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The damping coefficient of fourth sound in a plane-parallel capillary or in a system of plane
parallel capillaries is calculated by means of the two-fluid hydrodynamical equations for 
helium II. The sound absorption is due to a viscous mechanism of energy dissipation and to 
heat flow through the capillary walls. 

As is well known, two types of vibrations can 
arise in helium below the A. point: ordinary (first) 
sound and second sound, which corresponds princi
pally to temperature oscillations. 

A few years ago, Pellam[ 21 and Atkins[ 21 called 
attention to the fact that one can materially change 
the character of sound propagation in helium by re
tarding the normal motion in it. The sound in a 
thin film of helium has been called third, and in a 
sufficiently thin capillary, fourth sound. 

The speed of fourth sound (we shall be inter
ested only in fourth sound), according to Atkins, is 
equal to[ 11 

U4o=( ~u12 +~u22 )'!.. 
\ p p 

(1) 

It is correctly measured if the experiments are 
carried out on a complex system of branched capil
laries made from powdered rouge. The dimensions 
of the very curved capillaries here are of the order 
of the distances between them. Naturally, such a 
system presents difficulties for theoretical inves
tigations. We consider the propagation of sound in 
an isolated capillary and in a system of identical 
parallel capillaries. Such a geometry permits an 
exact calculation not only of the sound velocity but 
also of the absorption coefficient. 

To retard the normal component in the process 
of sound propagation, it is sufficient that the length 
of the viscous wave A.v or the length of the free 
path of the elementary excitations l be much 
greater than the dimensions of the capillary d. If 

(2) 

1>Here and below, we shall neglect thermal expansion in 
this paper. 

then the absorption coefficient can be expressed 
in macroscopic terms-by means of the macro
scopic dissipation coefficients (the hydrodynamic 
case) If now 

l~cl, (3) 

then a microscopic consideration is required. In 
the present communication, we consider only the 
hydrodynamic case. The hydrodynamic consider
ation is valid for sufficiently low frequencies 
(w « 277/d2pn, where 2d is the width of the capil
lary, 17 and Pn the viscosity and the density of the 
normal component of the helium) and comparatively 
high temperatures. 

The energy dissipation in the superfluid helium 
is described by five viscosity coefficients and the 
coefficient of thermal conductivity. The absorp
tion of sound is determined by viscous mechanisms 
(they play the dominant role in the absorption of 
first sound) and thermal conduction (the latter is 
responsible for the absorption of second sound), 
the various dissipation mechanisms entering addi
tively into the absorption coefficient. This allows 
us to consider the several mechanisms independ
ently. We first calculate the viscous portion of the 
absorption coefficient. 

The complete linearized set of hydrodynamic 
equations, without account of the normal (dissipa
tive) thermal conductivity, has the following form: 

p +divj = 0 
aj i a ( avni avnll. 2 avnl ) 
-+V;P=Tt- --+----{j;~~.--at ax,. ax,. ax; 3 ax, . 

a 
+ -[~t div(j- pvn) + ~ divvn], ax; 

Vs + V11 = V [~adiv(j- pvn)+ ~divvn],. 
(crp)" + crp divvn = 0. 

(4) 
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Here p is the density, a the specific entropy, P 
the pressure; TJ, t1 = t 4, t 2, t 3 are the viscosity 
coefficients; Vn and Vs the velocities of the nor
mal and superfluid components; j = PnVn + PsVs, 
Pn(s > the density of the normal (superfluid) com
ponent, and VJ.J. = -a'\lT + p-1vP. 

For simplicity, we shall consider a plane capil
lary, unbounded in two directions, and choose the 
z axis along the third direction. The set of equa
tions that have been written down, if we add the 
dissipative component with the corresponding 
boundary conditions to the last equation, makes it 
possible to consider the propagation of sound in 
the capillary for any relation between the width of 
the channel and the length of the viscous wave. In 
particular, one can show that first and second 
sound are propagated in the capillary when 
w » 2TJ /d2Pn· When the frequency decreases, the 
velocity of first sound changes and when w 
« 2TJ/d2pn, it becomes equal to the velocity of 
fourth sound (see (1)). Oscillations corresponding 
to second sound are damped and cease to propa
gate. 

If we consider waves whose lengths is much 
greater than the dimensions of the capillary, then 
the set (4) can be greatly simplified, since Vzn and 
v zs can be set equal to zero, while P, p and a can 
be assumed to be independent of the coordinate z. 
Moreover, if we direct the x axis along the direc
tion of propagation of the wave, we then have (we 
omit the vector indices) 

i> + aj I ax = o, 
aj aP ( 4 ) a2vn a2vn az ( Vs -vn) 

at+ ox = 3 '11 + ~3 ax2 + '11--;;;;:- + ~tPs {}x2 

(5) 

We average the set of equations over the z co
ordinate. As a result, only the second component 
of the right side of the second equation is changed. 
It is written in the form (TJ/d)(avn/az)z =d· Since 
vnlz=d = 0, we get avn/dz = -tNn(O)/d, where {3 
is a quantity of the order of unity, which can be de
termined in the exact solution of the two-dim en
sional problem with the corresponding boundary 
conditions. We denote 

(6) 

(according to the Appendix, for a plane capillary, 
{3 = 3; for a cylindrical capillary, {3 = 8). With ac
count of the notation introduced, the set of equa
tions (5) is rewritten in the following form: 

p + ajjax = 0; 

aj aP ( 4 ) azvn az 
dt+ ax= 3'11+~ axz -Rvn+~tP•axz(v.-vn), 

. a,... az iJ2Vn 
Vs + ax= Ps~ i)x2(Vs- Vn) + ~ iJx2 ' 

fJvn (7) 
(ap)"+ap ax=O. 

Eliminating vs and Vn from Eqs. (7), assuming 
that all the variable quantities depend on time and 
the coordinates according to an exponential law 
e-i<wt-kx>, and neglecting the thermal expansion 
of the helium, we get 

jjp {[' 4 ) J p' ( wz - ap k2) p' = - iw \ "3 '11 + ~2 k2 + R e. 

+ [ ( : 'I'J + ~- ~1p) k2 + R J :' } , 

( fJT Pn ) , { [ R ( 4 TJ ~z ) J p' a-k2 --w2 a= iw -+ ---+--~, k2 -aa p.a p 3 p p p 

+ [~+ (~~+~- ~,+p~- ~1) k2]~ }. (8) 
p 3p p . (J 

The primes denote the amplitudes of the variable 
parts of the specific entropy and the density. Since 
a P /ap is the square of the velocity of first sound 
(uh, and (a 2p IPn> aT /aa is the square of the veloc
ity of the second sound (u~), it is convenient to in
troduce the following notation: 

R = R +(4/s'l') + ~z- ~tP)k2 (~1 = ~,). (9) 

Setting the determinant of the system (8) equal to 
zero, we get for the square of fourth sound speed 
u~ = w2/k2: 

z ( Pn - z + P• - 2 ) . Pnk2 ( 2 - 2) U4- -Uz -Ui -£-- U4- Ut 
p p wR 

X (u,.2 - 11z2) = 0. 
(10) 

Taking into account the fact that we are interested 
in only one solution of the latter equation (which is 
weakly damped as R-oo), and also the smallness 
of the dissipative components, we have 

where u40 is determined by Eq. (1). 
From the last expression, we easily find that in 

the case under consideration ( l « d), the sound ab
sorption coefficient due to viscous mechanisms is 
equal to 

(12) 
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The first component describes the dissipation 
of the sound energy as a result of the mutual fric
tion of the superfluid and normal components. Ac
cording to Khalatnikov and Chernikova, [ 3 J 

3 ( p iJu1 S )z Ss = :=---- --+- U12pn.ph Tph.r 
~p2 U1 iJp CHe 

where S and CHe are the entropy and the heat ca
pacity of a unit volume of the liquid, Pn.ph is the 

·phonon part of the normal density. We shall not 
write out the rather long expressions for the pho
non -r<?_ton relaxation time T ph. r and the coeffi
cient {3. They are contained in [ 3 J. 

The second component is connected with the 
slipping of the normal component. We note that one 
should observe a significant increase in the damp
ing coefficient of the fourth sound near the i\ point, 
since the velocity of the second sound and Ps van
ish as T-- Ti\. [ 4J 

We also note that in the absorption of second 
sound, a modification of which is fourth sound, [ 5• sJ 

/:; 2 plays the principal role, [ ?J while here both TJ 

and 1:;3 are involved. If we take it into account that 
u~ ::::; u~ps/p, then Eq. (12) is simplified to become 

r vis = \;spw2 + rF w2pn2 ( 1- uz2 )2. (13) 
2u12 6 ps'rJ u12 I 

From the latter formula, it is seen that the tem
perature dependence of the first component is de
termined principally by the temperature depend
ence of the coefficient of second viscosity 1:;3 and 
the second component not only by the viscosity but 
also by the temperature dependence of the normal 
component density. 

We shall now explain the role of the thermal 
conductivity in the propagation and absorption of 
fourth sound. In the consideration of the viscous 
mechanisms of dissipation, the role of the walls of 
the capillary is that the velocity of the normal 
component on them vanishes; in clarifying the role 
of the thermal conductivity, it is necessary to take 
it into account that the thermal emission takes 
place across the walls. Therefore the complete 
set of equations of hydrodynamics of helium (in the 
last equation, one must include the dissipative heat 
flow), must be supplemented by the equation of 
thermal conduction outside the gap (in the wall)_: 

. X 
T w = c: b.Tw, (14) 

where kw, Cw and Tw are the thermal conduc
tivity, heat capacity and temperature of the wall. 
The latter is measured from the temperature far 
away from the capillary, that is, 

T w = 0 for lzl-+ oo. (15) 

On the boundary with helium, the usual boundary 
conditions for helium are satisfied: 

-xw iJT,w/iJz = Qz (z =d), 
(16) 

-xw8Tw/8z=a(T-Tw) (z=d), 

where 

Qz = -xiJT/fJz + pTcrvnz =energy flux density 

K is the thermal conductivity of the helium and a 
the specific coefficient calculated by Khalatnikov; 
the inverse quantity a-1 is the thermal resistance 
of the boundary. [ 8 J 

The last equation of the set (4), which is supple
mented by the dissipative heat flow, takes the form 

(crp)" = ; b.T. (17) 

We have omitted the component up div Vn since, 
in the approximation in which we are interested 
(without account of the slipping of the normal com
ponent), the velocity of the normal component must 
be set equal to zero [here the total set of equations 
consists of the first, third and fourth equations of 
the system (4)]. Averaging Eq. (17) over the thick
ness of the shell, neglecting the dependence on the 
coordinate z of the quantities a and p, we get 

x ( iJT) fJ2T 
T(ap)" =-d ~ +x-8 2 • 

uZ z=d X 
(18) 

By using the solution of Eq. (14) with the bound
ary conditions (15) and (16), it is possible to ex
press the first component of the right side of 
Eq. (18) in terms of the temperature of the helium 
on the boundary. If we now neglect the dependence 
of the temperature on the coordinate z, which is 
justified by the small thickness of the capillary, 
then Eq. (18) takes the form 

T(crp)" = fJT(x fJZcr' - 1 cr' l (19) 
iJa iJx2 d 1/a + 1/yxw J' 

where 

Rev> 0. (20) 

As d- 0, if the thermal resistance of the bound
ary 1/ a and of the wall of the capillary 1/y Kw are 
finite, then u' vanishes, which changes the charac
ter of the wave propagation in the capillary. As
suming u' = 0 and Vn = 0 in the system (4), we 
easily find that the square of the velocity of sound 
propagation is equal to (see ( 2J): 

Ucr2 = (PsfP) iJP jiJp. 

Actually, two equations are left from the system 
( 4), as u' = 0 and Vn = 0: 

\ 
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p + Ps divv, = 0, 
0 1 
v,+-VP=O, 

p 

whence, by eliminating Vs, we obtain 

(21) 

2 Ps aP Ps 2 (22) 
Ua = p ap = pU1 . 

In first equation of the system (2), keeping the 
component which describes the friction between 
the superfluid and the normal components (it con
tains 1;"3), we get 

.. Ps 8P . 
p- p 8P dp = ~3p.~p, (23) 

whence we easily find the absorption coefficient 
(more accurately, the part of it that is independent 
of the thickness of the capillary): 

r (a) - 1" 2/2 2 vism- o,3j)Ul U1. (24) 

We note that in this case this is an exact formula 
(cf. (13)). The index (a) in the sound absorption co
efficient means that, because of the walls, the en
tropy a is constant. 

For the determination of the coefficient of sound 
absorption due to thermal conductivity, it is con
venient to make use of Eq. (19), expressing a' ap
proximately in terms of p: 

a' = - T a .!!!!._ j__ ' 
8T Rcr 

1 1 
Ra= 

d 1/a + 1/yxw 

(25) 

(26) 

Substituting the value of a' in the equation of mo
tion of the superfluid components, and eliminating 
v s by means of the equation of continuity, we ob
tain 

whence 

.. p. 8P Tp8a2 • 
p----~p=--dp 

p iJp Rcr ' 
(27) 

(a) _ Tpa2 
2 1 

ftherm- --2-w ReR-. (28) 
U1 a 

By making use of Eq. (30), and neglecting k2 in 
comparison with wCw/Kw, we get 

r<"> Tpa2 2 2 1/a+(1/2wCwxw)'" (28 ) 
therm=~w d 1ja2 +[1/a+(2/wC.wx.w)'"]2 • a 

We now make clear how the second component 
in Eq. (12) changes if the isothermal character of 
sound propagation in the capillary is taken into 
account. For this purpose, we set a' = T' = 0 in 
the set (7) (the last equation need not be consid
ered), and obtain from the second and third equa
tions 

Pn aP op 
Vn~-----. 

. pR iJp ox (29) 

Substituting (29) in the equation of continuity and 
again eliminating v s• we find 

•• Ps aP iJ2p Pn28Pj8p f)2p 
p-p iJp ax2 = pR 8X2' 

and, finally, 

r (a) J'J 2 2/6 
vis (TJ) = u-pn Ul Ps'I'J• (30) 

Thus, the total absorption coefficient, due to 
viscous mechanisms, is equal in this case to 

f(al - ~pw2 + d2 Pn2w2 (31) 
vis -Tur 5~· 

This expression differs from Eq. (1:3) in the ab
sence of the factor (1 - uVu~) 2 , which is especially 
important at low temperatures. 

We shall not make a comparison of the absorp
tion coefficients (31) and (28), since the latter de
pends essentially on the properties of the walls of 
the capillary. It should be noted that the principal 
role in the dissipation of sound energy is played by 
surface mechanisms (the second component in Eq. 
(31) and (48)). We turn our attention to the fact 
that r~g~rm depends linearly on the thickness of 
the capillary, while the second component in Eq. 
(21) is proportional to d2 (see the definition of R 
and Ra-Eqs. (6) and (26)). 

The different dependence on the thickness of R 
and Ra means that the situation can exist in which 
R should be regarded as a large parameter2> 

(R ~ 1/d2), while Ra is small (Ra ~ 1/d). This 
should hold in each case for large thermal resist
ance of the walls of the capillary. In this case, the 
dissipative losses from thermal conduction in the 
propagation of ordinary fourth sound (the velocity 
of sound is determined by Eq. (1)) are small. Neg
lecting k2 in comparison with wCw/Kw, we get 

ftherm 
u22pn [ w2 2 1/a + 1'1/2wCw·Xw l 

---- X- +----- --:-=-;::::::;~;::==-:-::-
2u4o2PCHe U4o2 d 1/ a 2 + ( 1/ a + 1'2/ wC w x w) 2 

(32) 
Let us estimate numerically the coefficients of 

absorption associated with the slippage of the nor
mal component and with the thermal emission 
through the walls of the gap (the second component 
in Eqs. (13) and (32)). For a gap of thickness 
d = 10-5 em at T = 1.5° K, we have fviS(7]l 
~ 10-9 w2 [sec-1], while ftherm ~ 1 [sec-1]. In the 
estimate of ftherm• the heat transfer coefficient 
of the quartz was taken to be equal to 0.25 watt/ 
cm2 deg. [ 9J 
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The coefficient of absorption due to thermal 
conductivity has a comparatively complicated fre
quency dependence. At low frequency, 

r, _ Uz2Pnl"2wCw·Xw 
therm- 4 2 C d . 

U4o p He 
(33) 

From this formula it is seen that the sound of ex
tremely low frequency cannot be propagated in the 
capillary, since rtherm/w tends to infinity as the 
frequency approaches zero. 

As a condition of applicability of Eq. (33), we 
use the inequality 

(see Eq. (13) and the footnote2> ). 

Thus, for fourth sound to be able to propagate 
in the capillary it is necessary that the thickness 
of the capillary be much greater than the length of 
the thermal wave, and much less than the length of 
the viscous wave. 

We now proceed to a system of equally spaced 
capillaries, the distance between which is 2d'. 
Equation (19), as can easily be seen, has the form 

. fJT ( fJ2cr 1 a' ) T(crp) =- x-- ·· (35) aa fJx2 d 1/a + cth(yd')/vx.w ' 

while the value of y is determined by Eq. (20). 
If d and d' are of the same order, and small, 

the following approximate expression follows from 
(35) and (20): 

aT r ( d' d' 1 T(ap)'=- - x+-x,w)k2 +iw-Cw a', aa d d 

which it is convenient to write in the form 

C eff T + Tap = Xeff 11T, 

by introducing the effective values 

d' d' 
C eff = CHe + d C w, Xeff =X +dxw. 

(36) 

We now use Eq. (36) for obtaining the dispersion 
law of the sound waves in the set of capillaries. 
The complete set of equations consists of Eq. (36) 
and the following equations: 

P+Psdivv.=O, v.-rp-1VP-crVT=O. (37) 

Eliminating vs, and then, approximately, T' (the 
remaining principal terms in the expansion in 
powers of the frequency w), we get 

2)R and Ra have different dimensions; therefore, they do 
not admit a direct comparison. We shall give the correspond
ing estimates below. 

.. ( p, fJP pp2T ) p,a2T . k2 ( 38) p- -- + -- f1p =--2-~W 2 Xefff1p. 
p iJp C eff C eff (J) 

It is then seen that the velocity of sound propaga
tion in the system of capillaries is equal to 

1 _ [ Ps 2 + CHe Pn 2 ]'/, 
U4 - -U! ---Uz 

P C eff P 
(39) 

and is identical with u40 only when the heat capac
ity of the solid phase can be neglected in compari
son with the heat capacity of the helium. 

It follows from Eq. (38) that the coefficient of 
acoustical damping due to the thermal conductivity 
is equal to 

,-,(1) 2T 2/2Cz ,, 
.Ltherm= p,cr X:eff W eff U4 • (40) 

We still note that in consideration of sound in r.. 
set of capillaries one must in principle take into 
account the transition from u40 to u~ in the for
mulas that describe the viscous part of the absorp
tion coefficient (see Eq. (12)). 

APPENDIX 
0 

To obtain {3, it is necessary to solve the set of 
equations (4) with the boundary conditions 

Vnx = 0, Vnz = 0, Vsz = 0 for Z =+d. (41) 

The solution for the correction we shall seek in 
the form 

Yn = L1VQ1 +LzVQ2+ u, v. = N1VQ1 + N2 V'Qz. .. . (42) 
a = M1Q1 + MzQz, 

where Qi and u are functions of the coordinates 
and time (the time dependence is taken in the form 
e-iwt): Lit Ni> Mi (i = 1, 2) are the amplitudes 
which do not depend on the coordinates and on the 
time. 

Substitution of (42) in (4) leads to a set of equa
tions for Qi and u and to coupling between the am
plitudes: ,. 

ilu + k32u = 0, div u = 0; (43) 

N; = P;L;, M; = D;L; (i = 1, 2), 

p _ 1 k;2 [w(4/at'J +~-~IPs)+ iPnUt2]- iw2pn 
;-p; iw2 -k;2 (w~1+iu12 ) ' 

D· _ k;2a knw (4/at'J + ~) + ipu12]- iw2p ( 44) 
,- (iw-k;2X)P iw2 -k;2 (w~~+iu12 ) ' 

where k~ and k§ (with account of the smallness of 
the dissipation terms) have the form 

\ 
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The solution for Qi and u which satisfies (43) 
and (41) can be written in the form 

Substituting (46) in (42) and taking (44) into ac
count, we get 

-i(ro!-kllx)[ L k · k + L k · k Unz = - e 1 _l_l Sill _j_tZ 2 _]_2 Slll _1_2Z 

A k" . k J - k_1_a sm _1_3z , 

(47) 
u •• = -e-i(cot-k,(•J [LtPtk..Lt sin k..LtZ + L 2P2k..1_2 sin k..LzZ]. 

In accord with (47) and (41), we obtain a set of ho
mogeneous equations whose determinant can be set 
equal to zero: 

k .Ll sin k .1.1 d k _1_2 sink _1_2 d 
P1k .1.1 sink J..td P 2k .1.2 sink .1.2 d 

cos k_1_3 d 
-k11k13 sink_1_3 d = 0. 

0 
(48) 

According to condition (2) I k31 d « 1 and since 
I k3l » I k2l > I ktl, then I k2l d « 1 and I k3l d « 1. 
Then cos k1id and sin k1id (i = 1, 2, 3) in (38) can 
be expanded in series, and only terms of order 
d2kli retained. (Such an expansion is valid since 
the solution obtained for k~ 1 is less than k3 in ab
solute magnitude.) 

Solving Eq. (8) with account of the smallness of 
the dissipation terms, we get, finally, 

3onJ u4o2 w2 
k1122=i +-. (50) 

dl-ut2 Uz2 p n Uz2 

The first solution is fourth sound. The second 
solution has the same structure as k~. However, 
the presence in the first term of (50) of the factor 
1/d2 leads to the result that the first component in 
(50) is larger than the second by several orders of 
magnitude, so that, in the case I k3 1 d « 1 (the 
so-called "complete" damping of the normal 
part[ 6' 11 J), the second sound is modified into very 
rapidly damped waves. The thermal waves (modi
fied second sound in the partial damping of the nor
normal part[ 6• 11 J) were observed at sufficiently 
large d. In this case, all the calculations given 
are inapplicable. 

From Eq. (49), we find the absorption coeffi
cient of fourth sound, brought about by the slippage 
of the normal component: 

L\! (t) 1 
k) (t) = In X~ 1. 

Comparing (51) with (12), we see that {3 = 3. 
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