the vortex lattice 
to be in equilibrium and fixed, with accuracy up to terms of 
very high order of smallness in the deformations. 
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At a temperature different from zero, the situa­
tion is different. As is seen from Eqs. (16), in this 
case the thermal excitations outside the center of the 
vortex line begin to play a principal role. Actually, 
the function t 5 /3 o: v ~ 13 falls off too slowly as v s 
- 0, r - oo, so that the characteristic distances 
are seen to be of the order of 60• This makes valid 
the use of the local approximation for the quantita­
tive calculation and, moreover, as is easy to see, 
leads to a sharp increase in the coefficient of pro­
portionality f(T) in the magnetic dependence of the 
absorption for weak fields. We substitute the 
asymptotic formula (16) in the expression (15) and 
estimate its mean value t ~/3 for sufficiently weak 
fields, when the distance between the vortices is 
larger than <'>o: 

. ( as ) 2 9 ( 12 h2 11o ) -,.. T=t= 0, -- = +- Ao. Tc ·--- so 1·, 
an vis e~'>o/T + i 20 2T 

-- ( 1·-Vo2 \'ist ' B so'/,= 2Be6o2 -"--. 1 J dx·xK1'is(x) ~X/,_ 
, 611o6o2 1 0 Hcz 

(18) 

Thus, combining Eqs. (17) and (18), it can be 
stated that the following relation is valid for vis­
cous absorption in a weak field at any temperature 

( as\ (as) B - l = - +k(T)-
.. an I vis an 'BCS Hc2 

while the limiting value 

k(O) ~ k(T =I= 0) ~ x'is 

and the temperature dependence 

k(T)"' x'lsf10/2T ch2~ 
2T 

(19) 

(20) 

are determined principally by the factor D. 0/2T 
cosh2 (D.0/2T). In the general case, the dependence 
on the magnetic field is a complicated nonlinear 
one. 

2. We proceed to the consideration of the ohmic 
part of the losses in Eq. (4) or the dissipative func­
tion. Usually, both in the normal metal and in the 
superconductor in the absence of a magnetic field, 
this term gives a zero contribution in the form of 
complete compensation of the electron and ion 
currents for long-wave sound (ql « 1). In a type II 
st<perconductor in a mixed state, the passage of 
the sound wave through the metal leads to a dis­
placement of the ionic lattice relative to the system 
of vortex lines. As is well known, [17] the motion of 
the vortex through the lattice is accompanied by the 
appearance of a force of viscous friction, which 
acts on the line. Therefore, the vortex lines must 
be attracted by the vibrating lattice. However, this 
attraction cannot be complete, because of the mag-

netic interaction between the vortices. This inter­
action plays the role of elastic interaction for the 
vortex lattice. s> Thus, in the set of coordinates 
connected with the metal, motion of vortex lines 
arises and brings about the appearance of induction 
electric fields and normal currents, and corre­
spondingly, ohmic loss. According to the mecha­
nism proposed by Bardeen and Stephen, [ 171 these 
losses are precisely the losses from the viscous 
motion of the vortex lines themselves. Therefore, 
one can write down the following equality: 

(21) 

where Tj is the coefficient of viscosity of the vor­
tex lines per unit length, VL = u_Y- u l is the veloc­
ity of the line relative to the lattice, uv is the vec­
tor displacement of the vortices, u1 the projection 
of the displacement of the ionic lattice on a plane 
perpendicular to the magnetic field. The calcula­
tion of the viscosity coefficient of the vortices did 
not enter into the problem of the present work. Its 
value can be found, for example, from the experi­
ments of Kim and co-workers on the dissipative 
current states previously mentioned. [8 1 According 
to these experiments, Tj is represented in the form 

(22) 

where f3(T) depends weakly on the temperature 
( f3 ~ 1), and ern is the conductivity of the normal 
metal. 

To find the velocity vL, it is necessary to write 
down the equations of motion of the vortex lines. 
For the case of an "impure" alloy, neglecting in­
ertial vortices, we have (see, for example, [ 181 ): 

(23) 

where 

(24) 

is the potential energy of the interaction of the vor­
tex lines, [ 51 ri is the radius vector which deter­
mines the position of the center of the vortex line 
in the plane perpendicular to the magnetic fields; 
r~ is the equilibrium position of the center of the 
line. 

6 )We assume that the forces (connected with various in­
homogeneties) which fix the position of the vortex lines rela­
tive to the ionic lattice are absent. In practice, this means 
that the intensity of the sound must be rather large in order to 
include the considered mechanism of absorption in the presence 
of such forces. 
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For long-wave oscillations (q60 « 1 or qd"' q-rn; 
« 1, if 60 rn;; « 1) the potential energy (24) can be 
written in the "elastic" approximation: 

u- uo = ~-B--S 
32ne6o2 

(25) 

Here U0 is the potential energy of the equilibrium 
vortex lattice; the operations of integration and 
differentiation, like the vectors r and uv, lie in 
the plane perpendicular to the magnetic field. The 
tensor of the moduli of magnetic ''elasticity'' is 
defined here in the following way: 

Ac.~yo = ~ [ { l'lc.~nk,nkO - nkc.nk~nk,nM) .!!!._ Ko' ( !!!:..._) 
~~ ~ .~ 

+ nkc.nk~nk,nkO ( !!!:..._)2 Ko" ( !!!._)] , D~t = !!::..__ (26) 
6o l'lo rk 

In the isotropic case7> the tensor A. a{3 0 contains 
only two independent components, which can be ex­
pressed in terms of the equations of [ 51 through 
the function H0(B). Omitting the simple calcula­
tions, we obtain the final expression for the poten­
tial energy U: 

lJ- Uo = 21 s dS { Ao l~:x:av y + ( :::v a~:~v )] 

+At I _ouav )2}, 
ox a 

B2 ano BS B2 d2Ho 
Ao = &diJ' Ai = o 8n dB2 dB. 

It follows from Eqs. (23) and (27) that 
Be 
- T)VL = 2"-o V div uv + At~Uv. 
Jt 

(27) 

(28) 

Neglecting the difference m the displacements 
of the vortices uv and the lattice u 1 on the right 
side of this equation, and considering only a plane 
sound wave u a: exp [i(q · r- wt)], we get 

Be 
-T)VL= -[2Aoq..L(q..Lu..L)+Atq..L2u..L], (29) 

Jt 

where q1 is the projection of the wave vector on 
the plane perpendicular to the magnetic field. 

We introduce the angle e between the directions 
of the vectors q and H0• Substituting Eq. (29) in 
Eqs. (21) and (4), we find the following for the coef­
ficients of absorption of longitudinal and transverse 
sound due to the viscosity of the vortex lines: 

7 lAiming at obtaining sensible results, we have neglected 
weak interactions in the plane perpendicular to the magnetic 
field. For a triangular lattice, [5] the results obtained are ex· 
act. 

( asL ) 15 ( 'ttr ) B ( Be )2 - =- -~(T) - --
anL vis 64n2 Tt/ Hc2 \GnPoSL 

xJ [ ~!0 
( 1 + 2;o ) r sin6 e, (30) 

( asT \ 5 ( 'ttr . ) B ( Be ) 2 { dHo \ 2 
-, =--\-[i(T) - -- --

\a, T · vis 16n2 'tt/ Hcz GnPGSL \ dB ' 

[( At )2 ( A1 J2 J X 1 + -2 cos2 9 cos2 <p +, -· sin2 <p sin" e, (31) 
Ao '. 2Ao 

where .A 0 and .A1 are defined above in (28), sL is 
the velocity of longitudinal sound and sT the ve­
locity of transverse sound; cp is the angle between 
the vector u of the polarization of the sound wave 
and the plane formed by the vectors Ho and q. 

The strong anisotropy of the absorption de­
scribed by Eqs. (30) and (31) is of interest. In 
particular, for waves traveling along the mag­
netic field (8 = 0), both for longitudinal and trans­
verse sound, this absorption is equal to zero. The 
longitudinal wave generally does not deform the 
vortex lattice in this case, while in a transverse 
wave, the individual cross sections of the vortex 
lattice are displaced as a whole without deforma­
tion, being absorbed completely following the 
ionic lattice. The maximum absorption of longitu­
dinal sound is attained, naturally, for waves travel­
ing perpendicular to the magnetic field. 

The dependence of the absorption, (30) and (31), 
on the weak magnetic field is seen to be nonlinear 
and is determined principally by the factor dH0/dB. 
According to Abrikosov, [ 51 as B- 0, 

dHo/dB ~ B-2 exp ( -constfl'B). 

Taking Eqs. (30) and (31) into account, we obtain 

{a,/ a,) vis ~ B exp ( -constfl/B) (B-+0). 

It must be noted that since we have B < Hc2 

- 0 as T- T c• the contribution of the considered 
mechanism to the absorption as T- T c is rela­
tively small, thanks to the factor Be/anp 0s. The 
effective field, in the denominator of the last ex­
pression, is equal, in order of magnitude, to 

The authors are grateful to I. M. Lifshitz for 
the discussion of the work and useful observations. 

APPENDIX 

The Fourier representations of the various 
quantities are determined in the following fashion: 
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- iwn ( 'tt - 't2) J, 

X exp [iq (rt- r2) - ivn ('t1- 't2) J, Vn = nT · 2n, 

n= 0, ± 1, ±2, ... ; 

X exp [ ip(rt- r2) + iq ct ~r2 - r3 )- iw+('tt- 't3) 

- iw-(T3 -- T2) J, ffi+ = ffin, (J)_ = ffin- Vn'· 
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