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A method is proposed for solving several nonlinear radiation-transport problems by reducing 
them to linear ones. This is attained by introducing a variable photon free path that depends 
on the radiation density at a point. We consider the case of resonance scattering of light in the 
approximation of complete frequency mixing. It is assumed that the distortion produced in the 
spectral lines at large radiation densities can be neglected. 

}. RADIATION transport phenomena have been the 
subject of a large number of papers, with particu
lar attention paid to cases when the scattering by 
one center is elastic. [ 1 • 2 J Then there exists a 
constant mean free path, and at distances much 
larger than this path the particle propagation can 
be regarded as diffuse. This is not the case if the 
scattering is incoherent, i.e., is accompanied by 
change in the energy of the incident particle. The 
most typical case is resonance scattering of light. 
Here, if we neglect non-resonant processes, the 
mean free path far from resonance tends to in
finity. This means that the diffusion approximation 
is nowhere applicable. [ 2• 3J It is then necessary to 
solve the exact transport equation in the entire re
gion. 

Allowance for nonresonant processes leads, of 
course, to a limit on the mean free path, but if the 
cross section of these processes is small in the 
center of the line, then we can expect their neglect 
not to influence strongly the behavior of the radia
tion at the center of the line in the case of excited 
atoms at not too large distances from the bound
aries or from the source. This assumption is con
firmed by our calculations, [ 4J if the nonresonant 
process is taken to be absorption of light by ex
traneous impurities. 

The methods for accurately solving the sta
tionary transport equation in the case of reso
nance scattering were developed for semi-infinite 
space and plane-parallel layers. [ 2• 5• SJ No at
tempts were made, however, to solve exactly the 
transport equation with allowance for stimulated 
emission, a factor that becomes important at large 
light intensity. In some problems (luminescence) 
the need for taking stimulated emission into ac
count arises at readily attainable light fluxes. It is 
easy to see that the presence of stimulated emis
sion leads to a dependence of the photon mean free 

path on the radiation density at a point, and conse
quently on the coordinates. This means that the 
inhomogeneity of the medium, which results from 
the fact that there are two kinds of atoms, in the 
ground and excited states, becomes significant. 

This paper is devoted to an exposition of a 
method for exactly solving the stationary trans
port equation with allowance for stimulated emis
sion. 

2. As usual, we confine ourselves to a homo
geneous medium consisting of two-level atoms, 
which emit light in resonance fashion. We neglect 
all the nonresonant processes, including elastic 
scattering. We assume the medium to be infinite 
in the X and Y directions and assume all quanti
ties to depend on one coordinate z. Then the radi
ation transport equation takes the form 

8/v(z,!l) 
C!l------az-- = -kvlv(z, !l) (N- n*) 

( 
Xv \ + T. + kvlv(z, !l) + n• + fv* (z, !l), 
:ut 

(1) 

where Iv is the density of photons of frequency v, 
emitted at an angle -8 = cos-1 J-! to the z axis, kv is 
the absorption and stimulated emission coefficient, 
Kv is the spontaneous emission coefficient, N the 
total density of the atoms of the medium, n* the 
density of the excited atoms, c the velocity of 
light, and f,j' the density of the radiation sources. 
Thus, if a radiating plane is located at a distance 
z0, then f,j<(z, J-!) = CfJv(J.L)o(z- z0) (the function 
CfJv(J-L) takes into account the dependence of the dis
tribution of the emitted photons on the frequency 
and on the direction). In some cases, instead of 
introducing the function f: into the transport 
equation, an appropriate boundary condition is im
posed on the photon density. [ 1• 2J 

Equation (1) was obtained assuming complete 
redistribution over the frequencies, [ 2J when the 
probability that the atom will emit a quantum of 
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definite frequency does not depend on the fre
quency or the direction of the quantum exciting the 
atom. This condition is well satisfied in the case 
of homogeneous line broadening, for example by 
collisions. When the line shape is determined by 
the Doppler effect, a correlation exists between 
the emitted and absorbed photons. [ 2J 

The kinetic equation for the density of the ex
cited atoms is of the form 
N • oo 1 

2~ ~ k-.dv ~ lv(z.fl)dfl 
0 -1 

1 00 100 1 

= n* [- ( ~ Xv dv + 0') +- ~ kv dv ~ lv (z, fl.) d11]. (2) 
4n o 2 o -1 

The first term in (2) describes the increase in the 
number of excited atoms due to resonance absorp
tion, and the second describes the loss due to 
spontaneous emission, collision quenching (u), and 
stimulated emission. 

In writing out (2) we did not take into account 
the processes of excitation and ionization by colli
sions without photon participation. The relative 
contribution of these processes is small at the rel
atively high photon densities considered in this 
paper. We likewise disregarded the flux term 
Vf..!on* /oz, which is always permissible if there 
are no external forces to produce a flux of the en
tire medium. 

We introduce the following notation: 

z 
X=-N, 

c 

Then Eqs. (1) and (2) take the form 

O/v(X,fl) . Xv 
11---= -k-.1-.(x, fl) (1- 2n(x)) + -n(x) + fv(x, fl), ox 4n 

00 100 1 

n(x) =2:n:(~ x-.dv+cr)- ~ k-.dv ~ lv(X,fl)dfl 
1- 2n(x) 0 0 _ 1 

= <l>(x). 

We shall henceforth assume that kv does not de
pend on the coordinate. 

( 4) 

(5) 

At a high degree of excitation and at high radi
ation densities, the properties of the medium, in 
general, change strongly. The line shape also 
changes. A study of the obtained relationships is 
beyon:d the scope of the present paper. We confine 
ourselves to low temperatures, at which the de
gree of ionization is small. We assume that the 
main processes leading to a broadening of the level 
under consideration are atomic collisions. At not 
too high radiation densities, the collision broaden
ing prevails over broadening under the influence of 
the radiation. Under these conditions we can dis-

regard the distortion of the line shape under the 
influence of the radiation. We shall not present 
here estimates of the limits of applicability of 
these assumptions since they can be readily ob
tained. 

3. Equations (4) and (5) contain nonlinear terms 
describing the influence of the degree of excitation 
of the medium on the absorption and emission 
processes. When n(x) « 1, they go over into the 
well known linear equations in which stimulated 
emission is not taken into account. 

The equations presented differ from the corre
sponding linear equations by a factor 1 - 2n(x), 
which corresponds to a local increase of the mean 
free path of a photon of given frequency. In trans
port problems, a natural measure of the length is 
the photon mean free path at the center of the line. 
This suggests the following substitution: 

dX/dx = 1- 2n(x). (6) 

Assuming that all functions depend on the new 
variable X, we obtain the equation 

ol-.(X, 11) = -k I (X ) + Xv <!> + '¢v(X, 11) (7) 
11 oX "" ' 11 4n 1- 2n(X) ' 

which is already linear, but has an unknown source 
function. 

The transformation (6) is mutually unique if 
1- 2n(x) > 0. As seen from (5), this condition is 
satisfied. Then 

~(x- xo) = !dX/dxl ~(X -Xo) = [1- 2n(Xo)] ~(X- Xo). 

Let us consider first a flat source of photons. 
Then fv (x, f..!) = CfJv(f..!)O(x- Xo) and 

'ljlv(X, f.l) (1- 2n)-i = <pv(fl)~(X- Xo) = fv(X, fl). (7a) 

Substituting (7a) in (7) we obtain, in terms of the 
variables (X, f..!), the same equation as is derived 
from (4) and (5) when n(x) « 1, i.e., when stimu
lated emission is neglected. 

This transport equation was analyzed many 
times, and it is well known that the function <I>(X) 
satisfies the following integral equation (for an in
finite medium): 

00 

<!>(X)=~ K(X- Y)fD(Y)dY +F(X), (8) 

where 

K (X)= [ 2 ( S Xv dv + a )TiS dv xvkv S _e-_k,_l x_J u du, 
0 0 1 u 

(9) 



352 ABRAMOV, DYKHNE, and NAPARTOVICH 

X exp [- ~ (X- Xo) Je (X- Xo) 

+ CJ)v(-~-t)exp [ :v (X- Xo) J 8(Xo- X)}, 

8 (X)= { 1• X> O (10) 
0, X<O. 

For n(x) « 1 we have X ~ x and <I>(x) ~ n(x). 
Then Eq. (8) expresses the fact that the total num
ber of excited atoms consists of the atoms excited 
directly by the radiation from the source (free 
term) and atoms excited by scatter radiation (the 
integral term). 

Equation (6) can be rewritten in the form 

dx = [1- 2n(X)]-1dX = [1 + 2<D{X)]dX, 

or 
X 

X= X+ 2 ~ <D (X) dX. (11) 
0 

The obtained system should be solved in the 
following sequence. We solve first Eq. (8). Carry
ing out the integration in (11), we determine x(X) 
from the known function <I>(X). We invert the ob
tained function and substitute X(x) into <I>(X). The 
obtained solution contains an unknown parameter 
Xo, which must be determined from the equation 
x(Xo) = Xo· The density of the excited atoms as a 
function of the coordinate x is determined from 
the formula 

<D(X(x)) 
n(x) = · 1 + 2<D(X(x)) 

(12) 

We note that X~ x everywhere. The photon den
sity and the excited-atom concentration change 
more slowly than in the linear approximation. This 
circumstance has a simple physical meaning, con
nected with the fact that the increase in the excited
atom density leads to a lowering of the photon
absorption probability. A local increase takes 
place in the mean free path. 

We consider now two plane sources located at 
the points xi and x2. The transformation (6) trans
forms them into two sources having the same in
tensity as before, but situated at the points Xi and 
x2. The superposition principle, which follows 
from the linearity of (8), enables us to write the 
solution in this case in the form of a sum of solu
tions for a single source. The nonlinearity of the 
problem is manifest in the change in the distance 
between the sources. As follows from (11), 
I X1- X2l < I Xt- x2l· Thus, the simultaneous in
fluence of the sources reduces to a decrease in the 
distance between them. The latter is determined 

after solving the linear problem from the system 
of algebraic equations 

x(Xt) = Xt, x(X2) = x2. (13) 

The foregoing pertains to an arbitrarily distrib
uted source. In this case it will be necessary to 
solve in lieu of (13) the nonlinear integral equa
tion 

00 

x=X(x)+2 )G(X(x),Y(y))F(y)dy, (14) 

where G(X, Y) is the Green's function of Eq. (8), 
connected with its resolvent R(X, Y) by the rela
tion G(X, Y) = o(X - Y) + R(X, Y). The resolvent 
is the solution of (8) with an isotropic plane source 
at the point y, i.e., 

(R) "v /v (x.~-t)= lml)(x-y). }'(Rl(X)=K(X-Y), 

F(X) is obtained by generalizing formula (10) to 
include the case of distributed sources. Equation 
(14) must be solved numerically. 

The method described above reduces the prob
lem with a plane source to a linear problem. As 
regards the linear problem itself, it has an ana
lytic solution in the case of infinite and semi
infinite media. For layers of finite thickness, the 
solution can be obtained only by numerical means. 
With regards to the latter case, we confine our
selves to the following remark. The transforma
tion (11) corresponds to compression of the coor
dinate system. Then the layer thickness in the 
linear problem equivalent to our nonlinear prob
lem is smaller. Thus, the layer is more trans
parent with respect to radiation of higher intensity. 

4. We consider the solution of the problem in 
the simplest case of a plane source in an infinite 
space. Equation (8) is solved with the aid of a 
Fourier transformation. We have 

<D(p) = F(p)/ (1- K ~p)), (15) 

where 
00 1 

2nl.. \ \ d~-t [ ( kv )-1 
F(p)= X J kvdv J- (jlv(J.L) -ip +-- + <pv(-1-t) 

0 -1 J.l. J.l. 

(16) 

~.. r p -- - 00 

K(p) ==- J kvxv arctg-dv, A.= x(x + a)-t, x = ~ x._ dv. 
xp 0 kv 0 

We have placed the plane source at the origin. 
The solution is obtained by taking the inverse 
Fourier transform of (15): 

(17) 
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1 oo 1 "" F( 
<fl(X)=- ~ <fl(p)e-iPX dp = _. ~ p) e-ipX dp. 

2:n:_oo 2;n;_oo1-K(p) (18) 

The behavior of the function .P(X) at large dis
tances from the origin is determined by the region 
of small p. It is therefore necessary to investi
gate the behavior of the Fourier transforms of the 
kernel and of the source function at zero. 

Putting p = 0 in (17) we get K(O) = A.. Let us 
consider the expression 

[pK (p) ]' - A. = - A.~z r 'iW dv . 
X 0 kv2+p2 

(19) 

For simplicity we consider the frequently encoun
tered case when Kv = f3kv, and go over from inte
gration with respect to the frequencies to integra
tion with respect to kv, assuming the latter to vary 
from zero to unity. The latter can always be at
tained by measuring the distances in terms of 
mean free paths at the center of the line. Then 

2 1 '() "' 
[pK(p)]'-A.= ~P S uv u du(k=~ kvdv), 

k o uz + pz o 

where v(u) is a function which is the inverse of 
kv· In the integral term we make the change of 
variable u = tp: 

I 1/p I 

[pK(p)]'-'A=- 'Ap~ (p) ) _t _v (tp) dt. (20) 
k 0 1 + t2 V 1 (p) 

The integral in (20) tends to a finite limit as 
p- 0, so that 

I . v1 (tp) 
Im--

p-+{) vi (p) 

decreases at large t. By integrating with respect 
to p we get for small values of p 

K (p) = A. ( 1 + apzv1 (p) ) , p~1. (21) 

The value of 0' can be calculated if one knows 
the concrete form of the function v(p). These re
sults coincide with the earlier ones[ 51 when the 
absorption coefficients have a Doppler or Lorentz 
form. 

We now proceed to investigate F(p). It is easy 
to verify that F (0) = con st. We note further that 
for all plane sources, except isotropic ones 
(fv(x, J.t) = kvo (x- Xo)), the function F(x) decreases 
more rapidly than K(x). The physical reason is 
that the number of photons arriving at the given 
point directly from the source is small in the case 
of large distances compared with the total number 
of photons at the given point. It is clear therefore 
that we obtain the correct asymptotic behavior by 
putting F(p) = const when p- 0. 

Thus, the asymptotic values of .P(x) character
ize only the medium and can be obtained by using 

formulas (18), (20), and (21). They turn out to be 
quite sensitive to the presence of quenching. 

It is interesting to note that when a « i( (1 -A. 
« 1) there exist two regions of asymptotic values. 
One is obtained at not too large distances, at which 
the main contribution to the integral (18) is made 
by p « 1, such that p2v' (p) » 1 - A.. The second 
region is that of large distances, where a notice
able contribution to (18) is made only by p « 1 
such that p2 v' (p) « 1 - A.. The second region van
ishes when A. = 1 (a = 0). 

The foregoing is illustrated in the table, which 
lists the asymptotic solutions of .P(x) in the case 
when the spectral lines have Lorentz or Doppler 
shapes. 

In the table, w = ( v - v0) /r, where v0 is the 
resonance frequency and r is the line half-width. 
We note that in the absence of quenching (A. = 1) 
we have 1- K(p)- 0 as p- 0, and therefore the 
form of F(p) (F(p)- const as p- 0) is of no im
portance whatever for the determination of the 
asymptotic values. 

As seen from (11), x- X;::; const when x and 
X» 1. This means that the asymptotic values of 
n(x) coincide in the nonlinear case with the asymp
totic solutions of the linear equation. The differ
ence reduces to a shift of the coordinates. 

It is easy to investigate the solution of Eq. (8) 
for small values of X. It is obvious that it depends 
strongly on the type of source. By way of an exam
ple we consider an isotropic source with CfJv(J.t) 
= Kv/4n. Then F(X) = K(X). As follows from (9), 

K(X)= IInXI-1 for X~1. 

A similar behavior holds also for .P(X), as can be 
seen directly from Eq. (8). The divergence of this 
expression at small X is due to the presence of 
photons which move practically parallel to the 
source plane. 

Using (11), we can easily express X in terms 
of x when X « 1. An approximate solution of (21) 
is of the form X ;::; x/ lln x 1. Substituting this into 
the expression for .P(X) we get 

and ultimately 

!Inxl 
<l>(x)= ln--

x 

<D(x) 1 / !InxJ n(x)- ~ -2 - const ln-x-. (22) 
- 1 + 2<D(x) 

Thus, in this case the presence of nonlinearity 
changes the result very strongly. It is generally 
evident that nonlinearity can have a strong effect 
only at sufficiently small distances from the 
source. 
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"ky K(p) (P< I) <I>(X) 
Region of 

applicability 

1 
A (1- ~) V(O) x-'!. 1 

1 +ro2 6 VJt (1- A)2 
X~az 

3F(O) x-'/a 1 
do, do. V2n az-~X~1 

-co• V(O) 1 
e A (t- Vn_IP_i_) 

4 Vlnlprl 4 Vl"t (1-A)2X2 VlnX x~Ci" 

do. do. Bfan-'la F(O)[(ln rr')'l• -(In x)'/a] 1fcs~X~1 

5. We now proceed to consider the problem of 
nonlinear transport in a half-space. The corre
sponding linear problems were considered by a 
number of authors. [ 2' 4• 71 It is simplest to obtain 
the answer by the Wiener-Hopf method. [ 1• 4• Sl 

We shall not describe here the method of solv
ing the linear problems, and will use only certain 
asymptotic properties. We note first that, just as 
in infinite space, the decrease in the concentration 
of the excited atoms at large distances from the 
source does not depend on the type of source. The 
physical reason is that the photons that reach large 
distances are essentially those which are multiply 
reflected. It is also obvious that near the source 
the concentration will vary in the same manner as 
near the source in an infinite space. 

Since cf?(X) decreases at large distances from 
the source, the conclusion that the asymptotic val
ues coincide (apart from a shift of the coordinate) 
in the linear and nonlinear cases remains in force. 
In order to show the character of the influence of 
the nonlinearity of the change in the excited-atom 
density, we present plots of n(x)/n(O) in the case 
of normal incidence of light on the medium. For 
comparison, we present a similar plot for the lin
ear problem (curve a in the figure). 

Knowing the concentration of the excited atoms, 
we can easily find the spectral density of the light 
flux radiated by a half-plane. It turns out that the 
spectral and angular distribution of the emitted 
light is proportional, in the case when the sources 
are outside the medium, to the source power, and 
its form does not depend on the intensity of the 
light incident on the medium. This can be seen 
most readily from the relation 
which coincides with the expression for the in ten
sity of the emitted light in the linear case. 

.. fll 

1,(0,~-t)=~l 1-Sexp[ __ kl,.l S (1-2n(t))dt]n(x)dx 
4n 1-t o 1-t o 

When a plane source is located at the point Xo 
the expression for the intensity of the outgoing 
light coincides with that obtained in the linear case 
with a source at the point Xo = X(XcJ). Thus, the 
influence of the stimulated emission reduces to an 
apparent shift of the source towards the surface. 

We now consider the case when the source is 
located at infinity (the Milne problem). It can be 
shown that in this case the nonlinear problem re
duces to a linear one with a source at infinity. The 
solution of the latter was obtained in [ 4• 51 • 

The asymptotic behavior of the solution depends 
essentially on the line shape and does not depend 
on the type of the source located at infinity. For 
example, for a Lorentz line shape (kv = 1/(1 + w2)) 

we have 
<!>(X) oo X'i• (A.= 1). 

From (11) we obtain x oo x5/ 4 (X» 1) and X oo x4/ 5• 

Consequently, cf?(x) oo x115 and 

1 c 
n(x)~----2 x'ls . 

(23) 

We can obtain analogously the asymptotic be
havior for A.< 1 and for different absorption-line 
shapes. 

n(.r)jn(PJ 

Plots of n(x)/n(O). The intensities of the incident radia
tion in cases a, b, c, and d are related like 0.1: 1: 10: 100. 
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The proposed method makes it possible to ob
tain relatively easily the solution of the nonlinear 
transport equation with allowance for the degree of 
excitation and stimulated emission, provided the 
solution of the corresponding linear problem is 
known. We-!iote, however, that such a reduction to 
the linear problem cannot be effected if account is 
taken of the light absorption outside the line, or an 
attempt is made to include into consideration the 
"additional illumination" -excitation of the atom 
by an extraneous agent. The nonstationary prob
lem is likewise not reduced to a linear one. Thus, 
the proposed method is not universal and leads to 
the solution of only several problems in the theory 
of nonlinear transport. We note that the method is 
applicable directly to the problem of diffusion of 
radiation without redistribution over the frequen
cies. The solutions of the corresponding linear 
problems for this case have been known for a long 
time, [ 1• 2J so that allowance for stimulated emis
sion entails no difficulty whatever. 

6. Let us consider, for example, how the Milne 
problem is modified in this case. As is well 1 1 

known, Cl, 2J at large distances from the boundary 
(x » 1) the solution of the transport equation coin
cides asymptotically with the solution of the one
dimensional diffusion equation, so that we have 
<I>(X) =X for X» 1. As follows from (11), 
X = x1 12• Then the concentration of the excited 
atoms is determined from the formula (12): 

n (x) = f/2 - const/{X. (24) 

The described method can be used so long as 
the distortions of the spectral lines, occurring at 

large radiation density, remain insignificant. 
After this paper was written, the authors have 

learned that the described method was recently 
proposed by Ambartsumyan for a solution of non
linear transport problem. [ 9J He called it the 
''method of self-consistent optical depth.'' How
ever, he did not use this method for a direct solu
tion of the transport equation. 
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