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Nonlinear oscillations of the magnetic-moment density in ferromagnets are investigated. 
Waves of stationary shape, propagated along the axis of easiest magnetization of the crystal, 
are considered. It is shown that such waves can be of two types: periodic waves and 
solitary waves. If the perturbation of the magnetic moment is small, then the periodic wave 
reduces to the well-known small-amplitude spin wave. The solitary wave is an essentially 
nonlinear development and cannot be obtained within the framework of linear theory. This 
wave is a region of perturbed magnetic moment moving uniformly along the crystal. In 
stationary waves of both types, the vector magnetic-moment density executes a rotation 
about the axis of easiest magnetization. Both the rotation frequency and the angle between 
the magnetic moment and the axis of easiest magnetization are functions of the coordinates 
and of time that are periodic (in the case of a periodic wave) or aperiodic and diminishing at 
infinity (in the case of a solitary wave). It is shown that a solitary wave, in contrast to a 
periodic wave, can propagate along the crystal with a speed not exceeding a certain critical 
value, determined by the properties of the crystal and the value of the external magnetic 
field. 

1. INTRODUCTION 

AS is well known, perturbations of the magnetic
moment density in magnetically ordered crystals 
can, at low temperatures, be propagated along the 
crystal in the form of weakly attenuated spin 
waves. The structure of spin waves is well known 
for the cases of a small-amplitude wave: in such 
a wave, the vector magnetic-moment density ro
tates about its equilibrium value with a frequency 
wk that depends on the wave vector k of the spin 
wave. 

It is of interest to study motions of the mag
netic moment in ferromagnets when the amplitude 
of the oscillations of the magnetic moment is 
comparable with the equilibrium value of this 
quantity-nonlinear spin waves. The present paper 
investigates one class of such waves: nonlinear 
waves of stationary shape; that is, those motions 
in which the magnetic-moment density depends on 
the coordinates and on the time only in the com
bination r - Vt, where V is the constant speed 
of the wave. 

Waves of stationary shape can develop in media 
with spatial dispersion because of the dependence 
of the phase velocity of the oscillations not only on 
the amplitude but also on the sharpness of the wave 
front. The dependence of the velocity on the am-

plitude usually leads to an increase in the sharp
ness of the wave front, and the dependence of the 
velocity on the sharpness of the front slows down 
the increase of the sharpness, and as a result a 
wave of stationary shape develops. This mecha
nism of formation of waves of stationary shape, 
well known for waves on the surface of a liquid or 
for oscillations of a plasma (see, for example, (t] ), 
is present also in the case of spin waves of large 
amplitude in magnetically ordered crystals. 

In the present paper we show that waves of 
stationary shape, propagated in a ferromagnet 
along the direction of equilibrium orientation of 
the magnetic moment, can be of two types: periodic 
and solitary waves. If the initial perturbation of 
the magnetic moment is small, then the periodic 
wave reduces to the well studied small-amplitude 
spin wave. The solitary wave is an essentially 
nonlinear development and cannot be obtained 
within the framework of linear theory. This wave 
is a region of perturbation of the magnetic moment 
that moves uniformly along the crystal. 

2. EQUATIONS DESCRIBING A WAVE OF 
STATIONARY SHAPE 

In investigating the oscillations of the magnetic
moment density of a ferromagnet, we shall start 
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from the equation of motion of the magnetic mo
ment (see, for example, [2]), 

8Mjot = g[MHe], (1)* 

where M is the magnetic moment of unit volume, 
He is the effective field 

He=H+a~M-p{M-n(Mn)}, (2) 

H is the magnetic field, satisfying the equations 
of magnetostatics 

div (H + 4nM} = 0, rotH = D, (3) 

g is the gyromagnetic ratio, n is the unit vector 
in the direction of the axis of easiest magnetiza
tion, a is the exchange-interaction constant, and 
{3 is a constant that describes the anisotropy of 
the magnetic properties of the crystal. 

We are interested in stationary waves propa
gated along the axis of easiest magnetization, and 
we set the external magnetic field perpendicular 
to this axis equal to zero. Then we can put the 
relations ( 1) -( 3) into the form 

- V 8M/8x = g[MHe], (4) 

He=a~M+B0n-pM-(4n-~)n(Mn), (5) 

where V is the velocity of propagation of the wave 
and Bo = ( H + 47rM )n is a quantity independent of 
x and t (the x axis is chosen in the direction of 
the axis of easiest magnetization). 

On multiplying Eq. (4) scalarly by M and by 
He, we obtain two integrals of the motion: 

M2 = M02 = const, 

a{(M')2-(Mo')2} 

+ 2Bo{Mn -M0}-(4n- p) {(Mn)2-Mo2}= 0. 

( 6) 

Here M5 is the value of the square of the mag
netic-moment density, and M0 is the value of the 
derivative M' at a point where the magnetic mo
ment attains its equilibrium value, M = M0n (a 
prime on a quantity denotes differentiation with 
respect to x). 

On multiplying (4) scalarly by n and introducing 
the notation 

we get 

qJ' = V(gaM.L2)-1(Mo- Mn). (7) 

We remark that the equation obtained from (4) by 
vector multiplication by n is a consequence of the 
relations ( 6) and ( 7). 

By taking into account that 

(M')2 =i(M'n)2M02/M.L 2 + M.L2ql'2, (8) 

and using ( 7), we can put the relation ( 6) into the 
form 

a 
-:---z'2 + u2z2 = z(2- z) {m02 + z(2p + z)}, (9) 
4n- (3 

where 

Mn 
z= 1-- m02 = 

Mo' 
a M -2(M ')2 

4n-(3 o o' 

u2 = a-1(4Jt- ~)-1(gM0)-2V2, p = (4n- ~)Mo-1Bo -1. 

(10) 
On integrating Eq. ( 9), we get 

( a )''• S x- Vt = --- /dz {z(2- z) (m02 + 2pz + z2) 
4n- (3 

(11) 

The relation (11), which determines the depend
ence of the quantity M · n on time and the coordi
nates, together with the relation ( 7) fully describes 
the distribution of the magnetic-moment density of 
a ferromagnet in a wave of stationary shape. 

3. SOLITARY SPIN WAVE 

We first consider a stationary wave in which 
the perturbation of the magnetic moment vanishes 
asymptotically in front of the forward front of the 
wave and behind its back front-a so-called soli
tary wave. In such a wave, obviously, M' -- 0 for 
x -- ± 00; therefore, on setting m~ = 0 in equation 
(11) and performing the integration, we get 

1- Mn ={so+6tch x-Vt }-1
; (12) 

Mo Xt 

p -1 [(1 + p)2- u2)'/• 
so= 4p-u2' 6t=-4p-~2-'• 

For x -- ±co, obviously, the magnetic moment 
in a solitary wave is directed along the axis of 
easiest magnetization, M = M0n. It is convenient 
to characterize the amplitude of a solitary wave 
by the maximum angle of deviation of the vector 
magnetic-moment density from its equilibrium 
orientation; that is, by the quantity 

{ 4p- u2 } 
Bmax = arccos 1 - . 

p-1+ l'(p + 1) 2 - u2 
(14) 

It is easy to see that for p -- co we have emax 
= 1r. On decrease of the parameter p, the ampli
tude of the solitary wave decreases. Finally, for 
p = uo/ 4 the quantity 9max vanishes. 
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For p < uo/ 4 a solitary spin wave is impossible. 
Thus a solitary spin wave can propagate only with 
a speed that does not exceed a certain critical 
value, V2 < v~r· where 

V cr = 2gMoa'l• {Bo/ Mo - ( 4n- ~)} 'I•. ( 15) 

We recall that in other known cases the speed of 
a solitary wave is bounded below (for example, in 
the case of a two-temperature plasma the speed 
of a solitary wave must exceed the speed of 
sound). 

To explain the reason for this peculiarity of a 
solitary spin wave, we note that for x - ± oo the 
deviation of the magnetic moment in this wave is 
small, and therefore the change of magnetic mo
ment far ahead of (or behind) the crest of the wave 
is described by the linear theory. Then 

1-Mn/Mo = const·exp{-1 (x- Vt)Imkl}, 

where k is the root of the equation Wk = kV and 
wk is the frequency of a spin wave of small ampli
tude, 

Wn = gM0{Bo/M0 -(4:n:- ~)+ ak2}. (16) 

It is easy to see that the condition for existence of 
a solitary wave, that is the inequality V2 < V~r· 
coincides with the condition for presence of an 
imaginary part in the root of the equation Wk = kV. 

Turning to the study of the structure of a soli
tary spin wave, we note that if Omax < rr/2, the 
component M 1 of the magnetic moment perpen
dicular to the axis of easiest magnetization in
creases from zero at x = -oo to a maximum value 
M0 sin Omax at the crest of the wave and then 
again decreases to zero. If Omax > rr/2, the value 
of M 1 has two maxima, symmetrically located 
with respect to the crest of the wave, at which 
M1 = M0• In both cases the vector M1 performs 
a rotation about the axis n with frequency 

w(x- Vt) == Vq>' 

= ~{1 + [2stch x- Vt + 26o-1 J-1
}, (17) 

2gaMo Xt 

the frequency of the rotation grows from a value 
Wmin = V2 ( 2gaM0 ) -t at x - ± 00 to a value 

Wmax = V!l(gaMo)-1{1 +COS 9max)-t (18) 

at the crest of the wave. 
We emphasize that the value of the vector mag

netic-moment density is the same, both in magni
tude and in direction, in front of the front of a 
solitary wave and behind the wave; in this respect 
a solitary wave is significantly different from a 

moving domain wall, separating regions with dif
ferent orientations of the magnetic moment. 

4. PERIODIC SPIN WAVE 

We shall now discuss those oscillations of the 
magnetic moment of a ferromagnet in which the 
derivative of the magnetic moment and the devia
tion of the magnetic moment from the equilibrium 
value do not vanish simultaneously; that is, Mo 
>"- 0. In this case the relation ( 11) determines a 
periodic function z(x- Vt), which runs through 
all values between z = 0 and z = zm, where Zm 
is the smallest positive root of the equation 

P(z) == 2m02- z(u2- 4p + m02) + 2z2(1- p)- z3 = 0. 
( 19) 

We see that when Mo "'- 0, there is propagated in the 
ferromagnet a periodic wave of stationary shape; 
the amplitude of this wave is 

9max = arccos { 1 - Zm). 

We note that a periodic wave is possible for 
any values of the parameters characterizing the 
ferromagnet and for an arbitrary value of the 
velocity V, if only M0 "'- 0. In fact, for existence 
of such a wave it is sufficient that the inequality 
0 < zm < 2 be satisfied; it is easy to demonstrate 
this inequality by taking into account that P ( 0 ) 
= 2m8 > 0, whereas P( 2) = -2u8 < 0. 

Without going into a detailed investigation of 
the periodic wave of finite amplitude, we consider 
by way of example the structure of a periodic wave 
propagating with very high velocity, 

V2~(gM0)2a·max{4n- ~; Bo/Mo -(4:n:- ~)}. 

In this case 

Mn 2(M ')2 x- Vt 
1- -= o sinz (20) 

Mo (Mo') 2 + ( ag) - 2 VZ X2 

x2 = Mo{(Mo')2 +(ag)-ZV2}-''•. 

The wave length is obviously rrx2; the amplitude of 
the wave has the form 

(ag)-2 vz- (Mo')2 
61114., =arccos (ag)-2 VZ + (Mo')z (21) 

The transverse component of the magnetic mo
ment rotates about the direction of easiest mag-
netization with frequency 

/ 

(Mo')Zsin2_x_V_t J 
f2 Xz 

w(x-Vt)= 2a M 1+ x-Vt vz . 
g 0 (M ') 2 cos2 + ---

0 X2 (ag) 2 

(22) 
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If the quantity u2 + mN - 4p is positive and if the 
condition u2 + mN - 4p « mN is satisfied, then the 
amplitude of the periodic wave is small: 

Zm = 2m02/ (u2- 4p + m02). (23) 

In this case the relation ( 11) determines the usual 
harmonic spin wave, in which the transverse com
ponent of the magnetic moment, equal in absolute 
value to 

- x-Vt 
M.l. = Mo l'2zm sin , Xs2 = 2zm(Mo')-2 Mo2, (24) 

Xs 

rotates about the axis of easiest magnetization 
with a constant frequency w = V2 ( 2agM0 ) -t. This 
wave can be interpreted as a superposition of two 
spin waves with wave vectors k1 and k2, the two 
roots of the equation Wk = kV. 

Finally, we shall turn to the case of those os
cillations of the vector magnetic moment in which 
the component of this vector perpendicular to the 
axis of easiest magnetization never vanishes. For 
this we note that the expression in curly brackets 
in the relation ( 11), a polynomial of fourth degree 
in the variable z = 1 - M · n/M0, can have, along 
with the roots z = 0 and z = Zm, two additional 
positive roots z1, 2, enclosed in the interval 
( Zm, 2). In this case the interval ( z1, z2 ), as well 
as the interval ( 0, Zm ), is a region of permissible 
values of the variable z. Physically this corre
sponds to oscillations of the magnetic moment for 
which 

z1< 1-Mn/Mo<z2. 

By way of example, we consider a spin wave 
that occurs when M' = 0 and V2 > V~r· In this 
case zm = 0, 

Zt,2 = p -1 =F y(p + 1)2- u2• (25) 

On setting m0 = 0 and 4p - u2 < 0 in the relation 
(11), we get 

where the quantity x1 is determined by formula 
( 13). In this wave, the transverse component of 
the magnetic moment performs a rotation about 
the direction of easiest magnetization with fre
quency 

ro(x- Vt) 

V21 =-- 1+ 
2agMo 

t 
(z, +z,)+ ( '-' - ~~:, x 1: ~ t - ,,., 1 

(27) 

We note that if z1 = z2, then in a spin wave of 
finite amplitude (similarly to what takes place in 
the case of a spin wave of small amplitude with a 
definite value of the wave vector), the transverse 
component of the magnetic-moment density is con
stant in value and performs a rotation with constant 
frequency about the axis of easiest magnetization. 

In closing, the authors express their thanks to 
V. G. Bar'yakhtar for valuable discussions. 

1 R. Z. Sagdeev, in the collection Voprosy teorii 
plazmy (Problems of Plasma Theory), 4, 
Atomizdat, 1964. Translation: Review of Plasma 
Physics, vol. 4 (Consultants Bureau, New York, 
1966). 

2 A. I. Akhiezer, V. G. Bar'yakhtar, and M. I. 
Kaganov, UFN 71, 533 (1960), Soviet Phys.-Uspekhi 
3, 567(1961). 

Translated by W. F. Brown, Jr. 
65 


