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The fluctuations and scattering of slow neutrons in ferromagnets are investigated. Expres­
sions for correlators of fluctuations of quantities characterizing the ferromagnet (e.g., mag­
netic field strength, magnetic induction, magnetic moment, density, displacement vector) 
are derived near the ferroacoustic resonance point as well as far from it. It is shown that 
the correlation functions possess sharp maxima near the frequencies of the natural oscilla­
tions of the crystal, i.e., of the spin and sound waves. Far from ferroacoustic resonance the 
fluctuations of the magnetic quantities (magnetic field strength and induction, magnetic 
moment) are large on the spin waves whereas fluctuations of the non-magnetic quantities 
(density, displacement vector) are large on the sound waves. Fluctuations of magnetic as well 
as nonmagnetic quantities are great near ferroacoustic resonance. Scattering of slow neu­
trons in a ferromagnet is examined, taking into account the interaction between the magnetic­
moment oscillations and elastic waves. It is shown that on approaching the ferroacoustic­
resonance point two closely spaced maxima appear in the neutron scattering differential 
cross section, instead of a single pronounced maximum due to neutron scattering by the spin 
wave. The coupling between elastic and spin waves manifests itself also in the scattering of 
slow neutrons by acoustic vibrations. The scattering cross section in this case may be 
several times greater than for an ordinary (non-ferromagnetic) crystal. 

INTRODUCTION 

AS is known, when slow neutrons pass through 
condensed media sharp maxima appear in the 
spectrum of the scattered neutrons as a result of 
the possibility of propagation of weakly-attenuated 
oscillations in these media. Because of this the 
scattering of slow neutrons is one of the most im­
portant methods for the study of the properties of 
condensed media and, in particular, of their en­
ergy spectra. 

In this paper we consider the scattering of slow 
neutrons in ferromagnetic crystals. In such 
crystals weakly-attenuated oscillations of two 
types are possible: acoustic and spin waves. A 
voluminous literature (see the monograph by A. 
Akhiezer and Pomeranchuk [i)) is devoted to the 
interaction of neutrons with acoustic vibrations 
(in ordinary, magnetically-ordered crystals). A 
large number of papers have been concerned with 
the interaction of neutrons with spin waves (see 
the review by Izyumov [2) ). In these papers, how­
ever, the coupling between the spin and acoustic 
waves is not taken into account. In many cases 
the neglect of this coupling is actually justifiable, 

since the dimensionless parameter t = f2pJ..t~s- 2 is 
small ( p is the density of the ferromagnet, J..to is 
the equilibrium value of the magnetic moment per 
unit mass, f is the magnetostriction constant, and 
s is the speed of sound); in order of magnitude, 
t f:::: 10-4-10-6• 

Nevertheless, in spite of the smallness of the 
parameter t, both branches of the oscillations 
turn out to be strongly coupled near ferroacoustic 
resonance (A. Akhiezer, Bar'yakhtar, and Petet­
minski1 [3)). This, as is shown in this paper, can 
significantly change the character of the neutron 
scattering in the resonance region. Namely, upon 
approaching the point of ferroacoustic resonance 
there will appear in the differential neutron scat­
tering cross-section two very closely spaced 
maxima, instead of a single sharp maximum due 
to the scattering of neutrons by spin waves. 

In the non-resonant region the coupling between 
spin and acoustic waves is particularly well mani­
fested when neutrons are scattered with excitation 
or absorption of acoustic vibrations. We shall 
show that the magnetic-moment oscillations that 
accompany the acoustic wave give a significant 
contribution to the cross section for scattering of 
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slow neutrons by sound vibrations; hence the 
cross section for neutron scattering by acoustic 
vibrations may be several times larger in the 
case of a ferromagnet than in an ordinary crystal. 

The intensity of scattering of slow neutrons in 
crystals is determined, as is well known, by the 
level of fluctuations in them. Hence, in this paper 
we study, along with neutron scattering, the fluc­
tuations in the quantities that characterize ferro­
magnets, taking into account the coupling between 
elastic waves and magnetic-moment oscillations. 

1. SCATTERING CROSS-SECTION OF SLOW 
NEUTRONS 

We first obtain the general expression for the 
scattering cross section of slow neutrons in a 
magnetically ordered crystal, taking into account 
both crystal-density oscillations and magnetic­
moment oscillations. The cross section, per 
nucleus of the crystal, of a process in which a 
neutron makes a transition from a state with mo­
mentum p and spin projection a to a state with 
momentum p' = p - lik and spin projection a', 
while the crystal goes from state f to state f', 
has the form 

231 mN r 
dcr = 7 -- J dr dr' exp {-ik(r- r')} (/', cr'l3t' (r) If, cr) 

u vVpo 

+, , (p2-p'2 ) dp' 
X{f,crl3t' (r)lf,cr)~ 2m +FBt-fBt, (2n:h) 3· 

(1) 

Here :JC = ;;eN +;;eM is the Hamiltonian of the in­
teraction of a slow neutron with the crystal, [4] 

2n:h2 
3t'N(r)=- m' ~all(r-r1) (2) 

l 

is the Hamiltonian of the interaction of the neutron 
with the crystal nuclei and is a sum of Fermi 
pseudopotentials (a is the scattering length of a 
neutron by a free nucleus, m' is the reduced mass 
of the neutron and nucleus, rz is the radius vec­
tor of the Z-th nucleus; for simplicity we do not 
consider the interaction of the neutron with the 
spins of the crystal nuclei); mN is the nuclear 
mass; 

3t'M(r) = -gohsh(r) (3) 

is the Hamiltonian of the interaction of the neutron 
with the (microscopic) magnetic field of the 
crystal h; m, v, and s are the mass, initial 
velocity, and the neutron spin operator, g0 is the 
neutron gyromagnetic ratio, &f is the crystal 
energy level, Po is the equilibrium value of the 
crystal density, and V is the volume of the sys­
tem. 

We now sum Eq. (1) for the scattering cross­
section over the final states of the crystal and 
average over the initial states with the Gibbs 
factor Pf ~ exp [- fSf/T] ( T is the temperature 
of the crystal), and we also sum over the polari­
zations of the scattered neutrons. Assuming that 
the momentum change of the neutron is not too 
large ( bk « 1, where b is the lattice constant) 
and, for simplicity, that the incident neutron beam 
is unpolarized, we obtain 

dcr = mN {( 2~/i )21al2(~p2hl'l) 
vpo m mN 

goz 2 \ dp' 
+4Ji'2(k)(liB hi'I)J (2n:h)3 (4) 

where liw =(2m)-1 (p2 -p'2 ); (or}) and (6B2 ) 

are the Fourier components of the correlators of 
the density and magnetic induction fluctuations, 
e.g., 

(liB2)k0 = ~ dr dt exp {-ik(r- r') + iro (t- t')} (5) 

X (B(r,t)B(r',t')), 

and F ( k) is the so-called magnetic form factor 
(the angle brackets indicate thermodynamic and 
quantum-mechanical averages). 

We note that in the case of spinless nuclei the 
matrix elements of the Hamiltonian (2) between 
states with different neutron spin projections are 
zero, so that the scattering of a neutron with a 
change in its spin orientation is completely de­
scribed by the Hamiltonian (3). The differential 
scattering cross section of polarized neutrons 
with a change in spin orientation has in this case 
the form 

m g 2 dp' 
dcrt, = ~F2(k) {(~BZ)u- ((6Bn)2h0 } -. - (6) 

.,. 4vpo (2n:h)3 

( n is a unit vector on the axis along which the 
spins of the incident neutrons are oriented). 

2. DETERMINATION OF THE CORRELATION 
FUNCTIONS 

Equation (4) expresses the scattering cross­
section of slow neutrons in a magnetically ordered 
crystal in terms of the correlators of the density 
and magnetic-induction fluctuations. We proceed 
therefore to a calculation of the correlators of the 
fluctuations of the quantities that characterize a 
ferromagnet. According to the general method of 
fluctuation theory, which is based on the fluctua­
tion-dissipation theorem, in order to do this we 
must introduce into the equations describing the 
system under consideration additional external 
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quantities-the so-called "random forces. ,[5•61 
Introducing random forces w and y into the 
equation of motion of the magnetic moment and 
the equation of elasticity, we obtain 

iJ2u u 
-=f--+y 
iJt2 't' 

(. _au) U=m. (7)* 

where lA is the magnetic moment per unit mass, 
u is a displacement vector, He is the effective 
field, f is the force acting per unit mass, g is 
the gyromagnetic ratio, and A and T - 1 are re­
laxation constants (a more precise form for the 
relaxation terms is not essential, since the 
limiting transition A- T-1 - 0 will be made in 
the final results). Considering that the square of 
the magnetic moment of unit mass is an integral 
of the motion, J.1. 2 = J.l.~. we may express the ran­
dom force w in terms of the transverse random 
force 11: w = J.l.o1 1A x 1/. 

The expressions for the effective field and 
force f, considering the coupling between the 
magnetic moment and elastic oscillations, have 
the form [7) 

He= H +apo~J.L- ~po{p. -n(p.n)] 

- (~ + f)Po!Lo V (nu)- fPo!Lo(nV)u, 

o2U;• 
/i = Aik, i'k•-:----:-­

oxkoxk' 

+ Po!Lo2 [ (~ + f)n;nk~uk- fnknk~-~] 
OXkOXk' 

+ !Lo(n V)H; + (~ + /) Po!Lon; div J.L+ fPo!Lo(nV) !Li• 

div (H + 4:n:po!L) + 4:n:!Lo V p = 0, ( 8) 

where a is the exchange-interaction constant, f:J 
is the magnetic-anisotropy constant, n is a unit 
vector along the axis of easy magnetization 
( z axis), f is the magnetostriction constant, and 
A. • • is the tensor of the elastic constants, which 
we henceforth express in its simplest form: 

Aik, i'k' = ( sl•- 2st2) 6;k{ji'k' + St2 ( 6ih'6i'k + 6w6kk') ( 9) 

( sz, st are the velocities of longitudinal and 
transverse sound). 

Following the general method of fluctuation 
theory, we must now, in determining the time 
derivative of the internal energy of the system, 
represent it in the form 

zf(t) = ~ {~m(r, t)Xm(r. t) + ~(r, t)Xe(r. t)} dr, (10) 

where the x are the "generalized thermodynamic 

*[uHe] = u X ue. 

velocities" and the X are the "generalized 
thermodynamic forces'' corresponding to them 
(the subscripts m and e refer respectively to 
magnetic and elastic quantities). Differentiating 
the expression for the internal energy of a ferro­
magnet with respect to time [7): 

S { H2 1 . 1 OU; OU;• 1 O!Lk O!Lk 
U= -+-pou2 +-PoAik,i'k'---+-apo2--

8:n: 2 2 OXk OXk' 2 OX; OX; 

1 OU; OU;• +- /po2!Lo2 (n;n;•6kk'- nknk•6;;') ----· 
2 OXk OXk' 

auk 1 + Po2!Lo {f( 6!L;nk + 6!Lkni) + ~nk6!L;J- + -2 ~Po26!L2 OX; 

+~~p02J..to2 [V(nu)]2 }dr (6p.=f.L-p.o), (11) 

using Eqs. (7) and (8) and taking into account that 
since the system is closed there is no flux of en­
ergy through its boundaries, we obtain 

U =-S { pop.o-1 [p.He]( !:_[,...He] -1) )+ p0u( u - y) }ar. 
Po!Lo 't' 

(12) 

Choosing now as "generalized thermodynamic 
forces and velocities" the quantities 

. "' Xm = - -- [p.He) + 1), 
Po!Lo 

we represent x in the form 

. u 
Xe=--+y, 

't' 

Xm =- 'YmXm+ 1), ,i., =- veXe + y, 
'Vm = /,fpo2, 'Ve = (po-r)-1• 

(13) 

The "kinetic coefficients" 'Ym e are directly de­
termined, as is known, by nor~alization of the 
random forces. Considering the connection be­
tween the quantities w and 1/, we obtain 

(w;w/hro = 2(6;;- n;nJ)hw(Nro + 1)f,/p02, 

(y;y;"hro = 26;;hoo(Nro + 1) (po-r)-1, 

(w;y/)kro = (w;"yj)kro = 0, 

where Nw = [exp(tiw/T)- 1]-1 is the Planck 
distribution function. 

(14) 

To find the correlation functions we must now 
express the magnetic moment per unit mass, the 
displacement vector, the density, and the other 
characteristic ferromagnetic quantities in terms 
of the random forces and then average over the 
random forces with the help of Eq. (14). We avoid 
the cumbersome general expressions for the 
correlation functions and consider only the most 
interesting cases of fluctuations near ferro­
acoustic resonance and fluctuations in the non-
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resonant region. In doing this, we shall retain in 
the equation for the vector u, from among those 
terms proportional to the small parameter t, 
only those which lead to a coupling between the 
elastic and spin waves, disregarding those small 
terms which lead only to a redetermination of the 
elastic constants of the crystal and do not change 
the character of the magneto-elastic waves. 

3. FLUCTUATIONS AND NEUTRON SCATTERING 
FAR FROM FERROACOUSTIC RESONANCE 

As is known, the correlators of the fluctuations 
of the quantities characterizing a system have 
sharp maxima at frequency and wave-vector 
values that satisfy the dispersion equation of the 
characteristic vibrations of the system. Because 
of this, sharp maxima associated with the possi­
bility of propagation of the characteristic vibra­
tions in the system also arise in the scattering 
cross-section of slow neutrons. 

The dispersion equation for the bound magneto­
elastic vibrations in a ferromagnet have the form 
(neglecting dissipative terms, 71. ...... r-1 ...... 0) 

- ~(~-1) ft- ~2/2 = 0, (15) 
k2st2 

where Wk = ( ~H2 1 )1/ 2 is the frequency of the spin 
wave, 

Q = gpo ~to ( ak2 + ~ + ~ + 4n: sin2 s) ' 
Po !to 

Qt = gpo~o (ak2 + ~ + ~), (16) 
Po !to 

H0 is the applied magnetic field (directed along 
the axis of easy magnetization), e is the angle 
between the vectors k and n, and f1 2 are certain 
functions (equal in order of magnitude to unity) 
whose explicit form we shall not give. As already 
indicated, the quantity t, which is of the order 
10-4 to 10-6, characterizes the coupling between 
the spin and sound waves. 

In the nonresonant region (I wk - s 2k2 1 
» ?; 1/ 2w k), the vibrations in the ferromagnet 
divide into a spin branch, which has the dispersion 
law w = wk, and acoustic branches with disper­
sion law w = s 1k and w = stk (we do not consider 
the effect of "entanglement" of transverse and 
longitudinal sound due to crystal anisotropy). We 
shall consider first the fluctuations in the acoustic 
vibrations and those features which the magnetic­
moment oscillations accompanying the sound 

waves introduce into the scattering of slow neu­
trons by these waves. 

Sound waves. The correlators of the fluctua­
tions of the displacement vector and of the fluc­
tuations of density in the sound waves are deter­
mined by the formulas 

• { kikj 
(6u;6ui hO) = 2n:li IN 0) + 11 p0- 1 ~ 6 ( w2 - s12k2) 

( ~k· \ } + 6;j - ---d- ) 6 ( (J)2 - St2k2) ' 

(6p2)kO> = 2nliiNO) + 1lp0k26(w2 - s12k2). (17) 

We give expressions for the correlators of the 
fluctuations of the magnetic field, magnetic induc­
tion, and projection of the magnetic-induction 
vector on the axis of easiest magnetization: 

X'6 ( w2 - s12k 2 ) + 6t2 sin2 8s1- 2(\ ( w2 - s12k2)}, 

(6B2h0) = 4(2n:) 3fiiNO) + 1IPo~to2 {[(9zcos 8 + <u sin8) 2 

+ S!~W~t-2) sl-26 (w2- sj-k2) 

+ (st2 COS2 8 + s2) St-26 ( W2 - St2k2)}, 

(6B.2)k0l = 4 (2n:)31i I NO)+ 11 Po!-lo2 sin2 8 { (91 cos 8 + w sin 8) 2 

Xs1- 26(w2 - s12k2) +st2 cos2 8s1- 26(,w2 - s12k2)}, (18) 

where 

9z = wQtgPo!lo ( 4n: - ~ - 2/) sinH cos 8 (wk2 - sfk2) -t, 

st = wgpo~to{w2 cos2 8f2+ Qt2 [(~ +f)sin28- /cos2 8]2}''' 

X( Wk2- St2k2) -1, 

6 = wgpo~to{Q2 cos2 8f2 + w2 [ (~ + /}sin2 8- f cos2 8]2}'1• 

X ( Wk2 - St2k2) -1. 

In the case of longitudinal sound the correlator 
of the fluctuations of the magnetic moment per 
unit mass has the relatively simple form 

!-loz 
(6~t;6~ti)u = 2nfiiN., + 1l--6l~;J6(w2- s12k2), (19) 

PoSl 
h 1 * · Q-1 2n-2 W ere T XX = , T xy = T yx = 1W 1 , T yy = W o• 1 

(the y axis is chosen in the n x k direction), and 
the remaining components of the tensor T are 
zero. (We shall not give the :much more compli­
cated expression for the correlator of the fluctua­
tions of the magnetic moment in a transverse 
sound wave.) 

We now determine the scattering cross-section 
of slow neutrons by sound vibrations. According to 
(4) this quantity is the sum of two terms: 

da = daN+ daM, 

where d:rN is the cross section for scattering due 
to interaction of the neutron with crystal nuclei, 
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and daM is the cross section for scattering of the 
neutron by magnetic moment fluctuations, Substi­
tuting (17) and (18) into (4), we find 

daN= IN.,+ 11 (m'2mNv)-1lakl 26(ro2- sf'k2)dp', 

daM= IN.,+ 11 (goJ.Loli-1) 2{[ (61 cos e + (J) sin 0)2 

+ Sf'ro2s.lc2] sz-2 6 (ro2 - sz2k2) 

Comparing these expressions, we see that the 
cross section daM can equal daN in order of 
magnitude or even exceed it. 

(20) 

As already mentioned, in the case of spinless 
nuclei the spin orientation of a neutron does not 
change when it is scattered in magnetically un­
ordered crystals. But if the crystal is ferromag­
netic, the scattering cross section of neutrons 
with a change in spin orientation has, according 
to (6) and (18), the form 

( goJ.Lo ) 2 mN 
daH=IN.,+11 -1i-F(k) -v-

mN 
X --6(ro2-ro,.2)dp' 

v 

(the contribution of density fluctuations to the 
scattering cross section is very small in this 
case). 

(26) 

We note in concluding this section that at fre­
quencies far from the frequencies of the charac­
teristic vibrations of a ferromagnet, the correla­
tion functions are small (proportional to the re­
laxation constants A. and T-1 ); hence these fre­
quency regions make a very small contribution to 
the scattering cross section of slow neutrons. 

4. FLUCTUATIONS AND SCATTERING OF 
NEUTRONS NEAR FERROACOUSTIC RESO­
NANCE 

As was shown in the preceding section, far 
from ferroacoustic resonance the fluctuations of 
the magnetic quantities (magnetic field, induction, 
and magnetic-moment density) are large in one of 

{[( + . 0) 2 20 t:.a 2n 2] _ 2"( 2 ,.ak2 ) the vibrational branches of a ferromagnet-the 
X 6z cos 0 {1) sm COS + 'ol CO ~~c Sz u CO - S~- • • 

spm wave branch-and the fluctuatwns of the 
+ (6t2cos'O + 6z)st-26(ro2 _ 8 tzk2) }dp'. (21) density and the displacement vector are small; in 

the other branches, on the other hand, i.e., in the 
Spin waves. The correlator of the fluctuations 

of the magnetic moment per unit mass in a spin 
wave is determined by the expression 

(6Jli i>J.L;*)k., = 2nliiN., + 1lgJ.Lopo-1s.lii6(ro2- ro,.2), (22) 

where 
Q..,., = s.lt. s.l.,y = s.ly.,• = ico, s.lyy = Q, 

Q.,z = Qzx = s.lyz = s.lzy = s.lzz = 0. (23) 

For the fluctuations of magnetic induction and of 
the magnetic field we obtain from this 

(6H2)k., = 4(2n) 31iiN., + 1lgpoJ.Lo(s.ltcos2 9 + Q) 

(6/P)k., = 4(2n) 31i IN.,+ 1lgpoJ.Los.lt sin2 06,(ro2 - ro,.2). (24) 

The correlators of the fluctuations in the density 
and in the longitudinal ( ou1 ) and transverse 
(out) components of the displacement vector ac­
companying the spin wave have the form 

(6p2h., = 2nli1Nm+ 11 k'9f'poJ.Loro,.-2 (gs.lt)-16 (ro2 - ro,.2), 

Substituting (24) and (25) into (4), we obtain the 
well-known expression for the cross section for 
scattering of slow neutrons by a spin wave: 

longitudinal and transverse acoustic wave branches, 
fluctuations in the displacement vector are large 
and in the magnetic quantities relatively small. 
The situation is otherwise near ferroacoustic 
resonance, when wk = s 1k (longitudinal resonance) 
or Wk = stk (transverse resonance). In this case 
two branches of magnetoelastic waves arise in a 
ferromagnet in which the fluctuations in all the 
quantities characterizing the ferromagnet (both 
magnetic and non-magnetic) are large. (In the 
case of transverse resonance there arises still a 
third branch, in which fluctuations of the dis­
placement vector are large.) Because of this, two 
very closely-spaced maxima close' to resonance 
can arise in the differential cross section for the 
scattering of slow neutrons instead of a single 
sharp maximum due to scattering of neutrons by 
a spin wave. 

Longitudinal ferroacoustic resonance. The dis­
persion equation for the coupled spin and trans­
verse sound waves has close to resonance, the 
form 

X sin2 0 COS2 0 (fl + 2j- 4n) 2} 'I•, 
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'V = ~{ ... 1 + _J._ (Q + Qt)}. 
2 gpoJlo 

(27') 

Equation (27) has two solutions, corresponding to 
the two branches of magnetoelastic waves with 
frequencies w+ and w_ and the attenuation 
decrement y. 

This is the expression for the correlator of 
the fluctuations of the magnetic moment per unit 
mass near the point of ferroacoustic resonance 
(lw~-s~k2 j <t11 2 w~): 

(I5Jli 611/hro = fijN,. + 1lglloPo-1Qii{2vw-[(w2- w=--2)2 

+ (2vw-)2]-1 + 2vw+ [ (·w2- w+2)2 + (2vw+) 2]-1}, (28) 

where the tensor Qij is given by Eq. (23). If the 
attenuation of the waves is small ( y « wt 11 2 ), 

this expression takes the form 

(I5Jli 611/hro = 2nfi IN,.+ 11 g!loPo-1Qii{6 (w2- W-2) 

+cS(w2-w+2)}. (29) 

From this we obtain for the fluctuations of the 
magnetic induction and magnetic field 

(6B2hro = 2(2:n:)31iiNro + 1lgPo!lo(Qt cos2 8 + Q) 

X {6(w2 - W-2 ) + 6(w2- w+2) }, 

(MJ2hro = 2(2n) 3fi INro+ 1lgPo!loQt sin2 8{15 (w2- W-2) 

+6(w2-w+2)}. (30) 

Near longitudinal ferroacoustic resonance the 
correlators of the fluctuations of density and the 
displacement vector have the form 

(6p2h,. = nliiNro + 11 pok2{15(w2- w=--2) + 15 (w2- w+2)}, 

(31) 

Comparing these formulas with Eqs. (17), (22), 
and (23), we see that on approaching the point of 
ferroacoustic resonance the sharp maximum in 
the expressions for the correlators of the fluctua­
tions in the magnetic (nonmagnetic) quantities, 
which is due to the possibility of propagation of 
spin (sound) waves in the ferromagnet, is split 
into two maxima. 

Substituting (30), (31) into (4), we obtain 

(32) 

Thus, near the point of ferroacoustic resonance 
the sharp maximum, due to the scattering of neu-

trons by spin waves of the slow-neutrons scatter­
ing cross section is split into two maximaY 

We note that if the attenuation of the magneto­
elastic waves is not small (w » y ~ wt 112 ), then 
the two maxima arising in the expressions for the 
correlation functions and for the differential 
cross section of neutron scattering are super­
posed on one another. In this case the correlation 
functions and the scattering cross section near 
ferroacoustic resonance are determined by the 
same relations (17), (22)-(24), and (26) as they 
are far from resonance. 

Transverse ferroacoustic resonance. The dis­
persion equation for the coupled spin and trans­
verse acoustic waves has, near resonance, the 
form 

{ (w2- Wt2)2(w2- wz2)2 +(wiz- wz2)2(2yw)2} 

X{ (w2- St2k2)2 + (r1w)2} = 0; 

w~. 2 = 1/2 (·w~<z + St2k2) + 1/2 { ( W~<z- St2k2)2 + 4gpo2!lo3k2G} 'I•, 

G = Q1 [ (13 +f) sin2 8- f cos2 8]2 + Qj2 cos2 8 (33) 

and the quantity y is determined from Eq. (27'). 
Equation (33) has two solutions, corresponding to 
the two branches of magnetoelastic waves with 
frequencies w1 and w2 and decrement y, and a 
third solution, corresponding to an "almost pure 
acoustic" wave with frequency stk and decrement 
(27)-1• 

The correlator of the fluctuations in the mag­
netic moment per unit mass near the point of 
transverse resonance ( I w~ - s~ k2 1 < t 11 2 wk) has 
the form 

(OJ1i6!l/)u = fi INro + 11 g!lo Qii 
Po 

(34) 

where the tensor Qij is given by Eq. (23). Com­
paring (34) and (28), we see that the expression 
for the correlator of the fluctuations of the mag­
netic moment near the point of transverse reso­
nance differs from the corresponding expression 
for the case of longitudinal resonance only by the 
replacement of the resonance frequencies w± by 
w1 2• It is easy to show that the expressions for 
th~ correlators of the fluctuations of the magnetic 

1>Splitting of the maximum in the differential cross-sec­
tion for the scattering of slow neutrons near ferroacoustic 
resonance was mentioned. in [8], where, starting from the sim­
plest model for magnon-phonon interactions, the case of cubic 
crystals was considered. 
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induction and the magnetic field and for the scat­
tering cross-section of slow neutrons near the 
point of transverse resonance can also be obtained 
from the corresponding expressions for the case 
of longitudinal resonance (Eqs. (30) and (32)) by 
means of the replacement w±- Wt,2· 

The correlator of the fluctuations of the dis­
placement vector near the point of transverse 
resonance has the form 

(c'luillu/>kro= ;liiNro+1lpo-1 (IIi;- ~:;) 

X{6 (w2- w12) + c'l(w2 - w22) + 2«'1 (w2- St2k2) }. (35) 

Thus, in the expressions for the correlators of 
the fluctuations of the magnetic quantities and in 
the expression for the Newton scattering cross 
section near the point of transverse resonance, 
instead of a single sharp maximum, two arise, and 
in the expressions for the correlator of the fluc­
tuations of the displacement vector, three. 

We note that if the attenuation of the magneto­
elastic waves is not small ( w » y i:: wt 112 ), then, 
as in the case of longitudinal resonance, the cor­
relators of the fluctuations and the neutron scat­
tering cross section near the point of transverse 
resonance are determined by the same formulas, 
(17), (22)-(24), and (26), as they are far from 
resonance. 

We pause now briefly to discuss the angular and 
energy distribution of the scattered neutrons. The 
scattering of slow neutrons in a ferromagnet oc­
curs, as is known, particularly intensely if the 
changes in the energy and momentum of the neu­
tron nw and nk are connected by the relation w 2 

= wk, where Wk is the spin-wave frequency. As­
suming for simplicity that ak2 » 1 and ignoring 
the recoil of the neutron ( nk « mv), we see that 
the scattering angle J (the angle between the vec­
tors p and p' ) is uniquely determined by the en­
ergy change of the neutron AE = n I w I and its 
initial energy E: 

A2 = ms!J.E- ( llE ) 2 m8 = li(2apogr..to)-1, (36) 
u mE 2E' 

and J « 1. At very low temperatures ( T « A E) 
almost all the scattered neutrons have the energy 
E' = E - AE; at T i:: AE the number of scattered 
neutrons with energies E + AE and E - AE is of 
the same order of magnitude. 

In order that the phenomenon of ferroacoustic 
resonance be manifested in the neutron scattering, 
it is necessary that in addition to condition (36) 

still another condition, Wk Rl ks, be fulfilled; here 
s = s1 ( s = st) in the case of longitudinal (trans­
verse) resonance. This condition brings in still 
another connection between AE and J: 

'(}2= (~:Y( ::-1). 
Thus, for the observation of ferroacoustic 

resonance by the distribution of scattered neu­
trons, the scattering angle must be close to an 
angle Jo and the energy change close to an 
amount AE0, where 

'(}0 = 2_! - --1 1 , IJ.E0 = 4Eo-l- • (37) m ( s )2 ( v2 \ '" ms/ & )2 
m,v s2 I m,v, 

The splitting of the maximum in the distribution 
of scattered neutrons occurs in the narrow range 
of angles J = J 0 [ 1 + 0 ( t 112)] and conveyed ener­
gies AE =AE0 [1 + O(t112)]; hence in order to 
observe this effect it is necessary to have an angu­
lar resolution of the order of 0.01J0 and an en­
ergy resolution of the order of 0.01AEo. 

In conclusion we thank A. I. Akhiezer, V. G. 
Bar'yakhtar, and S. V. Peletminskil for helpful 
discussions. 
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