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A theory of the thermal conductivity of thin dielectric plates is developed, taking into ac
count the fact that the scattering of phonons by the boundaries of a sample becomes nearly 
specular when the temperature is reduced. The results depend strongly on the relationship 
between the characteristic dimensions of the roughness of boundary, the thickness of the 
sample, and the bulk parameters of the dielectric. 

IT is known that the principal reason for the 
thermal resistance of thin samples at sufficiently 
low temperatures is the scattering of phonons at 
crystal boundaries. It is usually assumed that the 
scattering of phonons is diffuse. Because the pho
nons lose their ordered motion in the diffuse scat
tering process, the effective mean free path of the 
phonons l eff is of the order of the thickness of the 
sample d. Since the order of magnitude of the 
thermal Conductivity is K ~ zeffsC ( S iS the 
velocity of sound and C is the specific heat), and 
since at low temperatures C ex: T3, we find that 
K ex: dT3 in the diffuse scattering case (cf. [t]). 

Such a conclusion is justified when the average 
phonon wavelength AT is much shorter than the 
characteristic dimensions of the surface rough
ness fJ. However, AT ~ fis/T ( fiw = sh!A T ~ T) 
and, therefore, when the temperature is lowered a 
boundary becomes smoother in relation to the 
scattering phonons and, consequently, zeff should 
increase when the temperature is loweredY We 
shall show here that allowance for this change 
alters considerably the temperature dependence 
of the thermal 9onductivity. The final result de
pends on the relationship between TJ, d, and the 
bulk parameters of the dielectric (cf. Figs. 1 and 
2). 

We shall now analyze the problem quantitatively. 
We shall consider the thermal conductivity of a 
single-crystal plate of thickness d, which is small 
compared with the mean free path l for the scat
tering in the interior: d « l . In practice, this in
equality may be satisfied at low temperatures, 
when the frequency of collisions between phonons, 
accompanied by umklapp processes, is small com-

1>Heat is transported in a thin plate by "glancing" pho
nons, traveling almost parallel to the boundary. The scattering 
of these phonons becomes nearly specular when AT « TJ· 

pared with the frequency of normal collisions. 
Therefore, the mean free path l is related either 
to normal collisions or to the scattering of pho
nons by microscopic lattice defects. We shall also 
assume that the phonon dispersion law is linear 
and isotropic: fiw = sq ( q is the phonon momen
tum). 

The mechanism of interaction of phonons with 
the boundary of a sample is important for any 
further analysis. This problem has been con
sidered by Ziman [2] when the phonons are incident 
normally on a boundary, on the assumption that 
the roughness of the boundary is distributed in 
accordance with the Gaussian law. 

Ziman's treatment can be generalized without 
difficulty to an arbitrary angle of incidence J., and 
gives the following result for the probability P of 
specular reflection of phonons: 

p = exp (- 4:n:2T)2J.. -2 cos2 tt) ' 

where the angle J. is measured from the normal 
to the surface. 

( 1) 

If we select the z axis to be perpendicular to 
the surface of a film and the x axis to lie along a 
temperature gradient, the linearized transport 
equation for the distribution function n = n0 

+ g [ n0 ( w, x) is the equilibrium value of the dis
tribution function at a given temperature and 
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g ( q, z) is a small correction] will have the form 
ag ano ~ 

Vzaz + Vx\IT -----aT= Jg, (2) 

where J is the collision operator. Equation ( 2) 
should be supplemented by the boundary conditions 
(a P-th fraction of phonons is reflected specularly 
from the boundary): 

g(q,d)=Pg(q',d), q,<O, (3) 

g(q,- d) = Pg(q',- d), qz > 0, 

where q' = ( CJx, qy, -qz ), and 2d is the thickness 
of the plate. 

Equation (2) is a complex integra-differential 
equation, which cannot be solved in its general 
form. However, it is known that transport pro
cesses in thin films (as in the anomalous skin 
effect) are governed mainly by the action of the 
so-called "glancing" quasi-particles incident al
most parallel to the surface. [3•4] The quantity g 
is a critical function of the angle J., and we can 
introduce a relaxation time Jg =- g/T. However, 
in the present problem, the relaxation time ap
proximation is not always justified; we shall con
sider this point again. After this substitution, Eq. 
(2) simplifies: 

ag g Bno 
Vz--+- =- Vx\IT-. -. (4) 

Bz ~ BT 
Bearing in mind that the thermal flux is 

U x = : 3 ) liwvxgdq, 

we obtain, by solving Eq. (4) with the boundary 
conditions (3) and subsequent averaging of Ux over 
z: 

00 ' 

_ 2:n:T3 ~ ) Ux =\IT-- dw du(1- u2)l 
h3s2 

0 0 

X 1---
/ [ u (1- e-au') (1- e-kiu) ] w~ew 

k 1- exp (- au2- k/u) (ew -1)2' 

In this formula, the following notation is used 

( 5) 

w = liw/T, u = cos 8, k = 2d/l, a = 4:n:2tNA,2• ( 6) 

Using the fact that a and k are power functions 
of w, we can easily show that, when the integra
tion is carried out with respect to w in Eq. (5), 
the main contribution is made by w ;:::: 1. From now 
on, we shall understand a and k to be the ''tem
perature" values of these quantities, taken at 
w ;:::: 1. In this approximation, the result (5) may 
be written in the form 

( 7) 
Here 

C = 12/5:n:'N (T /8)3, 
' ( 8) 

3 ~ [ u (1-e-au') (1-e-k'u) J zeff =-l du(1- u2) 1-- . 
2 k 1- e-au'-k/u ' 

0 
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where N is the number of atoms per unit volume 
and 8 is the Debye temperature. 

We have shown that the relaxation time approx
imation is justified if g is a critical function of 
the angle J.. Using the explicit expression for g, 
we can easily see that for this approximation to 
apply we must have k « a, and consequently Eq. 
( 8) is valid only when this inequality is satisfied. 

Since the integral cannot be used in its general 
form, we shall consider the most interesting 
limiting cases, assuming that k « a (and obvi
ously k « 1). 

When a k2 » 1, we find after simple calculations 

zeu ~ %dln(Z/2d). ( 9) 

This agrees (to within an unimportant logarithmic 
factor) with the results of Casimir, (i] which is as 
expected because u ;:::: k for the glancing phonons 
and, according to Eq. (1), the probability of specu
lar reflection P ~ exp (- ak2 ) tends to zero for 
such phonons. 

In the other limiting case, a k2 « 1, when the 
integral in Eq. (8) is being calculated the integra
tion range can be conveniently split into three 
intervals, in the first of which au2 « 1, in the 
second au2 + k/u « 1, and in the third k/u « 1 
(the conditions ak2 « 1 and k « a ensure that 
these intervals overlap). The result has the form 

zeff 2;; 3;3z ( : )"'. ( 10) 

The results obtained above are valid for 
k « a. In thin samples, we can also have the case 
a « k « 1. It follows from this inequality that the 
mean free path of any phonon scattered diffusely 
by the boundaries in a film is much greater than 
l: 

d d 
--~-'>l. 
1-P au2 

(11) 

In other words, a phonon loses its glancing nature 
earlier if it suffers diffuse scattering. Clearly, 
under such conditions, the glancing phonons cannot 
play a distinct role and, therefore, we cannot in
troduce a relaxation time and cannot solve the 
problem exactly. However, qualitatively correct 
results can be obtained from the following simple 
considerations. (It should be remembered that 
normal collisions conserve momentum and, there
fore, they of themselves do not give rise to a 
finite thermal conductivity.) 

If the scattering by local defects predominates, 
then, as clearly follows from Eq. ( 11), the influ
ence of the boundaries can be neglected and the 
sample can be regarded as bulky up to a ~ k: 

zeff ~ l. (12) 
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As expected, this result follows from Eq. (8). 
In sufficiently pure samples, the normal colli

sions predominate and their role reduces to mak
ing the phonon distribution isotropic. A more de
tailed analysis shows that in this case phonons 
traveling along all directions make approximately 
the same contribution and, therefore, 

zaeff ~ d/ a. ( 13) 
Let us now gather together all the results ob

tained so far. We recall that, when T « ®, the 
mean free path in normal collisions is l N 
~ l e ( ®IT ) 5 and in collisions with local defects it 
is Zi ~ l 0 (®IT )4; the orders of magnitude are 
le ~ aMs21®, l 0 ~ale, where M is the mass of 
an atom, a is the lattice constant, and c is the 
concentration of defects. We should mention also 
that, according to Eq. (6), a~ (7JTia®) 2 and 
k ~ d/l. 

First, we shall consider first relatively high 
temperatures, for which l ( T ) :S d. 

1. We shall begin with "impure" samples in 
which scattering by defects predominates; more 
exactly, when l i ~ d, l N » d. There are two pos
sible cases. 

A. If a ;;::. 1 when l i ~ d, then, according to 
Eqs. (7), (9), and (10), 

%'~ {
dT3, 

d'I•T-'h, ak2 ~ 1 . 
These dependences are shown in Fig. 1a. The law 
K a: 1/T corresponds to a bulk sample. The tem
perature T1 ~ ® ( al 0 l77d)1/ 5 is given by the condi
tion ak2 ~ 1. 

B. If a « 1 when li ~ d, then, according to 
Eqs. (12) and (10), 

x- { T-1, 

d'iaT-'1•, a>k · 
In Fig. 1b the temperature Ti ~ ® ( 71l 0 I ad) 1/ 2 is 
found from the condition a ~ k. 

2. In the case of relatively pure samples (when 
zN ~ d and li »d), we also have two possible 
cases. 

A. If a ~ 1 when zN ~ d, then, according to 
Eqs. (9) and (10), 

{ dT3, 
x- d'isT-1 

' 
The exponential rise of K ( T ), shown in Fig. 

2a, is due to umklapp processes under those con
ditions when the sample can be regarded as bulky. 
The dependence K ::o d2T8 is associated with the 
hydrodynamic mechanism of thermal conductivity, 
which applies when d »zN » d21zU, where zU is 
the mean free path for phonon-phonon collisions 
accompanied by umklapp, zU » zN (cf. a paper of 
one of the present authors [5]). The temperature is 

T T/ T 

FIG. 2. 

T 2 ~ ® (alei7Jd)11 3 • When the temperature is re
duced, collisions with defects become more likely 
than normal collisions. In plotting the curve, it 
has been assumed that this occurs only in the re
gion ak2 « 1. 

B. If a « 1 when zN ~ d, then, according to 
Eqs. (13) and (10), 

x -{dT, a~k. 
d''•T-1, a>k 

Figure 2b shows dashed the range in which zN 
« d « l U and a « 1. This case requires special 
treatment, which has not yet been carried out. 
The temperature is T2 ~ ®(7Jlelad)11 3• 

Under experimental conditions, cases 1A and 
2A are easier to realize. For example, case 2A 
is realized when d ~ 10-2 em, 11la ~ 102 and 
c :S 10-6; the temperature is T 2 ~ ®110. Cases 
1B and 2B are possible only in bulky plates with 
very smooth surfaces (for a typical dielectric, 
these cases require 111 a :S 10 and d ~ 0.1 em). 

In conclusion, we note that the main results ob
tained are not directly associated with the expres
sion (1) for the probability of specular reflection 
P. In fact, it is evident from general considera
tions that P is an even function of the parameter 
z = 7JU/A, where P ( z « 1) ~ 1 - yz2 and 
p ( z » 1)- 0, 'Y > 0. 

1 H. B. G. Casimir, Physica 5, 495 (1938). 
2J. M. Ziman, Electrons and Phonons, Cam

bridge University Press, 1960 (Russ. Transl., IlL, 
1962). 

3 M. Ya. Azbel' and~. A. Kaner, JETP 32, 896 
(1957), Soviet Phys. JETP 5, 730 (1957). 

4 M. Ya. Azbel' and R.N. Gurzhi, JETP 42, 
1632 (1962), Soviet Phys. JETP 15, 1133 (1962). 

5R. N. Gurzhi, JETP 46, 719 (1964), Soviet 
Phys. JETP 19, 490 (1964). 

Translated by A. Tybulewicz 
101 


