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A theory is proposed to describe the character of the variation of the spin density in the tran­
sition from the paramagnetic to the antiferromagnetic state. An essential feature is that, be­
sides the deformations of the magnetic-ion form factor, which essentially conserve the local 
character of the spin, any such transition is accompanied by the appearance of a principally 
unlocalized part of the spin density. The order of magnitude of the effects is estimated. 

RECENT advances in neutron-diffraction tech­
niques, especially the use of polarized neutrons, 
make it possible not only to determine the direction 
of the spin of magnetic ions in antiferromagnets, 
but also to find directly the distribution of the 
average spin density s(r). An exact calculation of 
the coordinate dependence of s(r), on the basis of 
the microscopic theory, is quite difficult and the 
use of computers is mandatory. It is possible, 
however, to construct a simple theory which makes 
it possible in essence, using symmetry considera­
tions only, to describe the character of the spin 
density distribution, to relate different dependences 
of s on the coordinates with the spin orientation, 
etc. 

The situation is as follows: The (magnetic) sym­
metry of the crystal state resulting from the para­
magnetic-ferromagnetic transition coincides as a 
rule with the symmetry of a crude scheme in which 
the spins are represented by arrows placed at the 
ion locations. The spin density corresponding to 
this scheme is of the form s(r) = ~asao(r- ra) 
(sum over all magnetic ions). However, the sym­
metry of such a coordinate dependence of s(r) (i.e., 
if we consider only the dependence of s(r) on the 
coordinates and assume that the vectors sa are not 
rotated by the symmetry transformations 1l) may 
turn out to be higher than the magnetic symmetry 
of the crystal. Thus, for example, the magnetic 
symmetry of the antiferromagnetic MnC03, CoC03, 

Cr20 3, and a-Fe20 3 (in the high-temperature phase) 
belongs to the monoclinic system (see e.g., [1]), 

and the symmetry of the indicated type of the coor­
dinate dependence of s remains rhombohedral. This 

!)This corresponds to the usual method of representing an 
antiferromagnet in the form of a lattice with pluses and 
minuses at the lattice points. 

means that if we take into consideration the 
"smearing" of the spin density, then its coordinate 
dependence will in fact have the same symmetry as 
the crystal, i.e., it will also be monoclinic in our 
example. 

We note that the change in the spin density can­
not be reduced at all to a magnetostriction displace­
ment of the ions themselves since such a displace­
ment is proportional to s 2, whereas the main change 
is proportional to the first power of the average 
spin (near the transition point). 

The spin-density distribution in an antiferro­
magnet differs from the so-called magnetic form 
factor of the free ion in two respects. First, the 
form factor of the ion is distorted by the interaction 
of the spin with the crystal field, which in general 
is trivial. Second, it is distorted by exchange and 
relativistic interactions with other magnetic ions. 
As we shall show later, such interactions can lead 
not only to a more appreciable distortion of the 
form factor, but even to a shift of the center of 
gravity of the spin distribution relative to the nu­
cleus. 

We should thus consider a density s of the most 
general form. The characteristic features of the 
spin density s(r) are easiest to explain by expanding 
it in irreducible representations of the symmetry 
group of the paramagnetic phase. It is convenient 
here to separate from the very outset the coordinate 
dependence of s in explicit form, and to expand s(r) 
in terms of functions 'Pna(r) that depend on the 
coordinates only 2>: 

Si(r)=~S~aqlna(r), i=x,y,z. (1) 

""' 

2>More details on the expansion if s(r) in functions of ir­
reducible representations are found in [2],. Sec. 2. 
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Here n numbers the irreducible representation and 
a the function of its basis. The coefficients S~a 
are transformed in accordance with a representa­
tion that is a direct product of the representation n 
by the representation that transforms the coordin­
ate-independent pseudovector. The latter is in gen­
eral reducible; different linear combinations of the 
quantities S~a transform in accordance with irre­
ducible representations (for ~ given n). We shall 
henceforth frequently write s~a in the form of a 
''vector'' Sna : 

s(r) = ~SnaQlna(r). (2) 
na 

To find Sna we shall use the Landau theory of 
second-order phase transitions[aJ (see also[ 1•2J). 
We shall carry out the calculations by using as ex­
amples the theoretically and experimentally well 
investigated crystallographically isomorphic 
a-Fe20a, Cr20a, CoCOa, and MnCOa. In these crys­
tals, as is well known, the phase transition occurs 
without a change in the unit cell, so that the sum­
mation in (2) is only over functions that are 
periodic and have the same period as the crystal. 
It is sufficient to consider as the symmetry group 
of the paramagnetic phase the group D§d/T, which 
is obtained from the crystal symmetry group D~d if 
all the translations T are regarded as identity 
transformations. The group D~d/T is isomorphic 
to the rhombohedral group Dact and differs from the 
latter in that certain axes and symmetry planes are 
replaced by screw axes and slip planes. 

By virtue of the noted isomorphism, the irre­
ducible representations of interest to us, of the 
symmetry group of the paramagnetic phase, coin­
cide with the representations of the x group Dad· 
The latter has six irreducible representations 
(see[4J for notation): three even, of which two 
(A1g, ~g) are one-dimensional and one (Eg) is two­
dimensional, and respectively three odd ones, Atu• 
Aru, and Eu. We denote the functions cpna corre­
sponding to these representations as follows: 

qJA =M; qJA =W; qJEl=U, <PE.=V; 
1g 2/J g g• 

<PA =P; <PA =Z; <PEt=X, <PE2=Y. 
lU 2U U U 

The function P is a pseudoscalar, and the functions 
X, Y, and Z transform like the corresponding com­
ponents of a polar vector. In turn, M is a scalar 
and U, V, and Ware components of a pseudovector. 
The "vectors" S corresponding to these functions 
will be denoted 

M; W; U, V; P; Z; X, Y. (3) 

It is instructive to compare these results with 
the theory previously developed by one of the au-

thors[tJ for the antiferromagnetism of the crystals 
under consideration, in which the spins of the mag­
netic ions were assumed to be fully localized. Com­
parison shows that the character of the transforma­
tions of M coincides with that of m from[t), and 
analogously W = 11, P = 12, and Z = la· On the other 
hand, there are no densities of the type U, V or X, Y 
in the pointlike picture. 

The representations corresponding to the "vec­
tors'' (3) are reducible. Their following combina­
tions transform in accordance with irreducible 
representations :a> 

Atg: w.; u~ + Vy, 
A2g: M.; Uy- V~, 

Eg: (M~. My); (W~, Wy); (U., V.); (Uy + V~, U~- V 11 ), 

Atu: Z.; Xx + Yy, 
A2u: P.; X 11 - Y~, 

E,.: (Px,Py); (Zx,Z11); (X.,Y.); (X11 +Yx,Xx-Yy). 

We shall show now that just as establishment of 
purely antiferromagnetic order in a-Fe20a, CoCOa, 
and MnCOa (described by the "vector" W) involves 
weak ferromagnetism (vector M), the establishment 
of antiferromagnetic order leads to the appearance 
of a principally nonlocal part of the spin density, 
described by "vectors" U and V. To this end we 
write out, as in[tJ, the most general form of the 
second-order terms in the expansion of the thermo­
dynamic potential <fl in powers of M, W, ... : 

<D =«Do+ tj2AW2 + tj2BM2 + 1/2C(U2 + V2)+ tj2aWi 

+ 1/2bMz2+ 1/2ct(Ul + Vz2) + 1/2c2(Ux + V11 ) 2 

+ 1/zc3(Uy- Vx)2 + a(WxM11 - W 11Mx)+ ~(WxUz 

+ WyVz)+y [Wx(Uy+ Yx)+W11 (Ux- li'11 )] 

+ 6W.(Ux + Vy) + e(MxVz- M11 Uz) 

+ x[Mx(Ux- li'y)- My(U 11 + li'x)] + A.M.(U11 - Vx) 

+ f.l[ (Ux- V11 ) Vz + (Uy + Yx) U.]. (4) 

The first three terms of the expansion (the coeffi­
cients A, B, and C) are due to exchange interaction. 
They do not change when all the spins in the crys­
tals are rotated through the same angle. The re­
maining terms are connected in one manner or 
another with relativistic interactions. 

The expansion of <fl in powers of P, Z and X, Y 
coincides exactly with (4) if we replace in the latter 
M by P, W by Z, and U, V by X, Y. 

The presence in (4) of mixed terms (coefficients 
a, {3, .•• ) shows that the occurrence of pure-anti­
ferromagnetic order (W) causes appearance of all 

3>we use here and throughout a rectangular coordinate sys­
tem with the z axis directed along the crystal and the x axis 
directed along one of the twofold axes. 
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the remaining components of the spin density-weak 
ferromagnetism (M) and the unlocalized parts 
(U, V). The latter can be obtained by minimizing 
(4) at a specified W, the magnitude of which is de­
termined by the fourth-order terms (see(1]). In the 
high-temperature phase of a-Fe20 3 and in MnC03 

and CoC03, where W lies in the basal plane, we 
have4> 

a 
Mx=BWy, 

y 
Ux=-cWII, 

Mz=O. 

In the low-temperature a- Fe20 3 phase and in FeC03 

we have 

M=O, 

{) 
Ux= -zWz, Uy= Uz=O, 

6 
Vy = -C Wz, Vx= Vz= 0. 

(6) 

We note that in the low-temperature phase of 
a-Fe20 3 and in FeC03 the nonlocal character of the 
density leads to the occurrence of average-spin 
components lying in the basal plane, something 
which cannot occur at all in the case of a strictly 
localized spin. 

It is seen from the structure of expressions (4), 
( 5), and ( 6) that the appearance of M and of U, V is 
connected with weak relativistic interactions. 
Therefore (see[1]) relations (5) and (6) remain in 
force also far from the transition point, provided 
Win (5) and (6) is now taken to mean a unit vector 
in the direction of W. 

Relations for the case of Cr20 3 are obtained 
from (5) and (6) by replacing in them W, M, U, and 
V by P, Z, X, andY, respectively. 

The presence of nonlocalized components U, V 
of the spin density causes the coordinate depen­
dence of s(r) to lose the trigonal symmetry which 
would remain in force in the pointlike picture 
(U = V = 0; M, W ""- O). The symmetry of the depen­
dence of s on the coordinates becomes monoclinic. 
In particular, the intensities of the elastic neutron 
scattering ( lmn) peaks lose their symmetry with 
respect to cyclic permutation l - m- n. 

4)We have left out of (5) and (6) small corrections due to 
the small terms (the coefficients b, c,, c 2 , c,, E, K, A, fl.) in 
(4), which are proportional (after substituting (5) and (6)) to 
the third power of the relativistic coefficients (a2b, cy, 
A.ay, etc.) 

We shall now analyze in greater detail the char­
acter of the dependence of the functions M, W, U, 
and V on the coordinates in the vicinity of the mag­
netic ion Fe3+ in a-Fe20 3, writing out for this pur­
pose the general form of their expansion in powers 
of the distance from this ion. In a- Fe20 3, the four 
iron ions lie on the crystal axis in the positions 

--- 1 1 1 1 (uuu), (uuu), ( Y2 + u, Y2 + u, Y2 + u), and ( Y2 - u, 
% - u, % - u). These positions have an intrinsic 
symmetry c3, so that these expansions should be 
invariant to rotations about a threefold axis. They 
are of the form 5> 

M, W = M0, W0 + az + bz2 +c(x2 + y2) + dx(x2- 3y2) 

+ ey (3x2- y2) + fxz (x2- 3y2) + gyz (3x2- y2) + ... ; 
(7) 

U = a' x + b' ( x 2 - y2 ) 

+ c'yz- 2d'xyz + e' (x"- 6xzyz + y") + ... , 
(8) 

V = a'y- 2b'xy + c'xz + d'z(x2- y2) + l]e'xy(x2- y2). 

The expansions of the functions P, Z, X, Yin the 
vicinities of the Cr3+ ion in Cr20 3 have exactly the 
same form. 

The expansion (7) for M and W has two types of 
terms. The first are even in x, y, and z and repre­
sent the distortions of the free-ion form factor by 
the interaction with the crystal field, the fourth­
order term, in particular, was investigated by 
Kaplan[ 5J). The second are odd and describe the 
less trivial distortions of the form factor (loss of 
inversion) as well as the shift of the center of grav­
ity of the spin distribution in the direction of the 
crystal axis away from the nucleon (the term pro­
portional to z). These terms are connected, as will 
be shown below, with the interaction between the 
considered magnetic ion and the other ions. 

All the terms of the expansion (8), both even and 
odd, describe the violation of the trigonal symmetry 
of the form factor. In addition, the presence of 
terms proportional to x or y indicates a shift of the 
center of gravity of the spin-density distribution in 
the basal plane. As already indicated, the appear­
ance of U and V is connected with the spin-spin 
interaction between different ions. 

Let us estimate now the order of magnitude of 
the considered effects. The appearance of a non­
localized spin density is due essentially to the 
interaction of the given ion with the neighbors, or 
more accurately speaking, with the inhomogeneity 

S)we do not write out the trivial terms that result from the 
expansion of the coefficients of the lower-order terms in pow­
ers of z2 and x2 + y 2 • The coefficients in formula (7) are of 
course different from M and W. 

\ 
\ 
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of the effective magnetic field acting on the spin of 
the electrons belonging to the ion under considera­
tion. This effective field can be introduced in the 
following fashion: We consider the effective energy 
Eeff of the interaction between the magnetic ions, 
expressed in terms of the average spin density s> 
s(r) 

Eeu= ! ~ /(r-r')s(r)s(r')drdr' 

+ ~ ~ Q;k(r-r')si(r)sk(r')drdr', 
(9) 

where the first term represents the exchange en­
ergy and the second the energy of the spin-spin 
interaction; it is obvious that Q ~ v2 / c2, where v is 
the velocity of the electrons in the atom. Then the 
effective field3e(r) is defined as oEerr/os(r), i.e., 

3e;(r) = ~ J(r- r')s;(r')dr' + ~ Qil,_(r- r')sk(r')dr'. 

In this expression we can replace in first approxi­
mation the exact spin density s by its pure-anti­
ferromagnetic component W which would be ob­
tained in the pointlike-spin system (we denote it 
Wo): 

3ei{r}=~ J(r-r')W0;dr'+ ~Qil,_(r-r')Wokdr'. (10) 

The Hamiltonian of the interaction of the ion 
under consideration with this field is 

a 

(11) 

where the summation is over the electrons of the 
unfilled d-shell, and the corresponding additions 
to the spin-density can be calculated with the aid 
of the perturbation-theory formula for the wave 
function 

H 'I' (OJ 
'I' ='I' (0) + ~ On n (12) 

o o .LJ E -E . 
n 0 n 

To estimate the order of magnitude of the ma­
trix elements Hon of the perturbation, let us expand 
the effective field in powers of the distance from 
the nucleus. The constant terms, of course, make 
no contribution to the nonlocal part of the spin den­
sity and therefore is of no interest to us. The inte­
gral determining the exchange part of the effective 
field is invariant to the proper symmetry group of 
the ion position, and therefore its series expansion 
has the same form as (7). The spin-spin part of 

6>we have purposely left out from this expression the anti­
symmetrical-exchange term introduced by Moriya and one of the 
authors and causing the weak ferromagnetism of the compounds 
in question, since it adds nothing new compared with the pure 
exchange term. 

the effective field is not invariant with respect to 
C3, so that its expansion contains in addition also 
all the terms contained in (8). 

The nonlocal parts of interest to us are odd 
functions of the coordinates and as such they can 
arise only under the influence of an odd component 
of the effective field. This means that in this case 
the only nonvanishing matrix elements Hon are 
those between states with different parity (i.e., 
different configurations, for example d6 - d5p in 
the case of the Fe3+ ion). The nonlocal part of the 
density Wnl is proportional to 

hence 

e 
Wnl "'"'-Wo, 

eo 
(13) 

where e is the transition temperature and Eo is a 
quantity on the order of the atomic energy. For 
Mnl we have the estimate 

e 
Mnl --Mo, 

eo 
(14) 

where M0 is the spontaneous moment. Formula (14) 
is obtained if all the reasoning regarding the ex­
change part of the effective fields is applied to the 
effective field resulting from the antisymmetrical 
exchange mentioned in footnote 6. 

For U and V we obtain in accord with the fore­
going the following general estimate: 

,2 

U, V--2 Wo. 
c 

(15) 

It must only be kept in mind that actually those 
parts of U and V which are odd in the coordinates 
may turn out to be much smaller than the even 
parts, for in the former case the denominators in 
(12) contain the differences between the configura­
tion energies, and in the latter they contain as a 
rule much smaller quantities. 

In the case of MnC03, CoC03, and FeC03 the 
magnetic ions are in positions ((000) and<% % )'2)) 

having the symmetry C3i. Therefore all the terms 
of (7) and (8) that are odd in the coordinates vanish. 
In particular, in these substances there should be 
no shift in the center of gravity of the distribution 
of the magnetic moment. 

In metallic antiferromagnets there exists a spec­
ial mechanism connected with the polarization of 
the conduction electrons. It is necessary here to 
take into account the character of the interaction 
between the a-electron and the magnetic ion (the 
Condo effect). An examination of these questions, 
however, is outside the scope of the present article. 
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