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A system of coupled equations is obtained for the matrix elements of the currents in quantum 
electrodynamics. These equations do not involve undetermined quasilocal terms. It was 
possible to avoid these terms in the equations by including among the basic axioms a so-called 
"principle of minimal singularity." Various methods of excluding the quasilocal terms are 
considered, as well as the role of gauge invariance in this procedure. It is shown that within 
the framework of the assumptions made, only one independent interaction constant is admissi­
ble, namely the charge of the electron. An iterative solution of the derived equations leads to 
the renormalized perturbation series. 

I. INTRODUCTION 

%THIN the axiomatic method in quantum field 
theory[ 1 • 2 1 several methods have been recently 
proposed[ 3• 41 for deriving equations for the current 
matrix elements. A characteristic feature of the 
equations derived in [ 31 for the scalar field was the 
absence of undetermined quasilocal terms in these 
equations. These terms were excluded by means of 
a new axiom, the so-called "principle of minimal 
singularity," and by taking into account the covari­
ance properties of the matrix elements. Departures 
from the mass shell in these equations are allowed 
only in one variable at a time. Soon similar equa­
tions were derived for pseudoscalar mesodynam­
ics. [ 51 

In the present paper1> this program is carried 
through for quantum electrodynamics. 2> A realiza­
tion of this program can lead, in particular, to a 
closed system of equations for the simplest matrix 
elements at low energies. In this connection the 
quantum electrodynamics (of strongly interacting 
particles) is worthy of special attention, first of all, 
owing to the smallness of the electromagnetic cou­
pling constant, and secondly, owing to the consider­
able simplification which is introduced if one makes 
use of gauge invariance (together with the principle 
of minimal singularity) in determining the quasi­
local terms. [ 6• 71 Finally, the method may be use­
ful in deriving various ''sum rules.'' 

1) A detailed exposition of a series of related problems 
can be found in [6]. 

2 ) A slightly different approach to the same problems is 
developed in [7]. 

In Sec. 2 the fundamental quantities are defined 
and the principle of minimal singularity is formu­
lated within the framework of electrodynamics. We 
note that this principle contains the Lagrangian ap­
proach with the usual minimal electromagnetic in­
teraction. In Sec. 3 the axiomatic equations for the 
current matrix elements are derived, equations 
which do not involve undetermined quasilocal terms. 
Various methods of eliminating these quasilocal 
terms are discussed, as well as the role played by 
gauge invariance in this procedure. The simplest 
among the equations are analyzed in the last sec­
tion, where it is shown that only one independent 
electromagnetic constant-the electron charge e­
is admissible in quantum electrodynamics. An 
iterative solution of the equations leads directly 
to the renormalized perturbation-theory series. 
Some relations involving the longitudinal part of 
the electromagnetic field are discussed in the Ap­
pendix. 

2. THE PRINCIPLE OF MINIMAL SINGULARITY 

Starting from the axiom of the existence of 
Heisenberg field operators 1/J (x), -;j;(x), and AJ.L(x), 
we define the current operators: 3> 

iJ 
j"'(x) =- DAJJ.(x), - j"'(x) = 0, 

iJx"' 

'I'J(x) = (V+m)'ljJ(x), 'I'J(.c) ='ljJ(x) (-V+m). (2.1) 

We further define the in-fields: 

3 ) All notations and metric conventions are the same as in 
the book by A. I. Akhiezer and V. B. Berestetskii [6]. 
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A,_.in(x) = A,..(x)- ~ dx'DR(x- x')j,..(x'), 

'¢in(x) ='ljl(x)- ~ dx'SR(x-x')TJ(x'), 

¢~n(x) =~x)- ~ dx'~(x')SR(x-x'), (2.2) 

which satisfy the equations 

0 A,_.in (x) = 0, (V + m)'¢in (x) = 0, 

~n(x)(~V+m)=O (2.3) 

and the commutation relations 

[A,_.in (x), Avin (x')J- = -i ( 6,..v + 2M-0-2 
-) D(x- x'), 

' ' OX,_. OXv 

['¢in,a(x), '¢in,B(x')]+ = -iS ad X- x'), (2.4) 

where M = 1/ 2 j K- 2u(K2)dK2, and u (K2) = p1 (K2) 

- o(K2) is the spectral density of the photon Green's 
function. [ 6l Equations (2.4) are satisfied if the ex­
pansion of the in-fields in terms of the usual parti­
cle creation and annihilation operators is of the 
form 

1 
A,_.in(x) = 'Y. ---=e,_.1-(k)[c~.(k)eikx + c~.+(k)e-ikx], 

k, 1_ "}12w 

'¢in (x) = ~ u-r (P) eipx a_r (P) + u+' (p) e-ipx a+r• (p), 
p, T 

p, T 

where 

- -~+m 
(±ip+m)u:;:r(p)=O, U:;:'(p)u'f'(P)= 2E , 

U:;:'" (P) u'fr' (p) = 6rr' (2.6) 

The term involving M in (2.4) guarantees the 
canonical form of the commutation relations for the 
Heisenberg field operators, [ 9• 10 l a fact which will 
be utilized later. 

We supplement the well !mown set of axioms, [ ll 
including Lorentz-invariance, spectrality, charge­
conjugation and gauge invariance, stability of one­
particle states, and completeness of the set of in­
fields (for details cf., e.g., [ 6, 11 l), by a new axiom: 
the principle of minimal singularity. It was first 
introduced for the scalar field [ Jl and in axiomatic 
language[ ll it signifies postulating the character of 
the singularity of the equal-time commutators 
among the fields and the currents. This require­
ment characterizes a sufficiently broad class of in­
teractions between fields (not necessarily in the 
sense of the existence of an interaction Lagrangian); 
apparently it encompasses the majority of renor­
malizable theories. In the same measure this leads 

to a restriction of the arbitrariness in the selection 
of the quasilocal terms which occur in various 
axiomatic equations. 

In quantum electrodynamics the formulation of 
such a principle encounters several difficulties 
(noncovariant form of the quasilocal terms and 
their dependence on the choice of a gauge; also the 
fact that the particles involved have spin) and de­
tails are discussed in [ 6l. Concretely, the princi­
ple requires that the singularities of the following 
equal-time commutators be delta-like: 

[TJ (x), 1jj (x') J + = () (x- x') (J. (x), 
t=t' 

[TJ (x), 'ljJ (x')J i=t' = 6 (x- x') ~ (x), 

[TJ (x), A 11 (x')J~1, = 0, 

[TJ (x), A11 (x')lt=t' = 6 (x- x') afl- (x), 

[j11 (x), 'ljJ (x')Jt=t' = 6 (x- x') y4bfl- (x), 

[jl'- (x), Av (x')Jt=t' = 0, 

[jl'- (x), Av (x') lt=t' = 6 (x- x') a11v (x), 

(2.7) 

(2. 8) 

(2.9) 

(2.10) 

Here a(x), {3(x), aJ.l. (x), bp (x), and apv (x) are arbi­
trary but nonsingular operators, depending on x, 
but in general aJ.l., bJ.l. , and aJ.l.V are not covariant in 
J.1. and v. (The same is true for the canonical com­
mutation relations for Ap(x).) 

One can derive from Eqs. (A.6) and (A. 7) (cf. the 
Appendix) 

a;t(x) = (O;tv- 6,_.,0v4) av(x) + 6;t,ey,'ljl (x), 

b,_.(x) = (6;tv- 0~<40v4)~v(x) + 61,,iey,'ljl(x), 
a ;tv (X) = ( 6;tp - 61!40p4) ( 6vrr- Ov40rr4) Upcr (X)' 

(2.11) 

(2.12) 

(2.13) 

where aJ.l., f3p, and D'pv are covariant in J.1. and v. 

We note that (2.7)-(2.10) are valid only in so­
called "genuine" gauges (involving a term with M 
in (2. 4) [ 9• 10 l ). In addition (2.10) does not hold for 
vacuum matrix elements, but these do not occur in 
the equations (cf. below). 

From the standpoint of the Lagrangian approach 
these relations are satisfied by the minimal elec­
tromagnetic interaction, but do not allow nonrenor­
malizable derivative couplings, and when f3(x) = 0 
in (2. 7) they also forbid four-fermion interactions. 

3. EQUATIONS FOR THE MATRIX ELEMENTS 
OF THE CURRENTS 

Let (m /J(O) /l) denote an arbitrary matrix 
element of the current J(O) = jJ.l.(O), YJ(O), ij(O) be­
tween states of definite particle number of given 
momenta and polarizations. The required system 
of equations is obtained by transforming each of the 
creation operators of the particles in l (or annihi-
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lation operators for the particles in m) into the x­
representation with the aid of the appropriate in­
field, then expressing the latter in terms of the 
current operator, and expanding the product of 
currents so obtained in terms of the complete set 
of in-states. 

We carry out this procedure for the electron 
states pr:_, the positron states pr and the photon 
states 0 contained in the vector IZ). In doing this 
we assume for simplicity that the states of the par­
ticles in IZ) and ( m I are different, in order to avoid 
disconnected diagrams. 

Thus, taking into account (2.5) and (2.6), one can 
write for an electron state 

\ml1(0) IP-7 ; l) 

= ~ dxeiPx6(t)\mi[l(O),~in{x)] +\l)'\',u-'(p). 

(The minus sign corresponds to J(O) = jJL(O), and 
the plus sign on the square bracket corresponds to 
J(O) = 71(0), 'if(O).) Making use of (2.2) and of the 
relation 

~ dx eipx 6 (t) S R (x- x') y4u_r (p) = -i8 ( -t') eipx' u-' (p), 

we obtain 

(m\1(0) \p-7 ; l) = (m\R-(p) + K-(p) \l) u-7 (p), (3.1) 

where the R-function and the quasilocal term are 
respectively equal to 

(m\R-(p) 10 u_7 (p) 

= i ~ dxeipxe(-t)\mi[l(O),tl(x)]+ll)u_r(p), (3.2) 

(m\K-(p) ll) u-'(P) 

= ~ dxeipx()(t)\m\[1(0),"¢(x)]+\l)y4u_r(p). (3. 3) 

Expanding the right hand side of (3.2) in terms of 
the base vectors we write the R-function in the 
form 

\miR-(p) \l) u-7 (p) = (2n)3 ~ { (m\1(0) \n) \nl-:;](0) ll) 
n 

X E~~t~~-~,::>ie + (m\tl"(O) \n) (n\1(0) \l) 

X 6(p- Pm + Pn~ } U-'(p). (3.4) 
Em-En -E- ~e 

For the quasilocal term (3. 3) it can be seen from 
(2. 7) and (2. 9) that the p-dependence is entirely 
concentrated in the spinor u:(p): 

(m\K-(p) IZ) u_7 (p)= (m\K-\l) zi_7 (p). (3.5) 

Similarly, making use of the relation 

U+7 (P)Y4 ~ dxeipx 6(t)SR(X- x') = U+'(p)i8(-t')eipx', 

we obtain for the positron state 

(m I 1(0) IP+7 ; l) = U+7 (P) (m \R+(p) + K+(p) \l), (3.6) 

il+7 (p)(miR+(p) \l) 

= -iil+r(p) ~ dxeiPX8(-t)(mi(1(0),'1'J(X))+\l) 

= il+'(P) (2n) 3 ~ (mll(O) \n) (n\'11(0) \Z) 
n 

X 6 (P + Pt- Pn) 
El-En +E + ie 

+ (m\'1'](0) \n)\n\1(0) ll> ii(P-Pm+Pn). , (3.7) 
En -Em+E +le 

U+r(p)(m\K+(p) \Z) 

= U+r(p)y4 ~ dxeiPX6(t)(m\[1(0),'1jJ(x)k\l) 

= il+"(P) (m\K+\l). 

Finally, considering the photon state 

(m\1(0) \k"; Z) = 1 e~'"(k) ~ dxeiRX6(t) 
l'2w 

X (m \[J(O), wA~in (x)- iA 11in (x)]-\Z), 

where 

ei(k) = (611v + MkiJ.kv)e}, 

and making use of the relation 

~ dx eikx()(t) ( w- i :t) DR(x- x') 

= - i8 ( -t') eikx', k2 = 0, 

we obtain the expression 

(3.8) 

(m\1(0)\k'·;l>= 1 e11~(k)(m\Ril(k)+K11 (k)\l), (3.9) 
"JI2w 

where 

1 i 
-=-e11~(k)(m\R11 (k) \Z) = -=-e11~(k) ~dxei~<xe(-t) 
"J12w l'2w 

(2n) 3 

X(m\[1(0),)iJ.(x)]-\l) = -el(k) ~(m\1(0) \n) 
f2w n 

6(k+ PI- Pn) 
X (n\j!l(O)\l)En-El-w-ie 

6(k-Pm+Pn) 
- (m\j 11 (0) \n) (n\1(0) \l) Em-En_ w _ ie, (3.10) 

1 
---=-e11~(k)(m\K11 (k) \Z) 
"JI2w 

= 1 e11~(k) i dxeikx6(t)(m\[l(O),wA 11 (x) 
l'2w .) 

. 1 
- iAjJ.(x)]-\l) = ----=-e11~(k)(m\K11 \Z>. 

l'2w 
(3.11) 
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It is just as simple to derive relations for the 
states p~ and kA. contained in (m J. 

The last step required for deriving the equations 
is the elimination of the quasilocal terms from (3.1) 
and similar expressions. Within the framework of 
the principle of minimal singularity this procedure 
can be effected by different methods ( cf. also [12 J). 

1. The most natural among these methods is at 
the same time the most involved, and consists in 
an extension to the present context of the method 
employed for the scalar field. [ 3• 13 J It is impossi­
ble to apply this method directly, since the quasi­
local terms here ( cf. (3. 5), (3. 8), and (3.11)) con­
tain the quantities u~(p), u~(p), and eA.(k), and 
therefore depend on the invariants related to p and 
and k. One can however exploit the specific char­
acter of this dependence. 

To this end we expand the current matrix ele­
ment under consideration 

<mJl(O) Jq; l) == r(q;, q; ~;), 

the R-function 

<m/R(q) /l)u(q) = R(q;, q; ~;) 

and the quasilocal term 

(m/K(q) /l) u(q) = (mJK/l) u(q) = K(q;, ~;). 

in terms of the invariant amplitudes. Here qi are 
the particle momenta in the states Jz) and (m J; 
q is the momentum of the distinguished particle 
(p and k in (3.1), (3.6), and (3.9)); u(q) is a sym­
bolic notation for u~(p), ii~(p), e~ (k); {3i are the 
spin parameters (the quantities u(q) and the 16 
irreducible gamma-matrices). 

Such an expansion has the form[ 14 J 

r(q;,,q; ~;) = ~rn(s;, Sq)Mn(q;, q; ~;), 
n 

n 

(3.12) 
n 

where rn, Rn, and Kn are the invariant ampli­
tudes depending on the scalar products si 
= 'fqiqi+ 1 (the upper sign is chosen if both qi and 
qi+ 1 belong to either JZ) or (mJ) and sq ='fqiq: 
the Mn (qi> q; {3 i ) are covariant spin structures. It 
is clear that Mn(qi; f3d is part of Mn(qi> q; /3i)· 
Therefore the relation 

r(q;,q; ~;)=R(q;,q; ~i)+K(q;; ~;) (3.13) 

can be rewritten in the form 

~[rn, (s;, Sq)- Rn, (s;,sq)- Kn, (si)] Mn, ( q;; ~;) 

+ ~[rn,(s;,sq)-Rn,(s;,sq)]Mn,(q;,q; ~;)=0, (3.14) 

where Mn2 and Mn1 are spin structures which re­

spectively contain or do not contain q (in addition 
to u(q)). 

Hence, on the basis of the independence of the 
Mn (qi, q; {3i) one obtains relations involving the 
invariant amplitudes 

rn, (s;, Sq) = Rn, (s;, Sq) + Kn, (s;), 

(3.15) 

The quasilocal terms can be excluded from (3.15) 
in the same manner as for the scalar field. 

We remark that the noncovariance of R(qi, q; /3i) 
and K(qi; f3i), which contain jJ..l or AJ..l is easily 
taken into account with the help of Eqs. (2.11)­
(2.13). 

2. The use of gauge invariance simplifies con­
siderably the determination of the quasilocal terms 
for processes involving photons. [ 6• 7 J We consider 
as an example the relation (3. 9) for J(O) = 1)(0), 
where 

(mJK11 Jl) = ~dxeikxo(t)(mJ[lJ(O),wA 11 (x)-iA11 (x)]-Jl>. 
(3.16) 

From (2.8) and (2.11) we have 

Computing (of. (A. 7)) 

k(mJKJl) = i ~ dxeikxo(t) 

X ( m I [ lJ (0),- iDA(x) +_;A, (x)] l) 
()t -

= -e (mJ11(0) Jl)- ieky(mJ¢(0) Jl) 

+ i 5 dx eikx{j ( t) (777; / [ 1! ( 0) , h ( x) l-1 L), 

we obtain 

(mJK/l) = -iey(m/¢(0) /Z) 

+ i !_ \ dx eikx{j (t) \m I [l] (0), j,, (x) l-IZ). 
Dk • 

Combining (3.17) and (3.18) we obtain 

(3.17) 

(3.18) 

.X ~ dx eikx{j (t) \m 1 [lJ (0), j 4 (x) l-IZ) = -iew (m I¢ (0) ll) 

f) 
- (6 11v- Ow,<'>v•)--(k (m IRIZ)). 

Dkv 
(3.19) 

The derivation of (3.19) involves (3.17) and the 
gauge invariance condition for (mi1J(O)Ik\ l), but 
does not require leaving the mass shell k2 = 0. 

One can also show[ 6 J that the quasilocal term in 
(3.6) with J(O) = jJ..l(O) is 
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(m I Q,..l z> = Y• ~ dx eiPxl) (t) (m I U,..(O), ¢ (x) 1-ll) 

= -\miK,..Il). 

where R~(p, k) is defined by the relation (3.10). 
2. Four-prong diagrams. Among all possible 

(3.20) four-prong matrix elements only 

4. THE SIMPLEST EQUATIONS. COUPLING 
CONSTANTS 

In this section we consider the equations for the 
simplest matrix elements mainly in order to deter­
mine the number of independent constants which 
characterize the theory. We first remark that inde­
pendent constants can occur as threshold values of 
the invariant amplitudes rn(si, sq) only for spin 
structures Mn({3i) which do not depend on the mo­
menta qi, and q. In the opposite case rn(Sio s ) 
can be expressed directly in terms of Rn(si, s~. In 
addition, gauge invariance implies that photon pro­
cesses are characterized by only one independent 
constant: the electron charge e. 

1. Three-prong diagrams. Consideration of in­
variance properties allows to reduce the totality 
of matrix elements with three "prongs" to the ver­
tices: 

(p_'r'li,..(O) IP-') = uf(p')F,..(p',,p)u-'(p), (4.1) 

(Oj·IJ(O) IP-'; k~) = l';w e,..~o<:D,..(p,k)u-'(P) (4.2) 

for various domains of values of the invariant 
variables. 

One of the two possible relations for (4.1) is a 
special case of (3.1)-(3.3). Expressing everything 
in terms of invariant amplitudes and eliminating 
the quasilocal term, we obtain 

u_r'(p') {y,..Ft(s) + cr,..,.qvF2(s)}u_r(p) 

= uf (p') {-iey,.. + y,.. [Rt(s)- Rt( -m2) 1 

+ cr,..vqvR2(s)}u_r(p), (4.3) 

where q = p'- p, s = pp', e = iF1(-m2), and R1(s) 
is the amplitude of u::'(p')yu:(p) (or of u.::'(p')y4u~(p)) 
in the expansion of R~(p' ,' p). The anomalous mag­
netic moment is not an independent constant here, 
but is determined by 

df.t = F 2(-m2) = R2(-m2). (4.4) , 
We note that in the equation for (Oij~(O)jp'{, p~) 
there appears the constant F 1(m2) f--ie, which can 
also be expressed in terms of e. 

It is simpler to derive the equation for (4.2) 
from (3.19), rather than from (3.14). As a result 
we obtain 

~el<D,..(p, k)u-'(P) = - 1 - cll"-(k) {-iey,.. 
l'2w 12w 

+R,..(p,k)-(6,..v-6,..ollv4) fl~v (kR)}u_r(p}~ (4.5) 

(p_' I T}a (0) I P-, q_) = iL, v(P')F a~vo (p', p, q) u_, fl (p) u_, 6 ( q), 

which describes electron-electron scattering, can 
contribute an independent constant. Indeed, in the 
expansion 

F aflv6 (p', p, q) = S rn ( St, S2, sa) M n, a~y6 (p', p, q; 'V) 
n 

there are five momentum-independent spin struc­
tures 

M~; = 6at~<'~y6, Mp = (ys)af!('Vsha, Mv = (v,..)aB(y,..)va, 

MA = ('Vs'VI')af!(WY~tho, MT = (cr,..v)aB(cr,..v)vo 

(antisymmetrized in {3 and 6) corresponding (in 
the language of the Lagrangian formalism) to five 
possible couplings for an effective contact four­
fermion interaction. The independent constants 
i\.g, i\.p, i\.y, i\.A, and i\.T lead to divergences (in 
perturbation theory) and are eliminated from the 
theory by means of the requirement {3(x) = 0 in 
(2. 7). 

Thus the charge e is the only independent con­
stant involved in the theory. An iteration solution 
of the equations yields the renormalized perturba­
tion theory series. This is verified in [ Gl for 
three- and four-prong diagrams up to the fourth 
order in e. 

Summarizing, one can say that the method of 
deriving equations for the current matrix elements, 
based on the principle of minimal singularity is 
applicable to quantum electrodynamics. It is true 
that the difficulties related to the infrared diver­
gence have not been taken into account-these dif­
ficulties can complicate the problem in a non­
trivial way. [ 14 J Nevertheless, one may hope that 
the axiomatic method in electrodynamics can yield 
interesting results, in particular for low energy 
phenomena. 

The author is sincerely grateful to V. Ya. Fain­
berg for constant interest in this work and to 
E. S. Fradkin for a discussion of the results. 

APPENDIX 

The electromagnetic field tensor F ~ 11 (x) is com­
pletely independent of the longitudinal part of A~ (x). 
This makes it possible to introduce the Landau 
gauge A;(x). Then, in an arbitrary gauge 

A,..(x) = A,..'(x) + fJA(x) I ax,.., 
¢(x) = exp {-ieA(x)}\jl'(x). (A.1) 

Only the transverse part A~(x) describes a real 
physical photon. The longitudinal part 8A(x) /8x 
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(or simply A(x)), can be considered an operator 
acting in a different Hilbert space (than A~(x); 
e.g., A(x) generates the space of "inadmissible 
states"). In any event it is necessary that 

[A;t'(x), A(x') 1- = 0, ['t(l'(x), A(x') 1- = 0. (A.2) 

The equations (2.1) and (2. 2) and the canonical 
commutation relations for A/J (x) are compatible if 

[A (x), A (x') 1- = i I dx2_!_ p2(x2) ,1 (x- x'; x2). J xz 

p2 (x2) = 6(x2)+ 2Mx26(x2). (A.3) 

It follows directly from (A.1)- (A. 3) that 

a 
[AJ.L(x), OA(x')]- = i--D(x-x'), 

OX I' 
[')J(x), OA(x')J- = eD(x -x')')J(x). (A.4) 

Hence we obtain for the currents 

[jJ.L(x), OA(x')l- = 0, 

[Y)(x), OA(x')l-= eD(x-x')Y)(x)+eVD(x-x')')J(x). 

(A.5) 

In computing the quasilocal terms the following 
commutators are used 

[jl'(x), OA(x')]j~1 ,=[jl'(x), OA(x')h=r=O, (A.6) 

[1'] (x), 0 A (x')h=t' =- iey46 (x- x') ')J (.r), (A. 7) 

[1'] (x), 0 A (:r') Jt=t' = -- e6 (x- x') 1'] (x) 

- ey ! -6 (x- x') ')J (x). 
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