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A semiphenomenological theory of the nonlinear properties of ionic crystals is developed. 
The basic assumption underlying the theory is that the adiabatic approximation is valid for 
the analysis of ion movement. The cross-susceptibilities Xabc(w s• wz) and Xabcd(w s• wz, wr) 
are determined over the complete frequency range from the optical to the lowest frequencies. 
The cross-susceptibilities can be expressed in terms of coefficients defined by the electron 
motion at fixed ion positions. In principle these coefficients can be determined from experi
ment or from the microscopic theory. Corresponding estimates are made. 

1. INTRODUCTION 

INVESTIGATIONS of the nonlinear properties of 
crystals have become particularly timely in connec
tion with the development of nonlinear electrody
namics and nonlinear optics. In the case of weakly 
nonlinear media to which we restrict our consider
ations here, the nonlinear electrical properties of 
the crystals can be characterized by the cross

susceptibilities Xabc(w s• wz) and Xabcd(w s' wz. wr) 
in the expansion of the polarization Pa in powers of 
the field (see, for example, [l, 2]): 

P a (t) = 'Xab { W!)Eb { W!) exp { -iw1t) 

+ Xabc ( Ws, W!)Eb (w 8 )Ec(w1) exp [-i { Ws + W!) t] 

+ Xabcd(Ws, Wz, Wr)Eb(Ws)Ec(wz)Ed((J)r) 

Xexp[-i(Ws + W! + Wr)t1 (1) 

where Eb(wz) is the Fourier component of the elec
tric field and where the summation is over repeated 
indices. The majority of the nonlinear effects ob
served experimentally at present-second-harmonic 
generation, parametric transformation, stimulated 
Raman scattering, electro-optic effects, self
trapping, detection, etc.-are connected with the 

tensors Xabc and Xabcd· 
The general properties of the tensors Xabc and 

Xabcd which are not related to specific solid-state 
models have been explained in a number of papers 
(see, for instance,rt-sl). However, in order to ex
plain the frequency dependence of these tensors, 
and the relations between constants appearing in 
different experiments, and for order-of-m!j.gnitude 
estimates, etc., one must take into consideration 
the specific properties of the solid. If one restricts 
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oneself to the nonrelativistic approximation, then 
the contributions to the values of the tensors Xabc 
and Xabcd are due to the electron, phonon, and 
electron-phonon mechanisms. We take no account 
here of spatial dispersion. For the experiments 
mentioned above, as well as for a series of other 
effects in the optical region and in regions of lower 
frequencies, account of spatial dispersion is unim
portant. This is connected with the sufficiently 
good fulfillment of the condition A » a (where A is 
the wavelength of the radiation and a is the lattice 
constant). 

In this paper (Sees. 2-5) we develop a semi
phenomenological theory (in the spirit of 
Placzek's[6l theory of polarizability) of the non
linear properties of ionic crystals. The connection 
of the obtained relationships with the microscopic 
characteristics and mechanisms is discussed in 
Sec. 6. 

2. SEMIPHENOMENOLOGICAL EXAMINATION 

A basic assumption of the following examination 
is the applicability of the adiabatic approximation 
(or Placzek's approximation[6, 7l). In this approxi
mation one can write the Hamiltonian (per unit vol
ume) of a system of ions in an external macroscopic 
field Ea(t) in the form 

p·" 1 1 
H = ~ _2J +-;- w/qiz +-;:- ~ q;, (jj'j") qiqi'qi'' 

j 2 3 jj'j" 

+ 1 ~ ..r.(··t·l/·1//) ~ M (')E - LJ. '*' JJ J J qjqi%"qj'"- LJ a l aqj 
4 jj'j"j"' j 

- __;.._ :2 Ma {ji')Eaqjqj'- \ ~ Ma (jj'j") Eaqjqj'qi" + · • · 
2 .• 3. ··~ 

JJ JJ J 
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Here qj are the normal coordinates of the ion sys
tem describing the optical vibrations with a wave 
vector k = 0, and Pj are the canonically conjugate 
momenta; the summation over the indices j is ex
plicitly separated, and summation over repeated 
indices is assumed. The second and third sums in 
the right-hand part of (2) are connected with the 
anharmonicity of the ion vibrations. The remaining 
terms in the right-hand part of (2) are connected 
with a contribution to the ion lattice energy due to 
the presence of the external field Ea. Such a con
tribution is of the form (see, for example, [S]). 

dH= -PadEa. ( 3) 

Thus, the energy density (2) is equivalent to 
postulating the following dependence of the polariza
tion on the field and the ion coordinates (see, for 
example_E7]): 

Pa =- :~ =r~ Ma(i)qi + 21 ~ Ma(ii')qiqi' 
J n 

1 + 3i ~ Ma(jj'j"} qiqi'qi'' + UabEb + ~ Uab {j)Ebqj 
"jj'j'' j 

1 + 2 ~. Uab (jj') Ebqiqi' + • • • + UabcEbEc 
jj' 

( 4) 

The first three terms in the right- hand side of ( 4) 
are connected with given displacements of the ions 
in the lattice qj. For ionic crystals the term 
Ma(j)qj is much larger than the terms Ma(jj') 

= Ma(j'j), and Ma(jj'j ") due to the deformation of 
the electron cloud resulting from the electron
phonon interaction; a ab and a abc are the suscepti
bilities and cross- susceptibilities of the crystal 
for a given equilibrium configuration of the ions 
X = X 0• These susceptibilities are related with 
allowance for the electron motion only. The terms 
with a ab(j), a ab(jj'), etc., can be related to an ac
count of the electron-phonon interaction, and are 
determined as follows: 

( ') -( aaab(X) ) Uab 1 -
aqi X=X' 

( .. , ( OZaab(X) ) 
Uab ]] ) = ·a a , qj qj' X=X' 

( ') -( 8aab(X)) Uabc 1 - a 
qj X=X0 

(5) 

In writing (2) an essential assumption is the ab
sence of dispersion (frequency dependence) of the 
susceptibilities a ab• a abc• .. .. As is well known, 
such an assumption for the susceptibilities related 
to an allowance for the electron motion only is 
sufficiently well fulfilled in a frequency interval 
from the visible optical frequencies to the very 
lowest frequencies, since the characteristic fre
quencies of the electron motion occur in the ultra
violet region. This is also confirmed experimen
tally (see, for example,[9J). 

Expression (4) relates the polarization with the 
electric field and with the normal coordinates of 
the ion motions. We shall only be interested in the 
connection between the polarization and the electric 
fields [as in relation ( 1)]. Such a connection can be 
obtained if it is taken into account that the qj which 
differ from zero appear themselves as a result of 
the action of the electric fieldn. Thus, for the fol
lowing we must obtain a connection with the electric 
field. The equations of motion for qj are obtained 
from the relation q =- 8H/ 8qj, and according to (2) 
are of the form 

ij; + w;2q; + Vi'ii + ~ <D (jj'j") qi'qi" 
j'j" 

j'j"j'" 

1 + ~Ma(ij')Eaqj' + 2 ~ Ma(jj'j")Eaqj,qj" + ... 
j' j'j" 

1 1 + 2 Uab(j}EaEb + Z ~Uab(jj')EaEbqj' 
j' 

1 + SUabc(j)EaEbEc. (6) 

The damping constants Yj are introduced here 
phenomenologically [they do not follow from (2) ]. 
The damping is due to the account of the interaction 
(due to anharmonicity) of the oscillation k = 0 with 
all the remaining oscillations with k ""'0 (see, for 
example, [to, 11 J). We shall use below the solutions of 
this equation with accuracy up to terms of the third 
order in the field Ea 

(1) (2) (3) 
q;(t) = q; + q; + qj +... (7) 

We shall not write here the rather cumbersome but 
very simply derived formulas for q ~1>, q ~ 2 >, and q ~ 3 l. 

J J J 
We merely note that these expressions together 
with formulas (4) and (1) fully solve the problem of 
the frequency dependence of the tensors Xabc and 
Xabcd in the entire range of frequencies from the 

l)With the exception of ferroelectrics for which there ap
pears spontaneous polarization below the Curie point. 
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optical frequencies to the very lowest frequencies. 
At the same time we have not taken into account 
spatial dispersion and have neglected the frequency 
dispersion of the coefficients a ab• a abc, . . . . Both 
these assumptions are sufficiently well founded in 
the frequency range considered, both theoretically 
as well as experimentally. 

We shall now proceed to an analysis of the ex

pressions for Xabc and Xabcd· 

3. QUADRATIC NONLINEARITY 

From expression ( 4) it follows that terms of the 
second order in the field2> (which we shall now con
sider) are of the form 

p~> = ~ Ma.(j) qf+ ~ Uab(i) qJ!JEb 
j j 

i ""M ( · .,) <t> <t> + E E +-Lj a ]] qj qj' Uabc b c· 
2 jj' 

( 8) 

Comparing ( 1) with ( 4) and ( 6) with ( 7) we arrive 
at the following expressions: 

Xabc ( w., Wt) = Uabc +X abc ( w., wz) + Yabc ( w.,, wz); (9) 

X ( ) _ . ~ $(jj'j")Ma(i)Mb(j')Mc(j") 
abc Ws, Wz - - LJ 

.. ,.,D(wj, Ws + wz)D(wi'• Ws)D(wi",wl) 
JJJ 

(10) 

(11) 

where D(wj, w) = wj- w2 - iw'Yj· Here 1\ is the 

operator of the sum of permutations of pairs of 
indices (ws, b) and (wz, c), and aabc is as prev
iously the cross-susceptibility due to an account of 
the electron motion only with fixed positions of the 
nuclei. In the region of optical frequencies and 
lower it is practically independent of the frequency. 

Expressions (9)-(11) fully determine the non
linear (quadratic) electrodynamic properties of the 
medium in the frequency ranges under considera
tion. We shall dwell in more detail on this asser
tion and we shall show how the components of the 

2 )We recall that for a quadratic nonlinearity to exist it is 
essential that the medium should not have a center of sym
metry. In the entire discussion below it is assumed that 
there is no center of symmetry, i.e, the crystal is, generally 
speaking, anisotropic. 

tensors Xabc(ws, wz) are connected with the ob
served nonlinear effects and how the constants 
appearing in (10) and (11) can in principle be de
termined from experiment. 

The constants Ma(j) are fully determined from 
measurements of the linear electrodynamic char
acteristics. In fact, the usual susceptibility which 
can readily be obtained from ( 1), ( 4) and ( 6) is of 
the form 

"" Ma(j)Mb(j) 
Xab (w) = Uab + LJ 1------. 

. D (wi, w) 
J 

(12) 

Thus the Ma(j) are determined from measurements 
of the dielectric susceptibility of the medium 
E ab(w) = o ab + 47TXab• and in particular by the 
resonance measurements at frequencies w ~ w j for 
which one can approximately write 

( 13) 

The constants aab(j) = Baab/Bqj determine, as is 
well known, [S] the cross section for first-order 
Raman scattering, and can in turn be found from a 
series of experiments on Raman scattering by vari
ous optical lattice vibrations. 

In addition to the constants a ab and Ma(j) ex
pressions (9)-(11) contain the constants aabc• 
.P(jj'j "), and Ma(jj'). These constants must be de
termined from nonlinear experiments. At frequen
cies Ws and wz » wj the nonlinear properties are 
determined by the constant aabc· At present this 
quantity has been determined for a whole series of 
substances (for details see the conclusion where 
the experimental values of this and other constants 
are given). The constants .P(jj'j") and Ma(jj') can 
be determined from measurements of Xabc(ws, wz) 
in the infrared and microwave frequency range. 

We now turn to consider the connection between 
the components Xabc(Ws, wz) and the observed non
linear effects. We shall in turn consider various 
frequency ranges. As has already been noted, at 
frequencies ws, wz, and ws + wz > Wj the nonlinear 
properties are mainly determined by a abc. How
ever, experimentally a dependence (albeit rather 
weak) has been observed of the constant Xabc(w, w) 

determining second-harmonic generation in this 
region on the parameters of the ion system, in par
ticular on the masses of the ions.r12 J Such a depen
dence can be connected in the first place with the 
tensor Y abc which in this instance makes a fre
quency dependent contribution to a abc 

+ Uac(i)Mb(j) ]. (14) 
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On the other hand, in general, the cross-suscepti
bility Yabc(w s• wz) differs appreciably from zero 
and together with a abc determines effects in the 
case when one of the frequencies ws, wz, or ws + wz 
lies in the infrared region of the spectrum or at 
lower frequencies (i.e., the frequency should be 
lower than the frequency wj which lies commonly 
in the infrared region of the spectrum) ; the other 
frequencies can on the other hand be located in the 
entire considered range of frequencies (from the 
optical to the very lowest ones). 

Thus, for example for ws » Wj and wz « Wj the 
tensor Y abc takes on the form 

y ( O)= ~~. Uab(i)Mc(j) abc (!), 2 :LJ .2 • 
j (!) J 

(15) 

Along with the term aabc• this quantity determines 
in particular, as is readily seen, the contribution 
to the linear electro-optic effect3>. The tensor 
Yabc(W s• wz) determines also the contribution to 
the detection effect (ws + wz = 0, ws = -wz = w). 
For w » wj 

Y ( _ )- ~ ~ Ma(i)abc(i) 
abc W, W - 2 LJ .2 • 

j (!) J 

(16) 

One can readily show that the condition 

Yabc(W, -w) = Ycba(W, 0), 

is fulfilled; this condition is a particular case of 
the more general relationship which follows from 
the condition of transparency of the medium 
([ZJ, p. 163; see also[4J). 

Let us now proceed to the case when all the 
frequencies WS, wz, and WS + wzlie in the infrared 
region and at lower frequencies. The nonlinear 
properties are in this case determined along with 
0! abc and Y abc by the tensor Y abc(w S' wz). This 
tensor is determined by the anharmonicity of the 
vibrations of the nuclei .P(jj'j") and by the deforma
tion of the electron cloud Ma(jj'). Although, as 
shown in Sec. 6, the tensors a abc, X abc, and Y abc 
have at frequencies ws, and wz « wj according to 
a priori estimates the same order of magnitude, 
the experimental values of Xabc [t3] can be larger 
than a abc and Yabc at all frequencies Ws and 
wz :S wj. In this case Xabc(ws, wz) fully determine 
the nonlinear properties of the medium in this reg-

3lThe linear electro-optic effect is determined by the de
pendence of the dielectric permittivity on the constant 
( (i) z= 0) electric field 

Bab(ro,E.)-1 Bab(ro,0)-1 
Xab{ffi, Ec) = ' = + 2?(abc(ffi, O)Ee. 

4n 4n 

ion. The theory presented above predicts a definite 
frequency dependence of these properties, although 
it does not determine the value of the parameters 
.P(jj'j") and Ma(jj'). According to this theory, they 
can be chosen in such a way that the predicted fre
quency dependence should be fulfilled. 

4. CUBIC NONLINEARITY 

From expression ( 4) we obtain for the terms 
cubic in the field 

P~3) = UabcdEbEcEd + ~ Ma(j) q~3) + ~ Ma(jj') qy> q):> 
jj' 

+ 1 ~ M ( .. ,.,) (1) (il (1l + ~ ( ')E <2> 3! .~, a ]J] q; q;• if/' '"? Uab ] bqi 
)J1 J 

+ ~ ( .. ,) E (1) (1) + ~ ( ') E E (1l LJ Uab lJ bqj qi' LJ Uabc ] b cqj , 

" j 

(17) 

where a abed is the cross-susceptibility tensor and 
takes into account the motion of the electrons with 
fixed nuclei. Using the solutions of Eq. (6) and the 
definitions (1), we are able to determine all the 
components of the tensors of the cross-suscepti
bility Xabcd(w s• wz, w rl. Because of the lack of 
space we shall not write out here the rather cum
bersome expressions for these tensors and will 
refer the reader to[141, where all these components 
are written for a more general case which also 
takes into account vibrations with k ;<' 0. Here we 
shall only consider certain particular cases. 

With the aid of the tensor Xabcd(w s, w1, w r) it is 
possible to describe, in particular, effects of fre
quency tripling in the optical region Xabcd(w, w, w) 
~a abed• in the infrared and in the microwave fre
quency regions, the quadratic Kerr effect 
Xabcd(w, 0, 0), the detection effect in a constant 
field Xabcd(w, -w, 0), and a number of other ef
fects. We shall write out explicitly the components 
of the tensor describing the contribution to the 
stimulated Raman scattering4>. 

(18) 

where w1 - w2 ~ wj. The last condition deducts one 
term from the sum over j. The same tensor (18) 
with the entire sum over j determines (together 
with a abed) the so-called high-frequency Kerr ef
fect: Xabcd(w, -w, w). 

Finally, we bring the rather simple formula 

4 lFor a description of the stimulated Raman effect with 
the aid of the tensor Xabcd see [1 ' 2]. 
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governing the second-harmonic generation in the 
presence of a constant field (at an optical frequency 
w > wj): 

1 "" Uabc (j) M d (j) 
Xabcd (ro, ro, 0) ~ Uabcd + 3 L.J .2 • 

j (J)J 

(19) 

We note that it is possible to determine the quan
tity CYabc(j) (which also determines other effects) 
experimentally from measurements of the doubling 
of the optical frequency in a field of infrared fre
quency w 1 ~ wj. The tensor determining such a 

process is of the form 

( . ) 1 Uabr (j)Md (j) 
Xabcd ro, ro, Wj ~ -3 . . 

- £WiYi 
(20) 

Hence one can determine aabc(j) experimentally 
from measurements of Xabcd(w, w, w j). 

The formulas giving Xabcd(ws, wz, wr) in terms 
of the parameters Ma(j), CYab(j), wj, <I>(jj'j") etc., 

are in the general case rather cumbersome. How
ever, for certain symmetry classes of a crystal 
these formulas can be appreciably simplified. Thus, 
for cubic crystals of the NaCl type the tensor 
which governs the nonlinear properties of a crystal 
in the frequency range in which at least one of the 
frequencies ws, wz, and wr is larger than the infra
red eigenfrequency, is of the form 

Pa 1 ""Uab(jj')Mc(j)Md(j') 
Xabcd(Ws, Wz, Wr) = Uabcd + 312 L.J D ( . )D( ., ) 

. ii' ro 3,roz w3 ,wr 

(21) 

In the case of NaCl there is one doubly degener
ate optically active (transverse) branch of lattice 
vibrations wj = w0, i.e., in the coefficient Ma(j) the 

indices j and j' take on two values. In this case the 
quantities a abO), <I>(jj'j"), and Ma(jj') vanish5>. As 
regards the quantity a ab(jj'), it can be determined 
experimentally from intensity measurements of the 
second-order Raman effect [see, for example, [7) 

where the quantity a ab(jj') is denoted by P ab(jj ')]. 

5. TEMPERATURE EFFECTS 

The expressions obtained for the cross-suscep
tibility do not depend on the temperature explicitly. 

5 )We note that although the NaCl crystal has a center of 
symmetry, the quantity aabc(j), unlike a abc' does not vanish 
if the index j refers to the optical branches of the spectrum 
of lattice vibrations. It should be noted in general that the 
symmetry properties of aabc(j), aab(jj '), etc. are respectively 
determined both by the symmetry of the initial tensors aabc 

and aab and by the symmetry of qi and qiqj '· 

The temperature dependence can appear in these 
expressions when the temperature dependence of 
the coefficients Ma(jj'), and CYab(j), etc. is taken 
into account. However, these coefficients deter
mined by the electron motion depend very weakly 
on the temperature within a rather broad range 
(from 0°K up to the degeneracy temperature). An 
appreciable temperature dependence appears near 
the ferroelectric transition point. At this point T c 
one of the characteristic frequencies of optical 
phonons vanishes as [15 J 

wl = A(T- Tc) (22) 

and the main temperature dependence may in all 
the expressions derived above be connected with 
this. 

At the same time there is a series of effects 
which are essentially connected with an account of 
the temperature motion (or of zero-point fluctua
tions). First we obtain an expression for the cross
susceptibility tensor that determines the second
order stimulated Raman effect for definite vibra
tions qj(k) and qj'(-k). 

We note that, unlike previously, in order to in
vestigate the second-order Raman effect one must 
consider the normal coordinates of the lattice qj(k) 
also for k >" 0 (see, for example, [7)) . The secono
order Raman scattering is given, as is well 
known, [7 J by 

( k -k\_( 82aab(X) ) 
Uab 1. J- . 

j' 8qj (k) 8qj'(- k) X=X' 

Therefore, to obtain the sought tensor we separate 
from ( 2), ( 4) , and ( 6) the terms connected with a ab: 

1 (k -k) Pa=2~Uab . . 1 (q;(k)q;•(-k))Eb, 
kjj' J 1, . 

(23) 

(qi (k)) + w; (k) (q; (k)) + Yi (k) (q; (k)) 

( k-k) 
= i_ ~ acd . ., (q ., (k)) EJ;;d· 

2 kj' ] 1 J 
(24) 

Here we consider the problem with the aid of 
quantum theory. In this case the quantities entering 
in ( 2) (except for the given fields) are understood 
to be operators, and mean values of these opera
tors ( qj ) and ( qj) enter in ( 4) and ( 6). 

We shall further assume (and this corresponds 
to the second-order Raman effect) that EcEd con
tains a harmonic component with a frequency close 
towj(k) +wj,(k). Let 

(25) 

We shall assume that this condition is fulfilled only 
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for one pair of branches j and j', i.e., we shall not 
consider the degenerate case. 

Equation (24) describes the parametric excita
tion ( qj ) and if the fields Ec and Ed are small 
(below the excitation threshold), then ( qj) = 0. 
However, at the same time (qj(k)qj,(-k)) differs 
from zero and has a part which is connected with 
the fields Ec and Ed. 

To determine (qj(k)qjr(-k)), we shall start with 
the Hamiltonian 

~ 1 (k -k) H = LJ liw(kJ)nJ(k)- 4 ~ Ucd . ., 

kj kjj' ' ] J 

(26) 

Introducing further the creation and annihilation 
operators aj(k) and aj(k), we have 

n1(k)= a1+(k)a1(k), 

q; (k) q1, ( -k) = 1/ 2 /i [w 1 (k) wi' (k) ]-'/,[a;+(-k) a1,+ (k) 

+ a1(k)ai'( -k) + a1 (k)a;,+(k) + a1+( -k) a;,( -k)]. 

(27) 

From the Hamiltonian (26) one can readily write 
the equations for the mean-square quantities with 
account of dissipative processes6>; we do not cite 
these here because they are cumbersome. After 
introducing the notation 

(a;(k)ai'(-k)) =A~' exp [-i(wl- wz)t], (28a) 

R = _1Tjjj'Ucd (k -k) Ec(Wi)Ed(--w2) , 
2 j' j lWJWj' 

If the dispersion law for the optical phonons is of 
the Einstein type, i.e., wj(k) does not depend on k 
and all the other coefficients also depend weakly 
on k, then the summation over k reduces to multi
plication by N where N is the number of states in 
the band. 

Expression (31) depends on the amplitudes of 
the fields Ec and Ed and thus takes into account the 
"saturation effect." For kT » nwj Planck's con
stant cancels out. 

In an analogous way the term Main (2), (4), and 
(6) leads to "parametric excitation" (qj(k)qj'(-k)) 

proportional to the first power of the field Ez(w) if 

6 )In [2] (Sec. 8) it is shown how such equations can be 
written for the general case. 

(28b) v1(k) + w(k) 
T]jj' = ' l'v; (k) Vi' (k) 

one can obtain solutions of the system of equations 
for the mean-square quantities 

(n1(k)) + (ni'(k)) + 1 = (\nl(k)) + (nj'0 (k)) + 1) 

x [w; + w;, -(wt- w2)J2+ [v; +xL 
[w; + w;'- (w1- w2)]2 + [vJ + wP- R 2 ' ( 29) 

Ali'= R ( (n1o (k)) + (n;,O(k)) + 1) ( TJJJ') -1 

X Wj + Wj'- ( Wt- Wz) + i ['\';+'Vi'] 

{wj + w;,- ( u>t- w2) ]2 + [v; + wF- R2 
(30) 

Here we have discarded nonresonant terms and 
taken the resonance condition ( 25) into account; 

( hw· )-1 
(nl(k)) = exp-J -1 

kT I 

is the average number of photons in a state of 
thermodynamic equilibrium. In Eqs. (28)-(30) and 
everywhere below in this Section the argument k of 
the functions wj(k), wj'(k), 'Yj(k) andyj'(k) has been 
left out for brevity. 

We note that the fact that the denominators in 
expressions (29) and (30) vanish corresponds to the 
condition of parametric excitation of the excitations 
qj(k) and qj'(k). Using (23), (27), (28), (30), and 
definition (1), we obtain an expression for the 
cross-susceptibility tensor giving the second-order 
stimulated Raman effect 

(31) 

(32) 

One finds readily that (qj(k)qjr(-k)) is now given by 

the same equations (27) and (28)-(30), but with the 
substitution 

Thus 

(n;(k)) + \nr(k)) + 1 = (\n}(k)) + \nf,(k)) +1) 

X ~! + Wj'- W]2 + [V; + '\'i']2 

[Wj + Wj'- w]2 + [v; + w]2 -IR'I2' (35) 

Aii' = R' ( <nl (k) > + (n;P (k)) + 1) (TJw)-t. 

[w; + w;•- w] + i[v; +'Vi'] (36) 
x [w; + WJ'- ,w]2 + [v; + '\';•]2 -IR'I 2 



598 GENKIN, FAIN and YASHCHIN 

Expressions (34)-(36) and the relation 

1 ~ (k -k) 
Pa =2 LJ Ma~. ., (q;(k)qi'(-k)) 

kjj' l l 
(37) 

determine the "linear" susceptibility with account 
of the saturation effect 

(38) 

Analogously one can consider second-order ef
fects connected with ( qj(k)qy(- k)), (35), ( 36), and 

the relation (23), as well as with (qj(k)qj,(-k)), (29), 

(30), and relation ( 37). Because of lack of space we 
shall not dwell on these effects. 

6. MICROSCOPIC TREATMENT. CONCLUSION 

The theory presented above makes it possible 
to relate the cross-susceptibilities which determine 
various effects with one another. All the quantities 
Ma(j), Ma(jj'), aab(j), etc. can in principle be de
termined experimentally. Thus, for example, all 
a abO) are determined by a series of Raman ex
periments, a ab(jj') can be determined from the 
second-order Raman effect, and Ma(j)-from a 
series of linear resonance experiments on absorp
tion. In general the selection of a given branch j 
and of the coefficients connected with it can be 
achieved by a corresponding resonance experiment. 
Of course, for each given crystal class the number 
of independent coefficients Ma(j), Ma(jj'), etc. can 
be appreciably smaller than in the general case. 
After the corresponding coefficients are determined 
experimentally, one can, using the obtained rela
tions in principle, determine the tensors 
Xabc(ws, wz) and Xabcd(ws, wz, wr) for all values 
of the frequencies ws, wz, and wr from zero up to 
the visible portion of the optical range. 

We shall present numerical values obtained from 
experimental data for certain quantities determin
ing the tensors Xabc(ws, wz) and Xabcd(ws, wz, Wr). 
Thus for NaC1[7) M(j) = 2-1/4w(j)(E0 - E00) 112 ~ 4 
x 1013 sec-1• The quantity aab(j) is given in the fol
lowing way in terms of the cross section for spon
taneous Raman scattering Q: 

. -{ 3 Q'J.}w(j)N[t-ex (- fiw(j) \11'1' 
Uab(J)- 64:n;5 It p kT J J. 

For nitrobenzene[4] for the 1345-cm-1 Raman line 
aab(j) ~ 1.5 x 107 cgs esu. 

The values of a ab• a abc, Ma (j), etc. can also be 
found from the microscopic theory. In the micro
scopic treatment one usually determines the char
acteristics connected with the local (or acting) 
field. The macroscopic characteristics aab• aabc• 
etc. can be obtained from the microscopic only 
after the connection between the macroscopic field 
and the local field has been established. For non
linear media this connection can be rather compli
cated (see, for example, [ts]). We note further that 
not only constants of the type a ab and a abc are re
normalized on going over from the local to the 
macroscopic field, but also the characteristic fre
quencies wj and the anharmonicity constants 

<I>(jj'j") and <I>(jj'j"j"'). (For the characteristic 
frequencies this assertion is well illustrated in the 
book[7), Sec. 9.) In other words, the characteristic 
frequencies of the free vibrations of the ions and 
the anharmonicity coefficients differ depending on 
what is assumed to vanish: E = 0 or Eloc = 0. In 
fact, the latter condition imposes a limitation on 
the "free" ion vibrations, since Eloc itself depends 
on the polarization and consequently on the coordin
ates of the characteristic vibrations qj for ionic 
crystals. 

The basis of the microscopic treatment is the 
Hamiltonian of the system of electrons and phonons 
with account of the electron-phonon interaction 

kj pn 

kpj n, n' 

In expression (39) aj(k) and aj(k) are the Bose crea
tion and annihilation operators of the phonon of the 
j branch of the vibrational lattice spectrum of fre
quency wj(k) and with a quasimomentum nk; c~(p) 
and cn(P) are the Fermi operators of creation and 
annihilation of an electron with energy En(P) where 
n p is the electron quasimomentum, and n is the 
number of the band; Ankn: is the electron-phonon 

PJ interaction constant. 
Because we are considering ionic crystals, we 

shall consider the interaction of an electron with 
longitudinal optical (polarization) phonons which is 
stronger than the interaction with other types of 
phonons. The expression for the electron-phonon 
interaction constant with longitudinal optical pho
nons is of the following form: 

A nn' ·(6nn'+g '() )[ 2:rtfiw;(k)e2 ( 1 1 )l'/, 
kPj = L -- nn P \1---

k V €co eo (40) 

In Eq. (40) gnn' (p) is the matrix element of the 
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operator Q characterizing the interband transitions 
(the definition and properties of this operator are 
given in the review[17 J). We note that in order of 
magnitude nnn' (p) ~a where a is the lattice con
stant. 

It should be noted that the above interaction con
stant describes in addition to the Froelich inter
action also the interaction of electrons in various 
bands (the term with nnn') with a phonon; an anal
ogous expression for the electron-phonon interac
tion constant with acoustic phonons has been ob
tained in the work of Semenenko. [1s] We note that 
unlike Ak~j the constant Akn~ contains no singular-
ity for k - 0. PJ 

Starting from the Hamiltonian (39), one can de
termine all the quantities a ab• a ab(j), etc. by the 
method of many-time Green functions in analogy 
with what was done in[19 •20 J. Because of the lack of 
space we shall not present this derivation and the 
obtained expressions here. We merely note that for 
ws, wz, and wr «we (where we is the characteris
tic eigenfrequency of the electrons) these quantities 
do not depend on the frequency and we shall present 
estimates of them. Further we shall (in the esti
mates) express all tensors in terms of the· estima
ted values of the tensors aab• a abc• and a abed con
nected with allowance for pure electron motion. 
Estimates of these tensors are of the form (see, 
for example, [21 J) 

( 41) 

since nwe ~ e2/a; 
N e3a3 a2 1 

Oiabc ;::::; V n2w; - -c- = Eat ' ( 42) 

where Eat = ea-2 is the "atomic" field, and in order 
of magnitude it is 106-107 egs esu, 

N e"'a"' a• 1 
aabcd ~ -V ~ "" 2 = E-----z . 

lL We e at 
(43) 

We shall now write estimates for all the tensors 
entering in our considerations: 

M (j) "" Wo, M (jj') "" UabcWo2, M (jj'j") "" UabcdWo3, 

Uab (j) "" WoUabc, Uab (jj') "" Wo2Uabcd, Uabc (j) "" WoUabcd, 

<P (jj'j") "" Wo3Uabc. <D (jj'j"j'") "" Wo4Uabcd, 

where w0 is the characteristic frequency of the ion 
motion. 

In these estimates we neglect in essence the dif
ference between the local and macroscopic charac
teristics. This corresponds to the approximate 
value of the statistical dielectric permittivity 
Eo ~ 1. In such an estimate we immediately find that 
at low frequencies w s, wz, w r « w 0 the tensors 

Xabc• Yabc Rj aabc• while Xabcd• Yabcd• Zabcd• ... 

~ a abed. However, from experiment it is known 
that the ion motions make, generally speaking, a 
greater contribution both to the linear and nonlinear 
properties of ionic crystals. Thus, for example, 
the dielectric constant of potassium dihydrogen 
phosphate (KDP) Eo~ 20, whereas Eoo = n2 ~ 2[22 ] 

(the latter quantity is connected with the electron 
contribution only). The measurements carried out 
by one of the authors[13 ] on second-harmonic gen
eration in the ultrahigh frequency range (w « w0) 

on a KDP crystal yield a value of X abc (w, w) 
~ 10-5 cgs esu instead of 6 x 10-9 cgs esu[23 ] in the 
optical region. 

Let us now present estimates of the temperature 
effects of Sec. 5. The tensor describing the second
order Raman effect at frequencies wj ± wj' is of 

the order w0/we compared with the tensor describ
ing the first-order Raman effect of the vibrations 
w j. An analogous absorption described by the ten
sor ( 38) at a frequency w j ± w j' is smaller by a fac-

tor w 0/ we than the resonance absorption at a fre
quency wj. Saturation is determined by the ratios 
R/'yj and R' !Yj respectively. These quantities are 
of the order of magnitude 

R wo ( E )2 Wo 
- "" Uabcd E2 - "" -.- --, 
Yi Yi Eat · Yi 

( 44) 

R' Wo ( E) Wo 
-"" UabcE-"" - -. 

Yi Yi Eat Yi 

( 45) 

For example, for Yj ~ 10-2 w0 saturation of ab

sorption at frequencies wj ± wj' will take place in 

fields of the order of E ~ 10-2Eat ~ 10-6 V/cm. In 
the latter estimates we have assumed that n~ ~ 1. 
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