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We consider the process of self-focusing and defocusing of light beams in transparent 
media having weak absorption. The relative roles of electrostriction, the thermal expan
sion accompanying the absorption, and the Kerr effect in the variation of the dielectric 
constant of medium, and the extent to which these mechanisms of the nonlinearity of the 
material properties participate in the effects brought about by the nonlinearity are as
sessed. The divergence, due to absorption of an inhomogeneous beam is estimated. It is 
shown that in the case of a beam that is homogeneous over the radius, the absorption dur
ing the stage of unsteady motion of the medium exerts, in contrast to the usual case, a 
focusing action on the medium. The effect of suppression of the self focusing of the beam 
by a growing defocusing action of thermal expansion is considered. It is shown how absorp
tion stabilizes a plane wave, which in the absence of absorption would be unstable against 
field perturbations. The possibility of experimentally observing the effects is discussed. 

1. INTRODUCTION 

THE self focusing (self trapping) of light beams in 
a nonlinear transparent medium, predicted in gen
eral form by Askar'yan/ 1J has been attracting 
persistent attention recently. A large number of 
papers have been published on this topic within a 
short time, [ 2-t'lJ mostly theoretical. [ 2- 151 The 
first to observe the self-focusing effect experimen
tally were Pilipetskil and Rustamov. [ 16 J The gist 
of the phenomenon consists in the following. The 
electric field E of an electromagnetic wave causes 
a slight increase in the dielectric constant of the 
medium E in the light channel, 

e = eo+ ae, ae = e2E)2 > 0, (1) 

and also in the refractive index n = !E ~ n0 + n2E2 

(no = ..fEo, n2 = Ed2../Eo; E2 is averaged over the 
period). Because of this, transverse gradients of 
n are produced, causing the beams to be deflected 
towards the region of larger n, i.e., towards the 
beam axis. If the radiation power P exceeds a 
certain critical value P cr• the refractive narrow
ing offsets completely the diffractive spreading of 
the beam, and the existence of a self-maintaining 
waveguide channel becomes possible. [ 2• 3l 

A nonlinearity of type (1) is brought about by 
the Kerr effect (orientation of anisotropically po
larizing molecules by the field) and by electro
striction (compression of the dielectric in the 

electric field). For many substances, the equilib
rium value of ~Estr• due to striction, greatly ex
ceeds ~€Kerr• but frequently the principal role is 
played by the Kerr effect. The reason is that the 
Kerr increment is established very rapidly, within 
~ 10-11 -10-12 sec (and also locally), whereas the 
striction compression occurs relatively slowly, 
being the result of a hydrodynamic process, and 
actually the values of OE str turn out to be much 
smaller than the equilibrium values. 

In this article we consider the processes of 
propagation (self focusing and defocusing) of light 
beams in weakly absorbing media, since even the 
so-called "transparent" media always have a 
small absorption.t> Absorption of light causes 
heating and subsequent thermal expansion of the 
material in the light channel, leading to effects 
which are in many respects the inverse of stric
tion. The increment <'>Ether connected with the 
absorption is also proportional to E2 (it is pro
portional to the radiant energy flux density 
J = ..JEo cE2 /47r), but is negative. If the field in the 
beam decreases from the axis towards the edge, 
then the striction and the Kerr effect exert a fo-

1 )For example, in optical glasses at approximately the 
0 

ruby-laser wavelength (A0 "' 7000 A) the absorption coefficients 
are Kv ~ (0.3 - 1) x 10-2 em-•, and the path lengths are 
lv ~ 1/Kv = 3- 1 m [18]. In water at A0 ~ 7000 A we have 
Kv"' 5 x 1o-• em-• and lv"' 2 m [19]. 
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cusing action on the beam and absorption causes 
defocusing. 

However, conditions are possible[ 121 when ab
sorption, paradoxical as it may sound, leads not 
to defocusing but to focusing of beams. This oc
curs during the stage of unsteady motion of the 
material, if the field inside the beam is constant 
over the radius (see Sec. 5). 

Bespalov and Talanov[ 111 have shown that in a 
medium with t:.E = E2E2 > 0 a plane wave is unsta
ble against perturbations and breaks up spontane
ously into individual self-focusing beams. It was 

noted, however, [ 201 that in a weakly absorbing 
medium the self-focusing effect is gradually sup
pressed and consequently absorption counteracts 
the instability of the plane wave, exerting a sta
bilizing action on it. This phenomenon will be 
treated in Sees. 6 and 7. 

We shall assume below that the dielectric con
stant depends directly only on the density p, but 
not on the temperature T. In fact, E = E ( p, T) and 
OEther = (oE /op)ToP + (oE/oT) oT. However, for 
most substances the principalp role is played by 
the change in E due to thermal expansion. Under 
equilibrium conditions, when op = (op/oT)poT 
(p =pressure), the second term in OEther is 
smaller by 1-2 orders of magnitude than the first. 
There are no direct measurements of (BE /8T)P' 
since there are likewise no theoretical estimates 
of this quantity. [21 • 221 Even the sign of (oE/oT)p 
has not been fully determined. If we substitute into 
the thermodynamic formula (oE/oT)P = (oE/oT)P 
+ a(poE/op)T (a-coefficient of thermal expansion) 
the experimental values of the terms on the right 
side (they are given in the book[ 21l ), then (BE /BT) 
turns out to be a small difference of two relativefy 
large quantities, the sign of the derivative depend
ing on the choice of various experimental values of 
(poE/op)T and changing from substance to sub
stance. In view of such an uncertainty, we shall 
assume that E = E( p), emphasizing that the conclu
sions of this article do not hold for substances in 
which (oE /oTb > 0 and is sufficiently large. We 
note that the diffusion of heat due to heat conduc
tion is too slow. 

2. EQUATION OF MOTION OF THE MATERIAL. 
RELATIVE ROLE OF ABSORPTION AND 
STRICTION 

Assume that a directed parallel (or weakly di
verging) light beam of radius R enters the medium 
at an instant t = 0. The coordinate z will be 
reckoned along the beam axis from the point of its 
entry into the medium. The changes in the density 

of the material are usually very small, so that the 
motion of the medium is described by the linear
ized equations of hydrodynamicsY Let us write 
out these equations, bearing in mind that it is 
practically always possible to neglect the longi
tudinal motion (along the channel). If op = p -Po 
is the change in the density, p(p, S) is the pres
sure as a function of the density and the entropy S, 
and u is the radial velocity, then 

iJ/)p + ~_!_ru = 0, 
at r or 

as 
poTo- = lxv. at 

(2) 

(3) 

Here Pstr = -(PoEjop)E2/81f is the striction 
pressure and Kv is the coefficient of light absorp
tion (we assume it to be independent of the field). 
The two equations in (3) combine into a single 
equation of motion 

ou 2 fJ{Jp OPther iJPstr 
po-=-a -------ot or ar or ' 

t 

Pther= rXv ~ J dt. 
t, 

( 4) 

Here a = ( 8p/8p)s112 is the speed of sound, Pther 
is the pressure rise which would occur at the given 
instant t were there to be heat release without 
change in density; tz = z/c1 is the instant of arri
val of the front of the light wave at the considered 
cross section of the channel z (c1 = c/.f€0 is the 
velocity of light in the medium). In the case of 
solids and liquids the quantity r = (p0T0)-1(8p/8S)p 
is the Gruneisen coefficient;[ 231 for gases r 
= y - 1, where y is the adiabatic exponent. 

The relative role of absorption and striction is 
characterized by the ratio of p ther and Pstr· The 
equilibrium values of the changes in the density 
t:.Pther, str = -Pther, str/a2 are related in the 
same ratio, and also the equilibrium values of the 
changes in the dielectric constant t:.E = (oE /op)t:.p. 
Assuming by way of an estimate J (t) = const, we 
get 

I d8therll Pther 2r -y8; 1 
--- = --- = XvCt t' = t- tz. 

L\e str I p,str I pOe/ up ' 

The thermal effect under quasiequilibrium con
ditions becomes larger than the striction effect 
after a time 

2)For simplicity we confine ourselves to liquids and gases, 
although qualitatively all the conclusions are applicable also 
to solids. 
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ae/ - ( ) 
't'c0 = p iJp 2r l'eo cxv. 5 

At values r = 2, -fEo = 1.5, and p8E/8p = 1, which 
are characteristic of solids and liquids, and at 
very weak absorption Kll= 10-4 cm-1 (l 11 = lOOm), 
we have T co = 0.5 x 10-7 sec = 150 nsec; for 
K 11 = 10-3 em -1 we get T co = 5 nsec. For example, 
in atmospheric air, r = 0. 4 and p8 E /8p = Eo - 1 
~ 6 x 10-4• The absorption of light in the visible 
and infrared regions of the spectrum is connected 
with the presence of water vapor. 3> The absorption 
spectrum of water is very complicated, and the 
concentration of the vapor in air varies in a very 
wide range. If we assume by way of a character
istic value Kv = 3 x 10-7 em -1 (l 11 ~ 30 km), [ 241 

we get T co = 10-7 sec. 

3. ESTIMATE OF THE BEAM DEFLECTION 
ANGLE 

When considering the propagation of the light, 
we shall disregard diffraction; this can be done if 
the refractive deflection of the beams greatly ex
ceeds the characteristic diffraction angles. This 
condition corresponds in principle to the condition 
that the power is greatly in excess of the critical 
value, and the beam radius greatly exceeds the 
radius of the stationary channel corresponding to 
the given power.[ 3• 81 4> 

For simplicity we solve the problem approxi
mately, in two steps. We find first the density 
distribution, neglecting the redistribution of the 
field in the initial beam due to the resultant re
fraction, after which we consider the beam deflec
tion on the basis of the obtained distribution of 
6p and 6€. 

In the case when the beam has axial symmetry, 
the trajectory of the moving "light particle" (ray) 
is described by the functions r(t) and z(t). For 
paraxial rays z(t) ~ c1(t- t0), where to is the in
stant of entry of the beam into the medium. We 
denote by e = dr /dz the angle of deflection of the 
trajectory from the direction of the z axis. The 
"substantional" derivative 

de 1 de 1 ae ae ae 
dz = c;cu= Gtat+ az + ea,:-

3 >The vibrations excited in water molecules upon absorp
tion of light become de-activated extremely rapidly, unlike 
nitrogen and oxygen [25]. Therefore the absorbed energy goes 
over practically instantaneously into heat. The question of 
the relaxation must be taken into consideration when esti
matin~ the thermal effect in other gases. 

4 )Qf course, diffraction cannot be neglected in the region 
where the beams converge, where the waveguide channel is 
produced. 

is determined by the refraction equation 

de 1 iJ6e 
dz = 2eo Tr• (6) 

with 86E/8r = ( 8E/8p)86p/8r + E2k8E2/8r, where 
the second term is due to the Kerr effect. The 
rays are always deflected towards the higher di
electric constant, and therefore the beam is fo
cused if the density decreases from the axis of the 
light channel towards the periphery, and defocused 
if the density increases. 

Under the assumptions made (almost parallel 
beam without redistribution of the field), the ray 
will encounter during its entire path the same 
radial distribution of the dielectric constant 
6E(r, z, t) = 6E(r, 0, t0). Consequently we have 
along the ray trajectory 

de I dz = 1/2de2 / dr = {1/2eo) d6a I dr 

and the refraction equation can be integrated in 
general form 

2 1 1 
e2 = einit +-( 6e- 68init) = - ( <le- 68init) (7) 

eo eo 

(we assume that einit = 0). Here 6Einit 
= 6E(r0, 0, to) corresponds to the point at the in
stant of entry of the beam into the medium, and 
the value of 6E is taken at z = 0, to, and r equal to 
the radius of the trajectory in question: 
6E = 6E(r, 0, to). Formula (7) describes also the 
refraction of glancing rays on passing through the 
surface of the discontinuity 6E. In this case einit 
and 6E init pertain to the regions ahead of the dis
continuity, and e and 6E to the region behind the 
discontinuity. Thus, formula (7) determines the 
angle of deflection of a beam passing through the 
medium with arbitrary distribution of weak inho
mogeneities. 

This formula can be used to estimate the dis
tance at which self focusing of the rays takes 
place, and the characteristic distance for defocus
ing of the beam. In the case of self focusing, we 
have for peripheral rays 6Einit ~ 0. The rays 
converge to the axis at distances Zf of the order 
of Zf ~ R/9t. 9t ~ ..f 6E /Eo, where 6E corre
sponds to the main part of the light channel, say 
the midpoint of the radius r = R/2. The angle 9t 
can be interpreted as being the angle of total in
ternal reflection of the rays incident from outside 
the beam on the surface of the light channel. The 
estimate Zf ~ R/9t practically coincides with the 
result obtained by Kelley. [ 61 For defocusing, the 
final value is 6E = 0 and the final inclination of 
the rays is eoo ~..; j6E init I /Eo ( 6E init < 0), where 
6Einit can also be referred to the midpoint of the 
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radius. The characteristic distance for defocusing 
is z2 = R/ 800 • We note that a medium is "weakly 
absorbing" if lv >> Zf or z2. 

4. BEAM IN WHICH THE FIELD DECREASES 
FROM THE AXIS TOWARDS THE EDGE 

For real beams, this case is to some degree 
typical. We put J(r, z, t) = J0(t')f(r/R), where 
J 0(t') is the beam density on the axis and f( ~ ) 
is the profile function (~ = r /R, f(O) = 1). We shall 
henceforth write t in place of t' = t - tz, refer
ring to the section at z = 0. 

The system (2) and (4) is equivalent to an inho
mogeneous cylindrical wave equation. We shall 
obtain for it an approximate solution sufficient for 
estimates. Considering the earlier stage of mo
tion, namely times t that are small compared with 
the characteristic hydrodynamic time ts = R/a, we 
leave out from (4) the term -a280p/8r (such an 
approximation was made in [ 1 ~ 1 in the calculation 
of OEstr>· Integrating the resultant equations, we 
get 

t t' 

6p (r, t} = '¢~~} ~ dt' ~ (POther+ Po str} dt", 
0 0 (8) 

'¢ = !" + !'/~, 
where Pother and Postr pertain to the beam axis, 
and the function ljJ determines the radial profile of 
the density. If we approximate the radial distribu
tion of the flux by a cosine function, f = cos (n~ /2), 
then 

'¢= -(n/2) 2 (cos; ~+sin;~~~~). 
We put J 0(t) = J 0 = const. Then 

Be lo 
po,str = -p--=-, Pother= rxvlot 

Bp 2c )'eo 

and from (8) we get 

6 = ..!_ rxvlot3
( 1 _ 2:._)= .! Po th<:_r(!_)2 

( 1 _ ~) ( 9) 
p 6 R2 t 6 a2 t. t ' 

where T c = 37 co• and the time T co is determined 
by formula (5). When t < Tc, the thermal expan
sion still does not have time to compensate for the 
effective striction, and the material in the channel 
is compressed. If T c = 3T co and is at least sev
eral times smaller than ts, then op goes through 
zero before formula (9) becomes invalid, at an in
stant T c (when t > T c we have op < 0). But if 
T C » ts, then the instant when Op vanishes can be 
determined approximately by assuming the density 
distribution in the channel to be in quasiequilib
rium. In this case, in accordance with the defini-

tion in Sec. 2, this instant is Teo· Thus, in all 
cases a time on the order of T co separates the 
stages in which striction and thermal expansion 
predominate. 

The distribution of the density outside the chan
nel when t « ts and at « R can be obtained by as
suming the wave traveling from the boundary 
r = R to be plane. To this end it is necessary to 
use the expression for the velocity u(R, t) on the 
boundary, which is obtained by solving the internal 
problem approximately. Putting x = r - R we find 
that when 0 < x :5 at 

t' (1) rxvlo ) 
6p = -----(at- x) ·(at- x- 2a'tco · (10) 

2R a3 

We note that formula (9) cannot be applied to the 
peripheral layer R > r > R - at reached by the 
perturbations from the outer region. In this layer, 
the density varies continuously from the values de
fined by (9) to those given by (10). The radial den
sity distributions are shown in Fig. 1. 

In the limit of large t » ts, the density in the 
channel is in quasiequilibrium: op ~ b.p = - (Pther 
+ Pstr)/a2• Assuming as before J 0(t) = const, we 
get 

r'Kvlot 
6p ~ -j 2 ( 1 - 'tco/t), t "> t,. (11) 

a 

The limiting formulas (9) and (11) can be approxi
mately extrapolated to the instant t = ts, where 
they join together fairly well. 

If J 0(t) = const · t = Jmt/tm, we get for t « ts 

.. __ '¢ rxvl mt4 ( 1 _ !!__) , 4 R t 
up 'tc = 'teo, r < - a , 

24R2 tm t ' 

6p = _ f( 1) r-xvJm(at- X)2(at- X- 3a'tco), 0 <X~ at. 
3R a4tm 

These formulas can be used for a description of 
the first half of a giant laser pulse. At tm = 20 nsec 
and a = 1 km/sec, the condition tm < ts is satis
fied if R > 2 x 10-3 em, i.e., in most cases of in
terest. 

op 

r r 

a b 

FIG. 1. Radial density distribution fort« ts = R/a, when 
the field drops off from the axis to the edge of the beam: 
a) t < rc, striction compression predominate, b) t > Tc, thermal 
expansion predominates. 
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In liquids at Kv ~ 10-3 cm-1 we have Teo =tnsec 
(see Sec. 2) and T ~ ~ 20 nsec = tm. Consequently, 
the focusing action of the striction can come into 
play only at weaker absorption, K 11 < 10-3 em -1. It 
must be stated that in many cases the focusing ac
tion of the striction is generally less effective 
than the analogous action of the Kerr effect. If 
Kv > 10-3 cm-1, then the density becomes smaller 
than normal even before the end of the giant pulse, 
but the defocusing action of the absorption at such 
short times still cannot withstand the competition 
with the focusing influence of the Kerr effect (see 
Sec. 6). 

The defocusing effect can come fully into play 
in the case of relatively long pulse of s·olid-state 
lasers operating in the free generation mode, 
t1 ~ 10-3 sec. To increase the flux density, the 
laser beam can be narrowed down with the aid of a 
telescopic system. Assume, for example, that 
R = 0.2 em, J = 10 MW /cm2, and t1 = 10-3 sec, 
corresponding to an energy of 1000 J. [ 261 At 
a = 1 km/sec we get ts = 2 x 10-6 sec « t1, i.e., 
the density in the channel is quasiequilibrium. 
Putting p = 1 g/cm3, r = 2, p8E jap = 1, and K11 

= 10-4 cm-1, we get from (11) OEther ~ -2X10-3 t/t1• 

When t ~ t1 this quantity is larger, by several or
ders of magnitude, than either OEstr or <'>EKerr· 
At the end of the pulse the beam-defocusing angle 
reaches 800 ~ 0.03, and when Kv = 10-3 em -1 we 
have 800 ~ 0.1. The characteristic distances 
z2 ~ R/800 are 6 and 2 em. Such a defocusing 
greatly exceeds the initial divergence of the beam 
(which has increased after passing through the 
telescopic system), and can be easily measured. 

A similar procedure could be used for an ex
perimental determination of weak absorption in 
media that scatter more strongly than they absorb, 
and for which the measurement of the beam atten
uation yields only the summary coefficient. 

5. HOMOGENEOUS BEAM 

Let us consider a parallel homogeneous beam, 
in which the flux density J and the field are con
stant over the radius and terminate abruptly at the 
boundary r = R. Such a beam can be obtained ex
perimentally by placing at the laser outlet a screen 
with a small opening in the center. 

The concept of a homogeneous beam is, of 
course, idealized, since diffraction always dis
turbs the homogeneity. The width of the diffrac
tion-spreading zone of the beam boundary increases 
on increasing distance from the opening approxi
mately like Xd ~ .JA.z/2, where "'A= "'Ao/..f€o ("'Ao 
=wavelength in vacuum). The beam spreads out 

completely over a distance Zd ~ 2R2 /"'A. However, 
at distances z « zd "quasihomogeneity" is still 
maintained, so that the idealization is not devoid of 
meaning. 

The homogeneous beam has unusual properties 
with respect to refraction due to nonlinearity of the 
medium. [ 121 These anomalies are connected with 
the absence of radial gradients of the field inside 
the light channel. The Kerr effect becomes mani
fest here only to the extent that diffraction smears 
out the discontinuity on the boundary and the peri
pheral rays enter into the region of the field gra
dient. 

The field-dependent external force acting on 
the material, -8(Pther + Pstr)/8r, is equal to zero 
inside the channel. It acts only on the lateral 
boundary of the beam and is equal to Pther + Pstr 
per square centimeter of surface. 

Starting with instant tz when the light wave ar
rives at the given section z, compression and 
rarefaction waves, due to the action of Pstr and 
Pther• propagate from the beam boundary inward 
with the speed of sound. Propagating outward are 
respectively rarefaction and compression waves. 

We introduce the coordinate x = r- R. So long 
as the perturbation front has not reached the axis, 
its coordinate x has an absolute value xs = at 
(we assume, as before, that z = 0 and t' = t). 
When I xI > at we have op = 0 inside and outside 
the channel. The density distribution op(x, t) in 
the perturbed region I xI ~ at can be readily ob
tained for the early stage t « ts = R/a, Xs « R, 
when the motion can be regarded as plane. For 
the wave traveling inside the channel op = cp1 (t 
+ x/a), and for the exterior region op = cp 2(t- x/a), 
where cp are functions that are as yet arbitrary. 
At the channel boundary x = 0, the velocity u and 
the summary pressure of the material and of the 
striction, i.e., (a2op + Pther> + Pstr• are continu
ous. The first condition yields cp 2(t) = -cp1 (t), and 
the ~econd yields cp2(t) - cp1 (t) = Pther + Pstr· This 
determines the form of the functions cp: 

1 
(jli (t) = -<p2(t) = - 2a2 [pther (t) + Pstr (t)]. (12) 

Assume that the flux J is constant in time. 
Then for lx I ~ xs 

~P(J<, t) = + 2~2 [ Pther ( 1- 1;.1 ) -IPstr I] 

= + r'Kvlt [ 1 -M-~J. 
2a2 at t . 

(13) 

The upper sign pertains here to the internal re
gion and the lower to the external one. This dis
tribution is shown in Fig. 2. 



LIGHT BEAMS IN WEAKLY ABSORBING MEDIA 313 

8p 
FIG. 2. Radial distribution of 

the density 8p = 8pstr + 8pther at 
r t << ts = R/a, when the field in the 

f----~,._--+----"<~~ beam is radially uniform. The 
dashed lin~s show 8pther and the 
dotted ones 8pstr• 

In the absence of absorption, the density profile 
in the channel has the form of a "step" with OPstr 
equal to half the equilibrium value. The value of 
OPther at the boundary is likewise equal to half 
the equilibrium value, and the partial jumps in the 
density on the boundary are equal to their equilib
rium values I6Pther, str I = I Pther, strla2 1. (We 
recall that when t » ts the density in the channel 
is in quasiequilibrium throughout the channel, 
0P = 6p = - (Pther + Pstr)/a2.) 

Let us trace the rays in a medium having a 
density distribution (13). Those rays which at the 
given instant t enter the medium in the unper
turbed region of the channel, r < R - at, are not 
refracted and retain the initial direction e = 0. 
But the rays which enter the perturbed layer, 
R > r > R - at, are deflected toward the axis. The 
density gradient in this region is constant, and 
therefore according to (6) d8ftlz =canst= {3; the 
constant {3 is equal to 

f3 = p iJs fXvl = 1 ile(-0, t) 
iJp 4eopoa3 2Eo Xs 

The ray describes a parabolic trajectory r = r 0 

- {3z 2 /2 and encounters the perturbation front 
rs_ =R-at after covering a distance zs 
= { (2/{3 )[at- (R - r 0)]} 1 / 2 and acquiring a slope 
8s = f3zs. 

On the perturbation front there is a density dis
continuity (see Fig. 2). At t < Teo• as follows from 
(7) and (13), the ray experiences here total inter
nal reflection. The same occurs also when t > Teo 
in the case of those rays which enter the medium 
sufficiently close to the front, in the region where 
op > 0. (In the absence of absorption, when op(r) 
=canst= OPstr• the rays are not refracted at all.) 
When t > Teo. the rays entering the medium in the 
region op < 0 are refracted at the discontinuity 
and enter the unperturbed region, where they prop
agate linearly towards the axis. At T » Teo we 
have OPstr « I 0Pther I, the discontinuity is rela
tively small, and the refraction hardly changes the 
angle Bs· During this stage the rays approach the 
axis at angles close to Bs and of order of magni
tude of Bs ~ ..J6Ether/2E0, where 6Ether is the 
equilibrium values; the rays reach the axis at dis-

tances Zf ~ R/es. The course of the rays is shown 
in Fig. 3. Thus, in the case of a homogeneous beam, 
the striction itself does not lead to self focusing, 
and the thermal expansion during the stage t < ts 
= R/a, to the contrary, exerts a focusing influence 
on the peripheral part of the beam. This influence 
counteracts the diffraction spreading of the bound
ary. It can contribute to a decrease in the diver
gence of a homogeneous fan-like diverging beam 
of rays. 

If the field is radially constant in the main part 
of the beam and drops off gradually at the edges, 
then the thermal expansion will lead to divergence 
of only the outermost rays. In the homogeneous 
part of the beam, on the other hand, everything 
will proceed approximately in the manner described 
above. We shall not consider here the action of 
refraction and diffraction, when their roles are 
comparable. For estimates it can be assumed 
that refraction prevails over diffraction if z f « Zd , 
and vice versa. This inequality is equivalent to 
8s » Bd ~ A./R, which in the theory of self focus
ing corresponds to the condition that the power 
greatly exceed the critical value. [ 3• 4• 61 

We write out the solution for the case 
J = Jmt/tm. When lxl::::; at we have 

ilp = =F 2!2 ~ther( 1- I:. I r -IPstr I ( 1- 1:.1)] 
= =F f'Xvlmt2 [( 1 _J.:l)2 _ 2Tco ( 1-J.:l)] (14) 

4a2tm at t at 

(the upper and lower signs refer to the inside and 
outside of the channel). 

When t » Teo• the refraction differs little from 
that occurring in the case J(t) =canst. On the 

FIG. 3. Course of rays in the 
case of homogeneous beam. 

z=c1 (t-t0 } 
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other hand, if there is no absorption and only 
striction alone is effective, then the rays entering 
the perturbed peripheral layer are deflected along 
parabolas towards the boundary of the channel, but 
experience there total internal reflection on the 
density discontinuity and ''are returned'' back. 

We present a numerical example as applied to 
a giant ruby-laser pulse. Let R = 2 x 10-2 em, 
just as in [ 11l, J = 100 MW /cm2, r = 2, ../Eo= 1.5, 
pfJE/fJp = 1, a= 1 km/sec, Po= 1 g/cm3, and Kv 
= 10-2 cm-1• With this, Teo= 0.5 nsec. At the in
stant t = 30 nsec we have at = 0.15R and rays 
close to the edge converge towards the axis at a 
distance Zf ~ 6 em; the diffraction distance in this 
example is considerably larger than Zf, namely 
Zd ~ 18 em. If the pulse were to continue to have 
the same power for a duration several times 
longer, the focusing action could encompass almost 
the entire beam. 

6. SUPPRESSION OF SELF FOCUSING DUE TO 
THE KERR EFFECT 

We return to the case of a field that drops off 
from the axis toward the edge of the beam, and 
compare the action of the Kerr effect with that of 
absorption. We assume, by way of an estimate, 
that the field is constant in time. We leave out 
from (9) and (11) the terms that are connected with 
striction (i.e., we put Teo = 0). Noting that lf;/6f ~ 1, 
we obtain approximately 

I 08ther I= _t_. { (t/ta)2 for t < t8 

<l!'kerr 'thO 1 for t > t. 

where 

08 -
't'ko = 4:npoa2e2k/P iJp fc1eo%v. (15) 

The thermal action exceeds the action of the Kerr 
effect, starting with an instant Tk equal to 

{ (ta/'t'hO)'I•, if ta >'thO 

't'k ='thO· 1 if t. < 't'kc 
(16) 

We present numerical estimates. For liquids, 
in which the Kerr effect is relatively weak, E2k 
~ 10-12 absolute units. £1 51 Putting Po = 1 g/cm3, 

a= 1 km/sec, r = 2, ..fEo = 1.5, pfJE/fJp = 1, and 
K v = 10-3 em -1, we get Tko = 1. 4 nsec. In all the 
cases of practical interest, ts > Tko (R > 1.4 
x 10-4 em), so that I 6Ether I increases to c5€Kerr 
even before mechanical quasiequilibrium is at
tained, and T k = T ~3 t;l 3. For example, at 
R = 0.1 em we have ts = 10-6 sec and Tk = 1.1 
x 10-T sec. We recall that the effect of the stric
tion comes into play much earlier: Tc = 15nsec. 

In the most active liquid, carbon disulfide, E 2k 
= 6 x 10-11 absolute units; at the same value of 
absorption, Kv = 10-3 em -1 , we get 7"ko ~ 60 nsec; 
if R < 0.7.X 10-2 em, then Tk~Tko ~0.6X10-7 sec; 
for R = 0.1 em we have ts = 0.8 x 10-6 sec and 
Tk ~ 4 x 10-7 sec. 

Assume that an almost-parallel beam with di
vergence not exceeding the diffraction value A./R 
carries a power P =..fEo cE27rR2/47r, which is 
larger (but by not too many times) than the critical 
value P cr = cA.~ /86n2Kerr· [ 3• 171 

The rays converge to the axis at a distance on 
the order of Zf~ RV6EKerr/E0 ~ (R2/A.)(P/Pcr>-1/ 2, 

or more accurately, with diffraction taken into ac
count, at a distance Zf ~ (R2 /A.)(P I P cr- 1) -1/ 2• [ 61 

In the presence of absorption, the focusing of the 
Kerr effect is gradually offset by the defocusing 
action of the thermal expansion. The total value 
6€ = c5€ 2k -I 6Ether I decreases with increasing 
time. As a result, the critical power increases and 
the degree of supercriticality of the beam de
creases. Accordingly, the distance Zf increases. 
At some instant, somewhat shorter than T k• the 
critical power becomes equal to the beam power, 
and the distance Zf becomes infinite. This con
cludes the self focusing. Further, when t > T k• 
defocusing takes place (6€ < 0) and the beam di
vergence increases; an estimate of the divergence 
was given in Sec. 4. Thus, the time Tk deter
mines the duration of the self focusing of the light 
beam in the absorbing medium. 

So far we have used for observation of self fo
cusing ruby lasers operating in the giant pulse 
mode. [ 16 • 11l The durations of such pulses, 
~ 20-40 nsec, are apparently too short to be able 
to observe the suppression of self focusing (this 
effect occurs after a time Tk ~ 10-7 sec). It will 
be probably necessary to use for this purpose 
lasers operating in the free-generation mode; the 
durations of individual spikes, ~10-6 sec, areal
ready sufficient. 

This, of course, raises a difficulty in that the 
power required for self focusing is quite large. It 
is necessary that a beam carrying a power, say, 
double the critical value have a divergence not 
exceeding the diffraction value (as was the case in 
the experiments of [ 11 1). On the other hand, if the 
divergence of the beam exceeds the diffraction 
value (this was the situation in the experiments 
of [ 161 ), then the power required is several times 
larger than critical (this circumstance was ex
plained in our paper[ 8 1). One can, however, hope 
that modern lasers[ 261 will make it possible to ob
serve the suppression effect in the most active 
liquids, such as carbon disulfide, where P cr 
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~ 10 kW[ m (at the ruby frequency); the absorp
tion can in this case be varied by adding absorbers. 
It would be best to operate with a single pulse of 
~ 100-200 nsec duration. 

7. INSTABILITY AND STABILIZATION OF A 
PLANE WAVE 

Let us see how a broad light beam of high power 
and long duration propagates in a weakly absorbing 
medium, in the idealized case-a plane wave with 
amplitude /2 E. Bespalov and Talanov[ 111 have 
shown mathematically that in a medium with di
electric constant (1) a plane wave is unstable 
against random field perturbations. This results 
in a spontaneous decay of the wave into individual 
beams in which the power exceeds the critical 
value, and each of such beams becomes self fo
cused independently. The radii R of the beams 
are of the order of Rcr = Y 4P crlv'ZocE2 • The self
focusing distances are determined by the same 
formula Zf ~ R/'h 2E2/E0 as for a single beam of 
radius R. The nature of the instability is clear: if 
the field has for some accidental reason become 
smaller than normal, then the dielectric constant 
becomes smaller at this location; the correspond
ing rays will start to move away from one another 
and the field along these rays will become even 
smaller. 5> 

Reasoning in similar fashion, it is easy to con
clude that a negative increment /:,E = E 2E2 < 0 
should, to the contrary, exert a stabilizing effect 
on the wave. Accidentally occurring perturbations 
will not increase. This can be verified also for
mally by repeating the calculations of c 11 1 and 
putting E 2 < 0. The absorption and subsequent ther
mal expansion of the material play precisely the 
role of a stabilizer of this type. Here, however, 
the inertia of the thermal effect comes essentially 
into play. The process must proceed approximately 
as follows: The waves in different places will in
cessantly cause bursts of instability connected with 
the Kerr effect, as a result of which individual 
self-focusing beams will appear. In each such 
beam, by virtue of the very nature of its formation, 
the field will in general drop off from the axis to
ward the edge, and the results of the preceding 
section are fully applicable to this case. The life
time of the beam will be of the order of Tk· After 

5)This is counteracted by diffraction: if R < Rcr• then 
the field is restored before the beams converge; but if 
R > Rcr• the diffraction is unable to counteract the self 
focusing. This is precisely why the individual beams have 

radii R > Rcr· 

a time ~ Tk, the converging beam becomes defo
cused to the initial state, and the field in the trans
verse direction becomes equalized; the density in 
the region of the beam will also become equalized, 
and so on until the next burst of the wave in the 
given region. 

It must be assumed that the promptness of ap
pearance of the self-focusing beams will be de
termined by the ratio of the characteristic time of 
formation of the beam, the order of which, owing 
to the instantaneous nature of the Kerr effect is , 
Tf ~ zflctt to the suppression time Tk· The effect 
will be clearly pronounced when Tf « Tk, and to 
the contrary, no instability will appear if Tf » Tk, 
since the self focusing simply does not have time 
to develop. As shown by estimates, the Kerr ef
fect ensures fully the satisfaction of the conditions 
Tf « T k or T f ~ T k As regards striction, the 
situation is apparently reversed here (the time T c• 
which in this case plays the role of Tk, is small, 
and the radii Rcr and the distances Zf ~ R~r/A. 
are, to the contrary, large). 

Since the transverse dimensions of the wave 
are always limited under real conditions, local 
bursts will apparently be produced against the 
background of the general evolution of the density 
in the region of the wave and of the entire light 
beam as a whole. Here, depending on the radial 
field distribution, either beam divergence or fo
cusing of the peripheral rays is possible, as de
scribed in Sees. 4 and 5. 

The author thanks Ya. B. Zel'dovich for interest 
in the work and G. A. Askar 'yan for useful dis
cussions. 
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