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We consider the dynamics of the quasilinear relaxation of an unstable distribution function for 
the case of potential drift waves at Te » Ti. We show that the narrow wave packet that results 
from the buildup in accordance with the linear theory shifts into the region of shorter wave
lengths. The law governing the time variation of the average wave number of the packet is 
derived. It is shown that the packet remains narrow. The property of the nonlinear increment, 
consisting in the fact that the resultant disturbance with a given value of the wave vector sup
presses the instability of oscillations of longer wavelength and, to the contrary, has little ef
fect on the short-wave part of the spectrum, is valid also for other types of drift instabilities, 
particularly when Te ~ Ti. 

AN inhomogeneous plasma in a strong magnetic 
field can be unstable even when the electron veloc
ity distribution function is Maxwellian[1•2]. In this 
case waves that travel almost perpendicular to the 
density gradient and to the magnetic field build up 
in the plasma. These are called drift waves. 

On the other hand, it is known that nonlinear ef
fects can alter the distribution function in such a 
way that a new stable state is established (quasi
linear relaxation[ 3, 4J). 

An investigation of such effects for the case of 
drift waves was carried out for the first time by 
Galeev and Rudakov[5], and then by Hoch[G]. The 
results of these investigations, in spite of the dif
ferent character of the approximations made, are 
as follows: A stable state is formed quite rapidly, 
and the particle coordinates remain practically un
changed during the relaxation process. 

In the present paper we call attention to the fact 
that the state established as a result of the quasi
linear relaxation described in[ 5•6] is not final. On 
the other hand, the results obtained in[5•6] can be 
regarded as corresponding to the initial stage of 
the quasilinear relaxation process. We shall show 
that no stable state is attained in the quasilinear 
approximation, and the spectrum of the instability 
shifts towards the shorter wavelengths. The system 
of equations describing the process of quasilinear 
relaxation of an unstable distribution function of an 
inhomogeneous plasma was obtained in[5] : 

(2) 

dkx(x, t) awk 
dt = ----;;x (2') 

(the magnetic field is directed along the z axis and 
the plasma is inhomogeneous in the x direction). 
The electric field of the oscillations is assumed 
potential: 

E=-V<p, 

<p = ~ ~ ~ dk<ph. exp { i ~ kx dx + ik11 y + ikz z - iwk t}, 
f is the electron distribution function, 

N~t = ~k2l<p~tj2 
awk 8:n: 

is the "number of waves" in the state with the given 
wave vector k ( Ek is the dielectric constant for the 
potential oscillations), G is the normalization vol
ume, wHe = eH/mc, and wk and 'Yk are the frequency 
and the "local" instability increment, determined 
from the distribution function at a given instant of 
time and at the given point x. 

Equation (2) simplifies in two limiting cases. If 

'V~tN~t~_!_( awk N~t), 
ax ok:x; 

then the so-called "local approximation" is valid, 
when the wave packet has time to build up before it 
is appreciably displaced in the x direction, and its 
amplitude in the vicinity of each point x increase at 
a rate determined by the local increment 'Yk(x, t). 
In the case when the second term in the left side of 

(1) (2) is much larger than the remaining terms, the 
increment 'Yk(t) can be obtained by successive ap-
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proximation. In the zeroth approximation we have 

!___ ( awk NR.) = 0, i.e. N~t(x, t) = const(t) · ( 00
00k" )-1 (3) 

fJx fJkx ' x 

Let us further integrate (2) over that region of x 
where Nk(x) differs from zero (in the concrete case 
of drift waves, which is considered below, the reg
ion of integration is bounded by the turning points 
kx = 0, where 

kx=~[ 1 +k-,ip2 _ __!_ cT. ky dlnn0 J''•, p=cl/T.M, 
p w" eH dx eH 

Te is the electron temperature). We use formula 
( 3) and obtain 

1 fJNIL s Y~t(x, t) (fJ·w~t/Bkx)-1dx 
Y~t(t}=--= (3') 

2N" fJt S (aw~t/Okx)-1 dx 

This result can be obtained also with the aid of the 
WKB method[7]. 

Just as in Galeev and Rudakov's paper[ 5J, as well 
as in the later paper by Hoh[S], where the main re
sults are the same, let us consider the limiting 
case, when we can use the "local" approximation, 
i.e., we neglect the term 

!__(fJw" N~t) 
ax fJkx i 

in Eq. (2). A more exact locality condition will be 
written out later. 

Let us consider one of the simplest types of drift 
instability, when the electron temperature Te is 
much higher than the ion temperature, and the 
phase velocity of the waves along the field satisfies 
the conditions 

When the left-side inequality is satisfied we can 
neglect the displacement of the ions along the mag
netic field, whereas the right-side inequality con
stitutes the potentiality condition. Moreover, we 
assume that 

m/ M~SnnoTe/ 92~1, 

i.e., the plasma is not too rarefied (th~ electron 
thermal velocity VTe = (2Te/m) 112 exceeds the 
Alfven velocity v A). When these conditions are 
satisfied, the frequency of the drift oscillations and 
the local increment take the form[B] 

cT. 1 dn0 1 
00"= -ky en-;;;Tx 1+(k.Lp)2 ' 

(4) 

( cTe 1 dno )-1 Te r 
Y~t=-:JtW~t2 k 11---- --kz J dv{)(w~t-kzv) 

eH no dx mno -oo 

(5) 

where k2 = k2 + k2 . 

For t~e c:se c6nsidered here, the initial equa
tions can be written in the form 

!!__= \ 
at J 

1 aw" ( cT. d ln no )-i VTe2 
-··--= -:n:w~t2 k ----- --L~tf 
Wk at 11 eH dx no ' 

(6) 

(2:it)3 ' -a W~ti\h = W~t. (7) 

In this formulation, we have eliminated kz with the 
aid of the relation w k = kz v, so that the spectral 
density of the noise energy wk(t) is now a function 
of the variables kx, ky, v, and x, with v assuming 
values in the region cs « v « v A· Galeev and 
Rudakov[5J assumed in their investigation of this 
system of equations that the linear buildup of the 
noise at the instant of the start of the quasilinear 
relaxation will cause wk to become a function with 
a sharply pronounced maximum at the point k 1 = k 1, 
corresponding to the maximum increment 'Yk deter
mined from the initial distribution function. This 
caused Eq. (6) to simplify to 

8j _ ( v}8 w~ wi (v) ) ( ) 
Tt = L,. :n; Tim; 1 + (k.Lp)2 IV 13 A,.xf'lkyL";,j 8 

(~kx and ~k are the widths of the wave packet in 
the directioJ' of kx and ky) . If we now make the sub
stitution 

!:=~+~ix TJ = v, "' 2 TC11 ' 

then the system of equations (7) and (8) becomes 
even simpler: 

fJj a ( v}. 1 wiwii fJj ) ( ) 
7ft= (hJ :n; mno fTj'l3 1 + (k.Lp)2 /).kx/).ky (hj ' 9 

(10) 

It follows from (9) and (10) that, first, the sta
tionary state is the state with (}f/(}1) = 0, and, sec
ond, the particles move during the time of the re
laxation process along the characteristic ~ = canst. 
Since the maximum possible particle displacement 
in velocity space is ~v « v A• the displacement of 
the particle along x can be estimated in the follow
ing fashion: 
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For a Maxwellian distribution function k .tP ~ 1. 
Therefore the displacement along the x coordinate 
is negligibly small. It is precisely this first stage 
of the process which is considered in[5•6]. 

However, this does not terminate the time varia
tion of the particle distribution function f and of the 
noise wk(v). Indeed, assume that a stationary state 
in the sense indicated above has been established 
for ky = ky and kx = kx. The distribution function 
has changed in this case in such a way that of/ OT) 
= 0, i.e., 

Oj kyV Oj 
-=---- (11) 
ov WHe w"k ox 

Since the particle displacement along the x coordin
ate is negligibly small in this process, we can re
place in (11) of/ox by of0jox. We now substitute 
ofjov in (7) and obtain 

__!_owk_2 I II I (kj_2-Jcj_2) 21 ofo(dlnno)-t 
- :rt WR. V p --~ ~--

WR. ot 1 + kj_2p2 n0 ox dx · 
'(12) 

For both the initial distribution function and for 
the function satisfying condition ( 11), the increment 
is maximal when kx = 0. Of course, in our "local" 
analysis method kx cannot vanish, and the formally 
obtained results must be understood in the sense 
that 

I dIn no f dx I <S;,_ kx <S;,_ lty. 

We shall therefore replace henceforth k}_ by k2 • 

We see from (12) that oscillations with k2 Jk} 
grow, whereas oscillations with k} < 'k} attlnuate 
(see Fig. 1). The solution should therefore have the 
form of a packet with respect to ky, whose center 
km(v, t) shifts toward larger ky· Let us assume 
that the packet is narrow, i.e., ..6.k /km « 1. We y 
shall verify the correctness of this assumption 
later. We shall also consider values of ky satisfying 
the inequality kin_p ~ v?_r,efvi. Then we have of/ox 

= 8f0/8x at all instants of time, and the wave packet 
in the vicinity of a certain point v is of the form 

t 

{ ~ kp(k2-Ji2)2} 
WR. = wh(to)exp 2y0 (v)\ Y Y Y p dt' 

(1 + k 2p2)2 , 
to y 

(13) 

This relation is obtained as a result of integrat
ing (12). Here t 0(v) is the instant of time when 
quasilinear relaxation of the oscillation with k = ko 
in the vicinity of the point v took place. When l = t 0, 

by assumption, the packet is narrow in the k di
rection. This means that the function wk(t0) has a 
sharp maximum at ky = k0, with a certain width ..:6.0, 

y 

FIG. 1. 

0 

and at values of ky satisfying the conditions I k - k01 

::=:: ..6.0 the function wk(to) is equal to w0-the speltral 
energy density of the noise of the initial state. Ac
cording to the very formulation of the quasilinear 
relaxation problem, described by Eqs. (1), (2), and 
(2'), w0 is regarded as a specified quantity which is 
much larger than the value wk for thermal noise. 
However, the quantity ln(wkm(t0)jw0) can be much 
greater than unity. In particular, it is of the order 
of the Coulomb logarithm if the final noise energy 
density is of the order of noTe· 

Since the packet is assumed narrow, the quanti
ties km(t) and ky(t) are equal with accuracy to 
terms ..6.k (t)/km(t). Let us now determine the time 

variation ~f km(t) or of ..6.k (t) /km(t). To be able to y 
get along without specifying the concrete form of 
wk(t0) in the region lky- k01 < ..:6.0, and to simplify 
the calculations, let us consider the process start
ing from the instant of time when the center of the 
packet has been displaced by an amount larger than 
..6.0 and is situated in the region k2 p2 » 1. m 

Differentiating the argument of the exponential 
in (13) with respect to ky and equating the result to 
zero, and also equating ky to km(t), we obtain an 
equation for the position of the center of the packet 
km(t) 

t 

km2(t- to)= 3 ~ km2 dt'. 
to 

The solution of this equation is 

kmP = C(t- to), 

where C is a constant. 

(14) 

(15) 

We now determine the constant C and the time 
variation of the quantity ..6.k ( t) /km ( t) . To this end y 
we expand wk near the point ky = km(t) with allow-
ance for relation (14): 

{ [ 2 t- to t- to (ki- km)2 ]} 
WR. = Wo exp 2y0 (v) -----

3 kmp kmp km2 • 

(16) 

To determine the constant C we put in formula (16) 
ky = km = C(t- to). As a result we get 

C 4 ( I wkm 
= /a 'Yo v)f n --. 

Wo 
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We can now determine the width of the packet 
D.k (t) 

y 

.1Zy(t) = kmP = __ C_ =2/3ln wkm ' 

km2 (t) 2yo(t-to) 2yo(VJ Wo 

i.e., the relative width of the packet is small and 
does not vary with time. Thus, the packet, remain
ing narrow, shifts toward larger ky like 

kmP = 4yo(v) (t- to) /3ln (w,,.lw0). (17) 

The quantity wk can be determined from the 
conservation of the~nergy of the particle wave sys
tem. At each instant of time 

r mv2 . mv22 (.1v)3 
= J- (!- fo)dv ~--no--. 

2 2VTe2 VTe 

(For this estimate we used the subsequently ob
tained results concerning the character of the re
laxation with respect to v; D.v - t is the dimension 
of the region in which relation (11) was established 
for ky = km(v, t) .) With logarithmic accuracy (by 
assumption, ln(wkm/wo) » 1) we can replace 
wkm/w0 in (17) by the constant 

f 

0 LCLs -VLz,--U=..LV_m_,V_z,~VA---:V7-Te--U 

FIG. 2 

cisely in the region of v = v 2 with ky = 1/ p, kx ~ 0. 
After determination of the linear phase of the 

instability, which lasts for a time equal to ~y ln A, 
quasilinear relaxation of the distribution function 
will take place in the vicinity of the point v = v2• 

This process is described by the system of equa
tions (9) and (10) if the noise spectrum is narrow 
with respect to ky· Temporal solutions of a system 
of equations of this type were investigated by Ivanov 
and Rudakov[9], who have shown that the distribution 
function has the form of a step whose front propa
gates into the region of smaller values of T/. In our 
case, therefore, some sort of wave should propa
gate in T/ space. Since the distribution of the parti-

A __ noTe ( vz_)5 V2 
- ---- cles with respect to x remains practically unchanged 

W V .111. .1k W-;: 
0 Te x Y ~ here, this wave will travel in velocity space. Rela-

(More details on the motion of the center of the tion (11) will be satisfied behind the front of this 
packet for kmP ~ 1 are given in the Appendix.) wave, whereas the distribution function in front of 

We have determined the time variation of wk(v, t) the wave will remain equal to the initial one. It will 
under the assumption that a quasilinear relaxation follow from the particle conservation law that the 
has occurred in the vicinity of the given point v at distribution function has the form shown by the 
k = km. Let us consider now the initial stage of the dashed line in Fig. 2. 
q~asilinear process, which leads to the occurrence It would be possible to calculate the velocity of 
of noise in the entire interval of phase velocities the front u(t) with the aid of the formulas given in 
wk/kz. Assume that the initial noise w 0 is small at the paper of Ivanov and Rudakov[9]. Actually, the 
the instant of time t = 0, and is distributed over all relaxation process should proceed in somewhat 
the k, while the initial distribution function of the different fashion. If a section with of/ ov > 0 has 
resonant electrons is of the form f 0 = no(x)7T-112 /V Te formed on the distribution function (as must be the 
The subsequently obtained result can be generalized case), then ion sound will be excited immediately on 
to include the case of any initial function, without the front of the wave, near v = u(t), at a frequency 
introducing any complications of fundamental nature in the interval WHi « ws « WHe• and consequently, 
We have chosen f0 in a form which is simplest for w s » wk 1>. Accordingly we have for the increment 
calculation. As to the nonresonant electrons, we y s » Yk· Since this high-frequency instability leads 
shall assume, as before, that they have an approxi- to the formation of a plateau in velocity space, the 
mate Maxwellian distribution with temperature Te slight peak on the distribution function, represented 
(see Fig. 2). In this case we can assume that the by the dashed line in Fig. 2, becomes instantan-
distribution function is unstable in the region v 1 ~ v eously smeared over the entire region of instability 
~ v2 (v2 « v A) against buildup of potential drift when measured in the time scale under considera-
waves, the frequency and wave vector of which tion. Therefore the distribution function will ac-
satisfy relation (4) and the increment is determined tually have the form shown by the solid line in Fig. 2. 
by formula (7). From (7) it follows that the incre-
ment is maximal when ky = 1/p, kx « ky, and V = V2. l)This circumstance was called to our attention by A. B. 

Consequently, noise will build up most rapidly pre- Mikhailovskii. 
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Let us now determine the time dependence of u, 
i.e., the law governing the motion of the front. To 
this end we note that the distribution function in the 
region v 1 ~ v ~ u(t), determined accurate to v~/vf_re 
from the particle-number conservation law, is 
equal to the initial distribution function. Therefore, 
a linear growth of the drift noise takes place in the 
region v 1 ~ v ~ u( t), with an initial increment 

Vo.~ = :rtwn v / VTe (18) 

wave packet in the vicinity of the point v2 shifts 
toward larger ky· Indeed, in the time interval de
termined by_( 2 O), the v~lue of ky at the point v = v 2 

shifts from ky ~ p- 1 to ky ~ p- 1v2jv 1• This, however, 
has a negligible effect on the variation of f(x, v) 
ahead of the front, owing to the small parameter 
vYv~e' and therefore the increment ahead of the 
front will be determined as before by the initial dis
tribution function, and the velocity of the front will 
be determined by ( 19) . 

(the increment Yok is maximal when ky = 1/p, v = u, Thus, in the region v1 ~ v ~ u(t) ahead of the 
kx = 0). front the noise builds up with a linear increment 

The time necessary for the drift noise at the which is maximal at ky = 1/p, kx = 0, and v = u(t). 
point v to grow to the level of the final noise will To the right of the point u(t), the noise is approxi-
therefore be determined by the duration of the linear mately equal to the final value, but the center of 
stage the packet has already shifted toward larger ky, and 

1 the larger the distance from the point u(t), the lar-
2vo(v) lnA, ger the shift. When, for example, the front reaches 

since the subsequent linear stage, during which the 
distribution function has an inclination from zero to 
a final value 

af 
( - 1 - ) 
ky= p' kx ~ 0 , 

afo 
fJv 

lasts for a time on the order of 1/y0• The latter can 
be verified if we substitute the final noise level in 
relations ( 9) and ( 1 0) . 

Thus, the law governing the motion of the drift
noise front and of the point where the derivative on 
the distribution function changes (Fig. 2) can be 
written in the form 

- 1 
ky=-, kx = 0. (19) 

p 

From this we can determine the time required for 
the wave front to traverse the instability region 

1 v2 - v1 _ 1 
t- t0(v2)= --------InA, ky = -, 

2v0;;·( v2) v1 p 
kx =0. 

(20) 

Of course, to find the form of the distribution 
function in a small vicinity u- 1b.v ~ 1/ln A of the 
point u it would be necessary to solve a system of 
quasilinear equations with simultaneous allowance 
for the drift and ion-sound oscillations. We have 
shown that the law of motion u(t) can be determined 
without solving such a complicated system of equa
tions. It is interesting that the ion-sound oscilla
tions, which determine the form and velocity of the 
motion of the front of the wave in v-space, vanish 
immediately behind the front, where the relation 
(11) is satisfied, i.e., Bf/Bv < 0. 

Formula (19) is valid also when account is taken 
of the fact that during the time before the wave 
front reaches the point v = v 1, the center of the 

the point v 1, then at the point v 1 the center of the 
packet will be at ky = 1/ p, whereas at the point v 2 

the center will have time to move to ky f'::j v 2/pv 1• 

In conclusion, let us examine the locality criter
ion. For the drift instability considered by us, we 
can write this criterion in the form 

1 no ,.. kxp v ~M 
! pdn0/ dx ?> 1 + ( kyp) 2 ----;;:;,- ' 

i.e., kx should not be too large. This condition is 
satisfied automatically, since at all instants of time 
the increment is maximal when kx = 0. 

Let us discuss also certain consequences of the 
obtained solutions. First, if initially at km ~ 1/p 
the resonant particles with respect to x have prac
tically remained in place, then after a time 

1 VTe 
--InA 

Vo'k v2 

the quantity kinp 2 becomes of the same order as 
v~elv~, and consequently the displacement of the 
resonant particles will be of the order of the char
acteristic length of the inhomogeneity. Second, the 
previously noted property of the nonlinear incre
ment, consisting in the fact that the arising pertur
bation with a given value of the wave number sup
presses the instability of oscillations with longer 
wavelengths, and to the contrary has little influence 
on the short-wave part of the spectrum, should take 
place also for other types of drift instability, par
ticularly when Te = Ti. To this end it is necessary 
that the frequency build up at a slower rate than ky 
raised to the first power. As a result of the indica
ted effect, the shorter waves should predominate in 
the steady-state spectrum of the oscillations of the 
inhomogeneous plasma in a magnetic field. 
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APPENDIX 

Let 

{ ky3p3 } 
w,. (to)= Wo exp 2yo ( 1 + k!lp2) 't . 

Then we obtain in lieu of (15) the following relation 
for the determination of km(t): 

k 4p4 - 3k 2p2 ~~ 
(t- to+ 't) m m = km2p2dt'. (A.l) 

3k 2p2 -1 m lo 

Let us differentiate the obtained equation with res
pect to t: 

dx 2(x+1)(3x-1)x 
(t t + 't) X = km2p2• 

- 0 dt= (3x2 -2x+3) ' 

The solution of the obtained differential equation is 
of the form 

(x + 1) (3x- 1) = C(t _to+ 't), C = const. (A.2) 
x'" 

When t = t 0 the quantity K is equal to K 0, where K 0 is 
determined from the equation 8wk(t0)/8jy = 0 (in our 
case K 0 = 3). Thus, finally 

(x + 1)(3x -1) = (xo + 1) (3xo -1) (t _to+ 't). (A.3) 
x'i• 'tXo''• 

The form of the initial function wk(t0) chosen by 
us corresponds to the distribution of noise that has 
grown linearly during a time T from w0 to the start 
of the quasilinear relaxation from ky, corresponding 
to the maximum of the increment at the initial 
Maxwellian velocity distribution. 

At any rate, it can be stated that the process of 
quasilinear relaxation, which leads to establishment 
of relation (11) in the vicinity of the point v = wk/kz, 
lasts for a time of the order of 1/y0(v). Therefore, 
accurate to quantities on the order of ln-1 A, we can 

equate t 0 to T. Consequently, formula (A.3) takes 
the form 

(x+ 1) (3x -1) (Xo+ 1) (3Xo-1) t 

x''• Xo'J, to 
8 (A.4) 

t0 = --_-lnA = 't. 
3"J'3yo 

It follows from (A.4) that with good accuracy, we 
get km_P ~ t even when t ~ t 0• 

By a derivation similar to that given in the text, 
we can show that the relative width of the packet is 
small at all instants of time: 

d:)t) 1 
km2 (tJ = lnX<L 
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