
SOVIET PHYSICS JETP VOLUME 25, NUMBER 3 SEPTEMBER, 1967 

TEMPERATURE DRIFT INSTABILITY OF A PLASMA WITH SHEAR 

0. P. POGUTSE 

Submitted to JETP editor October 10, 1966 

J. Exptl. Theoret. Phys. (U.S.S.R.) 52, 759-767 (March, 1967) 

A linear theory of temperature drift instability is considered. It is shown that introduction 
of a sufficiently large shear of the force lines simplifies the classification of the instabilities 
and makes it possible to separate the temperature drift instability having the largest scale. 
The localization region, the local increment, and the local frequency of this instability are 
determined. The case T i « T e is analyzed in detail. The conditions for stabilization by 
force-line shear are determined and an estimate is presented for the maximum turbulent 
transport coefficient. 

1. INTRODUCTION 

WE consider in this paper a linear theory of 
drift-temperature instability of a plasma situated 
in a magnetic field with skewed force lines (shear). 
This instability was discovered for the case of a 
straight magnetic field by Rudakov and Sagdeev[t] 
and was subsequently investigated in[2•3]. Its im­
portance to systems with shear of the force lines 
was indicated earlier. [4] 

Allowance for the shear of the force lines makes 
it possible to classify in natural fashion the insta­
bilities with respect to the region of their localiza­
tion. [4] If we assume that the greatest danger lies 
in large-scale instabilities (with a large localization 
region), and this conclusion is arrived at from sim­
ple dimensional estimates for the diffusion coeffi­
cient, then this makes it possible to separate im­
mediately the most dangerous instabilities that lead 
to the largest transport coefficients. We present 
below a simple analysis which explains why drift­
temperature instability is among the most danger­
ous. 

We introduce first certain relations which we 
shall find useful later on. We consider a plasma 
situated in a magnetic field with skewed force lines; 
then the projection of the wave vector on the mag­
netic field k 11 (r) = (k · B)/B will be a function of the 
coordinates. The instabilities develop essentially 
in regions where k11 ~ 0; then, for relatively small­
scale perturbations x « a, where x is the localiza­
tion region and a is the characteristic transverse 
dimension of the plasma (all the perturbations con­
sidered below are just of this type), we can expand 
k11(r) about the point r 0, where k11(r0) = 0, confining 
ourselves to the first two terms: 

kll(r)=kll(ro)+ku'(ro)x=k!((ro)x, x=r-ro. (1.1) 

We have here the following connection: kfl 
= kl(r) r -t, which serves as the definition of the 
quantity e, called the shear of the force lines and 
representing, in order of magnitude, the angle be­
tween the magnetic field force lines that are separ­
ated by a distance r. An explicit expression for 
O(r) can be obtained by calculating kj1 for different 
gystems. For example, for a round torus O(r) 
= q'r2/Rq2, where R is the major radius of the 
torus, q = rHcp(r)/RHw(r) is the so called margin 
coefficient. By ky we denote the projection of the 
wave vector on the binormal to the force line, 
ky = m/r, where m is the azimuthal wave number. 
Relation (1.1) thus connects k 11 with the localization 
region x of the perturbations. 

We proceed now to consider instabilities in a 
field with shear of the force lines. We note that if 
the electrons and ions are distributed in the per­
turbations in accordance with Boltzmann's law, 
then, naturally, no instability can occur. The con­
dition for this is w/k 11 vT « 1, where vT is the 
thermal velocity of the corresponding type of 
charge. Assume that we are considering an insta­
bility whose existence is essentially connected 
with electron unbalance (e.g., drift instability), i.e., 

(1.2) 

then, using (1.1) as well as the fact that w < w*, 
where w* is the drift frequency, we obtain immedi­
ately from (1.2) the characteristic region of local­
ization of these oscillations 

(1.3) 

Here pi= v'T/Mn·;:t is the ion Larmor radius. This 
localization region is typical of instabilities built 
up by electrons. 

This raises the natural question whether oscilla-
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tions with a localization region larger than (1.3) 
exist. If we consider oscillations with x » xe 
(w /k11v e « 1), then the electrons have time to ac­
quire in them a Boltzmann distribution, and the 
only cause of unbalance would be the ions, for 
which we could still have w/k 11 vi > 1. This condi­
tion yields another possible localization region 

(1.4) 

When x > xi the ions have also time to enter into 
equilibrium (if there are no special causes that 
prevent them from doing so, for example captured 
particles[S,G]), and the oscillations begin to attenu­
ate. Thus, with such a formulation of the problem, 
the localization (1.4) is the most feasible and it re­
mains to ascertain whether such oscillations exist, 
i.e., when the electrons have a Boltzmann distribu­
tion and the buildup is produced by the ions. We 
shall show below that the only instability of this 
type in the potential region is the drift-temperature 
instability. 

In the investigation of the instability we shall 
employ in what follows a quasiclassical approxima­
tion, and since the obtained increments turn out to 
be of the same order as the oscillation frequency, 
such an approximation can be regarded as suffi­
cient. 

2. FUNDAMENTAL EQUATION 

The equation describing the oscillations of an 
inhomogeneous plasma with shear of the force lines 
differs from the equation for the case of a straight 
magnetic field essentially in the fact that now 
k 11 = k 11 (x) is a function of the coordinate x in ac­
cord with (1.1). Using the results of Mikha'Oov­
ski1[7], we can write out the following integral 
equation for the potential, from which we get a 
dispersion equation for the potential oscillations 
considered below: 

~ { [ 
* ik,x 1 . roT· -z; t 

e cp(kx) -~T. 1-_•e 10 (z;)Y; 
3=t,e 1 ro 

+ i -y':iie-zi / 0 (z;) y;W (Y;) 

. ~ ] 
X <1- Wn; +_!i(zj (1- /1 (z1_·)) +.!._-Yl)) 

w w I 0 (z,) 2 

k2 } + T8me2n dk, = 0, j = i, e. (2.1) 

We have introduced here the notation: 

cp(kx) = __!_ \ cp(x)e-i"x"'dx 
2n J 

are the Fourier components of the potential; 

• _ ky dT; • kyT; dn 
WT. -------, Wnj =-~;.._ 

' m;Q; dro m;Q;n dr0 

(2.2) 

are the drift frequencies in the temperature and 
density; 

k.1_2T; ( m )2 z,· = --- k.L2 = k 2 + k 2 k 2 = _ £"\2. X Y• y ' 
m;~'i ro 

I0 and I1 are modified Bessel functions, and 

( z· sli ) w(y) = e-Y' 1 + ~ et' dt 
in 0 

is Kramp's function. 
If we substitute cp(kx) as given by (2.2) in (2.1) 

and integrate with respect to dkx, we obtain a 
homogeneous integral equation with respect to cp(x) ; 
similarly, if we multiply (2.12) by exp(-ik~x) and 
integrate with respect to dx, then we obtain an 
integral equation ink-space with respect to cp(kx). 

For the short-wave oscillations considered be­
low, with localization region x ~ P/ e « a-the 
characteristic dimension of the inhomogeneity-we 
can regard the macroscopic quantities n, T, dn/dx, 
etc. as constants. In the investigation of Eq. (2.1) 
we shall use a quasiclassical approximation, i.e., 
we shall assume that several nodes of the potential 
cp(x) are spanned by the localization region x = Pi/8. 
We can then choose as a solution of (2.1) a quasi­
classical "wave function" in the form 

:;1: 

cp (x) ~ exp{ i S k, (x) dx}, (2.3) 

where kx(x) varies little over a distance on the or­
der of Ax ~ 1/kx. We then obtain from (2.1) the 
dispersion equation 

Ti WT• . - { mn" 
1 +--- e-zJoy2 +tin e-zJoyW(y) 1--

Te (J) (j) 

+ WT• [ Z ( 1 _ ~ }+ ~ _ y2 ]} + ii~( m~ y• ( Ti )"' 
w lo 2 , m, \ Te . 

{ Te Wn" Te WT_* } 
X y 1+------- =0, 

T; w T; 2w . 
(2.4) 

which we shall investigate by the local method[7J. 
Equation (2.4) has been written out for perturba­
tions with a localization region Ax ~pi/ e, with 
y e « 1, and small terms of the order of y~ have 
been omitted. Equation (2.4) has been rewritten in 
terms of the ion drift frequencies w~. and wt. (we 

1 1 

have used the relation w*e = -w'l'T jT., y 
1 1 e 1 e 

=(meT/miTe) 12y) and the quantities Yi• from 
which the index i has been omitted. 

In the investigation of (2.4) it is convenient to 
use for the frequency and localization region the 
dimensionless ratios 

w/wT•, kuv;/wT• = x/2l0 = x8/p;, 
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where 10 = 1/ 2(pife)dlnT/dlnr0• 

3. LOCALIZATION REGION, INCREMENT, AND 
FREQUENCY OF TEMPERATURE DRIFT IN­
STABILITY 

An important parameter characterizing the tem­
perature drift instability is the region of oscillation 
localization l, which we can choose, in the quasi­
classical analysis, to be the distance from the point 
x = r- r 0 = 0 to the point x = l where the local in­
crement y(x) vanishes, y( Z) = 0. Indeed, when x > l 
the increment becomes negative and the oscillations 
attenuate in this region, i.e., they are essentially 
concentrated where y > 0. Recognizing that y = Im w 
= 0 when x = l and equating the real and imaginary 
parts of (2.4) separately to zero (we shall hence­
forth omit the small electronic term ~ (me/mi) 112), 

and then eliminating w from these two equations, 
we obtain the following expression for the localiza­
tion region as a function of the transverse wave 
number kJ_: 

( }:_)2 =--2--(e-zJo(z)) 2 1-2/l']+2z(1-JdJ0), 

lo 1 + T.JTe 1 + TJTe- e-z]0 

1 p; dlnT; 
lo = 2 e d In To , 

(3.1) 

where 10 is the characteristic region of localization 
of the temperature drift instability. 

As follows from (3.1), the instability in question 
exists ( Z2 > 0) if the following condition is satis­
fied [2 J 

· dlnT; 2 
1']==--> for 1']<0. (3.2) 

dlun 1+2z(1-II/Io) 

In the region of relatively large-scale perturba­
tions x ~Pi/ e, the criterion (3.2) leads to the con­
dition YJ > 2. The minimum value YJ ~ 0.95 is reached 
when z ~ 1. 

The quantity ( l jl 0) 2 as a function of z 
= (k~ + k~)PI is shown in Fig. 1 for different values 

2 
z=(K}, ~H~) pf 

FIG. 1. Dependence of localization region on the wave 
number. 

of the parameter TJ in the case Ti = Te· When T/Te 
decreases the localization region decreases, and 
vice versa. 

Knowing the localization region l we can find out 
how many nodes the solution has at a given value 
of e. The approximate number of nodes is 

n~kxlaj:rr. (n=1.2 ... ), (3.3) 

where n is the nearest integer smaller than kxlo:jrr, 
and a: is a numerical factor of order of unity, which 
cannot be determined in the local quasiclassical 
approach. If kxlo:/rr < 1, then not a single node ex­
ists. This is precisely the condition for stabiliza­
tion by the shear of the force lines. The critical 
value of ei can be obtained by substituting in the 
relation kxlo:jrr = 1 the value of l from (3.1). As a 
result we obtain ei as a function of ky. The maxi­
mum of this quantity with respect to ky will be de­
noted by erne· An approximate expression for this 
quantity is 

0.3 ( 0.95 )''' 8mc~-a 1---
:n: l'] 

(3.4) 

If Te « Ti, then 

8mc ~ ~ a T e ( 1 - . 0.95 )''• . 
:n: T; l'J 

(3.5) 

The inverse limiting case, T i « T e• will be con­
sidered in the next section. 

We now proceed to determine the increments 
and frequencies of the oscillations. The dispersion 
equation for the temperature drift instability at 
T e = T i contains no small parameters, and there­
fore the expression for the local increment y(x) and 
frequency w(x) can be obtained only numerically. 
Some results of the calculations are shown in Fig. 2 
for different values of the parameters 

w I y <:;:r c.o* T T 

1.0 :-

1 
I 

05 

0 

I 

FIG. 2. Local increment y (solid line) and frequency 
w(dashed) for different parameters a and b (3.6): a) a-0.5, 
b = 1.6; 2) a= 0.5, b = 2; 3) a= 0.2, b = 2. 
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a= [~-_!+z (1- lt(z) )] 
. 2 'I'] Io(z) 

b=( 1+ ~:) eZ/0- 1 (-z). (3.6) 

It follows from Fig. 2 that typical values of y are 
of the order of 0.1 wf, and the corresponding w are 
of the order of 0. 3 w f. In the region x « 1 and 
lx- ll « 1 we can obtain analytic expressions for 
y and w, but we shall not present here the corre­
sponding cumbersome equations. As follows from 
the conditions ( 3.2), the instability in question can 
develop also at negative values of 11 (17 < 0). How­
ever, if ITJI « 1, then the corresponding increment 
turns out to be exponentially small,'}'~ exp(-1/ITJ!>. 
On the other hand, if 1171 > 1, then this case does 
not differ in practice from 11 > 0. One can advance 
somewhat farther in the calculations in the impor­
tant particular case Ti « T e· 

4. TEMPERATURE DRIFT INSTABILITY WHEN 
Ti«Te 

Such a situation is usually realized in Joule 
heating of a plasma [B J, when the entire energy is 
first taken up by the electrons, and then spreads to 
the ions via heat exchange, within a time T ~ v-: 1 

-1 I 1e 
~ 11eemi me. 

In the case when T i « T e the dispersion equa­
tion greatly simplifies. Indeed, as will be shown 
below, the characteristic frequencies of the oscilla­
tions in question turn out to be of the order of 
w ~ k11cs = k11v'T e/mi, and therefore the argument 
of the ionic W-function turns out to be larger than 
unity, w/k 11 vi ~v'Te/Ti > 1, and we can use its 
asymptotic expansion. Leaving the exponentially 
small imaginary terms, we obtain from (2.4) the 
following hydrodynamic dispersion equation (com­
pare with[1J): 

1+ k'iT. (1- w;i )- w~. _k~~T~ (1- w•Pt)=o, 
m;Q;2 w w m;w2 w 

(4.1) 

The same equation can be obtained also from the 
hydrodynamic equations, i.e., the plasma oscilla­
tions in question can be described hydrodynamically 
when Ti « Te. We have retained in (4.1) the small 
term with the transverse ion inertia (the second on 
the left in ( 4.1)), which turns out to be of impor­
tance in the determination of the stability limit. 

We consider first the most unstable case, \7n 
= 0. Then the equation simplifies somewhat: 

1 + k}_T.2 (1- w~i)- k~I_T; (1- fu~i) = 0. (4.2) 
m;Q; w m,w w 

Let us obtain the condition under which the shear 
of the force lines stabilizes the oscillations in 
question. To this end we make in (4.2) the substi­
tution k}_- -d2jdx2 +k} and obtain a differential 
equation for cp. Substituting k 11 = kyOx/a, we get an 

equation that coincides with that of a quantum os­
cillator. From this equation it is easy to see that 
when the condition 

(4.3) 

is satisfied there are no localized solutions, i.e., 
the instability is stabilized. 

Far from the stability limit, when the increment 
becomes of the same order as the frequency, i.e., 
when the inequality inverse to (4.3) e < T/Te is 
satisfied, we can omit from (4.2) the term with the 
transverse ion inertia, and obtain the increment 
and the frequency from the obtained local disper­
sion equation. The explicit expressions for them 
are 

V y3 ( 1 T. )''• --. =- --£2 (R+-R-), 
WTt 2 2 Ti 

W 1 ( 1 Te )'/a 
--. =- --£2 (R++R-), 
WT. 2 2 Ti 

t 

( 1/ 4Te )''• R+= 1+ 1---£2 
- - 27Ti ' 

Plots of these functions for the case T efT i = i 0 
are shown in Fig. 3. Comparing Figs. 2 and 3 we 
see that the temperature drift instability with 
T i « T e considered in this section has a much 
larger increment (forTe~ lOTi) than the instabil­
ity with Te = Ti, i.e., when the ion temperature is 
lowered the instability becomes intensified. The 
reason is as follows: the main mechanism for 

J!LL w; w; 
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FIG. 3. Local increment y(solid line) and frequency 
c:u (dashed) in the case Ti = T e/10, n = 0. 
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building up the instability under consideration is 
hydrodynamic, i.e., the phase relations in the in­
homogeneous plasma vary in such a way that if, say, 
the perturbed temperature rises in a given volume 
element, then the heat fluxes cause it to increase 
further (the last term of (4.2)). On the other hand, 
when T e ~Tithe main damping mechanism is the 
Landau damping by the ions. When T i decreases 
the damping drops exponentially, whereas the 
buildup mechanism depends quite weakly on the ion 
temperature. This intensifies the instability. Now 
the localization region begins to be determined only 
by the pure Boltzmann equalization of the ions along 
the force lines when k 11 cs > Wt. (expression (4.5)). 
With further decrease of Ti, th~ weakening of the 
oscillation buildup comes into play, and the oscilla­
tions become stabilized. 

As follows from ( 4.4) , the characteristic region 
of localization of the hydrodynamic perturbations 
is determined by the condition 

(4.5) 

We note that the exact kinetic expression (3.1) 
would have yielded in lieu of ( 4.5) (in the case when 
Ti « Te, 1) = oo) 

(4.6) 

which is much larger than (4.5) when Te » Ti. The 
difference is attributed to the fact that although the 
increment outside the region x < Lr is not equal to 
zero (it vanishes when x = L~), it is exponentially 
small. It is shown schematically in Fig. 3 by the 
dash-dot line to the right of the point L~. 

We have considered above the case 1J 

= dInT/dIn n = 00 • If 1) ""oo, then the foregoing 
analysis is valid when 1) » %7 T e/T i• but if the op­
posite inequality 1) « Y 27 T e/T i is satisfied, then we 
can leave out of ( 4.1) the unity in addition to the 
inertial term, and cancel T e out. The resultant 
equation, which does not contain T e at all, yields 
the following expression for the oscillation frequen­
cies: 

ro/roT. • = 1/ 2 [Y)£2 + i2 i~ L( 1 - 1/ ;,Y)£2) '1'], ( 4. 7) 
' 

* where L = k 11 v/wTi and 1) =dInT/dIn n. As fol-

lows from (4.7), when 4Te/27Ti » 1), the region of 
localization ceases to depend on the electron tem­
perature and becomes equal to 

Lo = 2/i~, (4.8) 

and the expression for the characteristic increment 
takes the form 

( 4.9) 

Both (4. 7) and its corollaries (4.8) and (4.9) are 
valid when 1J ;::, 4. In the case just considered 
1) < %7Te/Ti, when the density gradient must be 
taken into account, it is easy to obtain also the 
critical shear of the force lines. The oscillations 
become stabilized when the following inequality is 
satisfied (compare with ( 4. 3)) 

8 > 1/Y) ( 4.10) 

Using the results of the foregoing analysis, we 
can write as an estimate of the turbulent tempera­
ture conductivity coefficient[4J: 

(4.11) 

where a < 1 is a numerical factor. It is assumed 
that e > pja and Ti ~ Te. From considerations ad­
vanced in the introduction, a transport coefficient 
of the order of D ~ p iv / e a can be regarded as 
maximal for drift instabilities in a plasma with a 
sufficiently large shear of the force lines 
( e » (me/mi) 1 /2). 

5. CONCLUSION 

The results of the foregoing analysis can be 
summarized as follows: In a plasma with shear of 
the force lines, the maximum region of localization 
for the drift instabilities does not exceed the order 
of magnitude of xi ~ Pl e; this localization region is 
attained in the collisionless case only for one in­
stability-the temper~ture drift instability; the 
most favorable conditions for its existence are 
when Ti ~ Te and 1) = d ln T/d ln n » 1, in which 
case w ~ y ~ k11vi ~ WTi. If the plasma is not iso­

thermal, then the instability in question becomes 
stabilized by the shear of the force lines upon 
satisfaction of a condition that can be written ap­
proximately as e » TiTe/(TI + T~). If the shear of 

the force lines is not very large, then the decrease 
of Ti intensifies the instability, and finally, the 
transport coefficient D ~ cp~vYe a can be regarded 

1 1 
as the maximum possible for drift instabilities in 
plasma with shear. 

The author is grateful to B. B. Kadomtsev for 
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