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Low-frequency oscillations (with periods 7, 14, and 22 nsec) of the intensity of the giant pulse 
of a laser with saturable filters were investigated at different filter positions inside of the 
cavity. A theoretical analysis is presented of the phenomenon, and its results agree well with 
the observed dependence of the structure of the giant pulse on the filter coordinate. 

THE distinguishing features of the interaction be
tween an intense electromagnetic field and matter 
find a number of characteristic manifestations in 
processes occurring in lasers with saturable 
filters. In particular, it was observed recently 
that a definite coupling can be established in the 
filter material between several modes of field 
oscillation, such that the output emission of the 
laser has a form of a train of equidistant short 
pulses [1, 2] 1>. This phenomenon is called self
synchronization of the modes. Great interest in 
self-synchronization is due also to attempts to 
obtain in this manner ultrashort radiation pulses. 

We wish to call attention to certain new proper
ties of this phenomenon, which make it possible to 
present more clearly the operating mechanism of 
the saturable filter, all the more since the theory 
of the processes occurring in it is far from com
plete. 

1. EXPERIMENTAL DATA 

A diagram of the experimental setup is shown 
in Fig. 1. Here M1 and M2 are the cavity mirrors 
with reflection coefficients 99 and 65% respec
tively, NR is a neodymium rod with 15 mm 
diameter and 120 mm length, C is cell with a solu
tion of one of the analogs of pentacarbocyanine in 
nitrobenzene, used as the saturable filter, ST is 
a semitransparent mirror, CPC is a coaxial low
inertia photocell connected directly to the plates of 
an S1-11 oscilloscope (the time constant of this 
system is ~ 2 nsec), FP is a Fabry-Perot inter
ferometer with distance between plates of 15 em, 
L is a lens with f = 1000 mm, P is the photo-

!)Emission from a neodymium-glass laser, in the form of a 
train of short pulses with large off-duty cycle, was observed 
by us earlier [' ]. 
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FIG. 1. Diagram of experimental setup. 

graphic plate, and D is a photodiode connected 
to the input of the S1-16 oscilloscope. 

The experimental setup made it possible to 
register simultaneously the temporal and spectral 
characteristics of the output emission of the laser. 
The photodiode was used to monitor the number of 
giant pulses per flash. In addition, the emission 
spectrum was investigated with a diffraction spec
trograph with dispersion 1.25 Nmm. To eliminate 
the discriminating action of the end of the 
neodymium rod (see [3] ), the axis of the rod was 
inclined in all experiments to the resonator axis 
by an angle ~ 1 o. The main part of the experiment 
was carried out at an optical resonator length 
L = 324 em, at a cell transmission coefficient (at 
wavelength A. = 1.06 J.L) of approximately 60%, and 
at pump energies close to threshold. 

The main experimental results consist in the 
following. 

When the solution-containing cell is located 
near one of the resonator mirrors (at a distance 
2-3 em), the giant pulse (with total duration 
100-150 nsec) constituted a train of individual 
narrow pulses of 3-4 nsec duration, the distance 
between which was T = 22 ± 1 nsec ~ 2L/ c (Fig. 
2a). The output energy of the giant pulse was ap
proximately 0.3 J, so that peak power reached 
15-20 MW. 

When the cell was at the center of the resonator, 
the distance between the two nearest pulses was 
T = 11 ± 1 nsec (Fig. 2b), i.e., smaller by a factor 
of 2. The width of the individual pulses was also 

286 



SELF-SYNCHRONIZATION OF AXIAL MODES IN A LASER 287 

FIG. 2. Time sweeps of giant pulse for different values of X 
(the distance from the filter to the mirror M1). The center of 
the neodymium rod is at a distance 20 em from M2 • a) X = 2 em; 
b) X = 162 em, c) X = 108 em; d) calibration sinusoid with 
period 4 nsec. 

3-4 nsec in this case. The relative intensity of 
the two nearest pulses did not remain constant and 
varied from flash to flash. 

In the case when the cell was located at a dis
tance "'L/3 from one of the mirrors, the output 
emission consisted of a train of pulses with dis
tances T = 7 ± 1 nsec ~ ( o/s) L/c (Fig. 2c). As in 
the preceding case, the relative intensity of the 
three nearest pulses could vary from flash to 
flash. 

No influence of the position of the neodymium 
rod on the observed phenomenon was noted. 

When the transmission coefficient of the cell 
with the solution was increased from 60 to 85% 
(in this case the cell was located near one of the 
mirrors), the width of the individual pulses in the 

overall train increased, and the form of the modu
lation of the output signal approached sinusoidal. 
A decrease in the resonator length led to a de
crease in the depth of modulation of the output 
radiation, which apparently is connected with the 
excitation of the off-axes modes. 

The measurements of the giant pulse, made 
with the aid of the Fabry-Perot interferometer, 
have shown that the width of the generation line 
was .6.v = 1.1X 10-2 cm-1 (the apparatus function 
of the Fabry-Perot interferometer did not exceed 
0.3 x 10-2 em - 1 ). This corresponds to seven times 
the distance between neighboring axial modes. The 
absolute value of the wavelength of the generation 
line could vary from flash to flash by "'25 A. 

With increasing pump energy over thresholds, 
the number of giant pulses (within the time of one 
pump pulse) increased, but the time evolution of 
each individual giant pulse did not change. The 
emission spectrum consisted in this case (Fig. 3) 
of several individual intense lines, the number of 
which corresponded to the number of giant pulses, 
and the width was determined by the apparatus 
function of the instrument ( 0.1 A). It should be 
noted that the emission spectrum of either the 
single giant pulse or of several pulses could con
tain also other lines, but their intensity is smaller 
by 1-3 orders of magnitude compared with the 
fundamental lines, so that they could be observed 
on the spectrogram only by strongly overexposing 
the fundamental lines. 

2. THEORETICAL PART 

For a theoretical discussion of the observed 
phenomena we consider the following model. 

We assume that a stationary regime exists, i.e., 
we do not consider the processes occurring during 
the bleaching of the filter and the buildup of the 
field. The amplitudes of the different spectral 
components of the field will be assumed constant 
and specified. We determine the absorption of the 
field energy in the filter for arbitrary phases of 
the spectral components, and find the phase rela
tions at which the losses in the filter are minimal. 
We assume that the regime realized in the laser 
is precisely the one at which these conditions are 
satisfied. 

We assume, to simplify the problem, that the 
filter material is described by a two-level scheme 

:t (p11 + P22) + y(pu- p22) = ylv- 2i~ E(p1z- P12"), 

! P12 +(f- iroo)P!z = -i ~ E(pu- P22)· (1) 
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Here Pmn are the density matrix elements, y and 
r are the constants of the population relaxation 
and of the off-diagonal elements with r » y, N is 
the difference in the populations of the lower and 
upper levels in the absence of the field, w0 is the 
natural frequency of the transition, p is the 
matrix element of the dipole moment, and E is 
the intensity of the electric field. Since we are 
considering a stationary process, i.e., one inde
pendent of the initial conditions, the system (1) 
must be solved simultaneously with the bounded
ness condition for Pmn at t = ± oo. 

We shall assume that the field consists of sev
eral discrete spectral components, and the spatial 
distribution for each component is close to a plane 
standing wave. We assume that the wave vectors 
and the corresponding natural frequencies are 
equidistant and are determined by the distance be
tween the mirrors L, just as in an empty reso
nator. With this we have 

E = ~ Am sin kmx cos ( romt + 'Pm) 
m 

li 
==-~ Fmcos(romt + 'Pm), 

p m (2) 

Am ~ 0; km = crom, rom= ro + mQ, Q = nc/ L. 

We confine ourselves to an examination of the 
case when the following relation is satisfied 

Q~y. (3) 

In addition, we assume for simplicity that w = w0, 

and that for all the spectral components 

If condition (4) is satisfied, then it follows from 
(1) that 

(4) 

-i 
(112 = ""2f ~ Fm exp {i ( ro + mQ) t + iqJm}(Pil- Pt2), (5) 

m 

d I PH- P22 dt" (p11 - P22) + v (p11 - P22) = yN , r 

( 6) 

X~~ FmFzcos [(m -l)Qt + 'Pm- <pz]. 
l m 

a 

b FIG. 3. Spectrograms of emission. a-four 
c giant pulses per pump pulse; b-free genera

tion (no filter); c-single giant pulse. 

The solution of Eq. (6), bounded at t =± 00 , can 
be represented in the form 

pu - Pt2 = N ---~1 - ~ 2; ~ FzFm 
1 + r-ty-1 ~ Fi 2r z*m m 

8 

[ 
exp {i(Z-m)Qt+i(<pz-<pm)} ]'l __::_:__;__ _ ___:._ __ ___;_; __ ___:_cc_ + c. c. 

X ~ , 
i ( l - m) Q + y + r-1 LJ F} 

if the field intensity is not too large 

~Fm2~rly+ iQI. 
m 

( 7) 

( 8) 

The first term in the curly brackets of (7) corre
sponds to the de component of the population dif
ference, and the second corresponds to quantities 
that oscillate in time. The oscillating quantities 
constitute a small correction to the de component, 
of the order of F 2/n2. In our approximation, only 
the oscillating part of the population difference 
depends on the phases cp m of the fields. 

It should be noted that condition ( 8) for the ap
plicability of the solution presented here can be 
satisfied at appreciable saturation. In fact, satu
ration of the population levels becomes essential 
at intensities F 2 ;::, yr. By virtue of (3) there 
exist such field intensities 

( 9) 

m 

that the saturation is already large yet ( 8) is still 
satisfied. For our problem interest attaches pre
cisely to the fields that produce saturation, since 
the action of the saturating filter is based on the 
saturation effect. 

Let us calculate the electromagnetic energy W 
absorbed by the filter material per unit time. We 
assume that the polarization of the filter material 
P is connected entirely with the considered level 
pair 

(10) 

where n is the density of the absorbing centers. 
Then we obtain on the basis of (5), (7), and (10) the 
following expression for the losses of the electro
magnetic energy, averaged over the period 2rr/w: 
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Wav= Edt av nliwr ~Fr2) 1+rv ~Fmz ( dP ) N I ( \( 1 )-1 

- 2~ ~' ~ ""i:.FmFzFsPm+s-l 
s l*m m 

CO:S (cpz -· <jlm- (jls + (jlm+s-z) ) 

X (Z-m)2QZ + ( '\' + f~' ~pjz y . 
J 

(11) 

From (11) we see that the absorption depends 
on the phases <p m. 

We note that Statz and Tang [4 ], who explained 
mode interaction in a laser without a saturable 
filter, calculated the polarization of the active 
medium as a function of the phase relations. In 
that paper, however, all the field components were 
assumed weak, and therefore the approach used 
in [4] cannot be used in principle for our problem 
(see the discussion of the inequality ( 9)). In addi
tion, the field considered in [4 ] consisted of only 
three components. It will be shown later, however, 
that certain singularities of the output radiation, 
which depend on the position of the filter inside 
the resonator, become manifest only in the pres
ence of a large number of components in the gen
eration spectrum. 

Attention must be called to the fact that the very 
dependence of the polarization of the active medium 
on the phases of the spectral emission components 
was known before the self-synchronization phe
nomenon-! and was observed in quantum ampli-
fiers [5, 61 • 

Let us see now under what phase relations are 
the losses minimal. To this end we integrate (11) 
along the filter. Assuming that the filter is much 
longer than the wavelength of the radiation, but 
much shorter than the resonator length L, and 
also discarding the phase-independent part of the 
absorption, we proceed to check the minimum of 
the expression 

- ~ ~ "'2. AmAvAsAs+l-m(l- m)-2 

s l*m m 

X [ 1 + cos 2n: ~ ( m - l) +cos 2n ~- ( m - s) J 
X COS (cpm- cp'z- <i's+ (jlm+s-1) = <D(cp). 

Here X is the distance from the center of the 
filter to the mirror. 

(12) 

Let us examine the function <I> ( <p ) in the case 
when the filter is at the edge of the resonator 
X/L = 0. It can be verified that in this case <I> is 
minimal if the phases satisfy the relation 
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(jlmH- (jlm = (jlm- (jlm-1 + 2nq, (13) 

where q is an integer. 
If the filter is at the center of the resonator 

X/L = %. then the minimum of <I> ( <p) is insur:d 
by the following phase relations 

(jlm+l- <i'm = (jlm- (jlm-1 + n(2q + 1). 

A test of <I> ( <p) for a minimum at X/L = Ya 
leads to the following conditions on the phases: 

(14) 

(jlm-f-3- (jlm = (jJH3- (jl'l + 2::1q. (15) 

We emphasize that the relations (13)-(15) en
sure minimum losses for arbitrary amplitudes 
Am. On the other hand, if we consider arbitrary 
values of the filter coordinate, then the phase re
lations will depend on Am and will have a rather 
complicated form. We shall discuss only three 
filter positions: X = 0, L/2, and L/3. 

In the cases when condition (13) (or (14)) is 
satisfied we can express the phases of all the 
components in terms of two arbitrary constants 
( <fJo and a): 

(jlm=(jlo+ma 

(jlm = (jlo + ma + 1/zm(m -1)n 

for X/L = 0, 

for X/L = 1/ 2• 

(16) 

(17) 

In the case of (15), however, in order to write 
down the phases of all the components, it is neces
sary to introduce four coordinates (<p 0, a, {3, e): 

(jl3m = <po + me, 
<i'3m+! = (jlo + I{L + me, 
(jl3m+2 = (jlo + ~ + me 

(18) 

The dependence of the output radiation on the 
time in these three cases will, in general, be dif
ferent. The low-frequency component of the oscil
lations of the field intensity, which is registered 
by a quadratic receiver, is proportional to the 
quantity 

~ ~ AmA1cos[(m -l)Qt + (jlm- cp'zJ as B. 
l*m m 

We write down this quantity, assuming that the 
phases are given by one of the three relations 
(16)-(18). 

For X/L = 0 we obtain 

B= ~ ~AzAz+mcos[m(Qt+a)]. 
m l 

For X/L = Y2 

B = ~ { ~ (-1) 1AzAl+2m+1 cos [(2m+ 1) (Qt +a)] 
m l 

(19) 

- ~AzAz+zmCOS [2m(Qt +a))}. (20) 
I 
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For X/L = Y3 

B == ~ { ~ AzAz+3m cos [3m( Qt + ~)] 
+ ~ Aaz Aa(l+m)+t cos [(3m+ 1) Qt +a+ m8] 

+ L Aaz+tAa(Z+ml+2 cos [(3m +1 ) Qt +~-a+ m8] 

+ L Aaz+zAa<Z+m+t)Cos{(3m + 1)Qt +(m + 1)8- ~] 
l 

+ LAazAa(Z+m)+2cos[(3m + 2)Qt + ~ + m8] 

+ ~ Aaz+tAa(Z+m+t)COs[(3m + 2)Qt+(m + 1)8- a] 
l 

+ LAaz+2A3(Z+m)+~cos[(3m + 2)Qt+(m+1)8+a-Bl}. 
I (21) 

Thus, when X/L = 0 all the terms having the 
same frequency have identical phases. When 
X/L =% all terms at even frequencies have the 
same phase and some of those at odd frequencies 
are in phase opposition to the remainder. In both 
cases, as seen from (20) and (21), if the ampli
tudes Am are known, the time dependence of the 
signal can be determined completely. The unde
termined constant a results only in an inessen
tial phase shift. 

In the third case, the form of the output signal 
depends on the constants a, {3, and e, which are 
not determined in our model. This is connected 
with the fact that in this cell position (X/ L = Y3 ) 

the losses do not depend on a, {3, ore and all 
these constants remain arbitrary in our analysis. 
It is possible that in a real system a definite con
nection between a, [3, and e is ensured by the 
matter of the active rod, the role of which is not 
taken into account here. The active rod, however, 
undoubtedly gives a much weaker effect, since the 
saturation in its material is much smaller than in 
the filter material. 

From (21) we can see that for arbitrary values 
of the constants a, [3, and e the components at 
triple frequency and at frequencies that are mul
tiples of 3 g are intense in the output signal. 

Formulas (19)-(21) were used to plot the in
tensity of the output signal against the time for the 
three filter positions. On the basis of an experi
mental determination of the line width of the gen
eration it was assumed that only the amplitudes of 
seven components differ from zero, Am ""- 0 for 
I m I :s 3, and all these amplitudes were assumed 
to be equal. In the case of X/L = Ya, in addition, 
additional phase relations were specified: {3 = 2a 
+ 1r and e = 3a. The obtained time variation of the 
signal intensity is shown in Fig. 4. When the filter 

FIG. 4. Dependence of B-intensity of the output signal 
(in relative units)-on the time. a-X/L = 0, b-X/L = 1/2, 
c-X/L = 1/3. 

is located at the edge of the resonator, the dis
tance between maxima of the intensity on the plot 
amounts to 27T/Q = 2L/ c; it is decreased by one
half for the case when the filter is in the center 
and by a factor of 3 when the filter coordinate is 
X = L/3. The same distances between the pulses 
were obtained experimentally. The ratio of the in
tensities of the neighboring pulses differs in the 
theoretical and experimental curves. For a better 
reconciliation of the theoretical and experimental 
curves it is probably necessary to take into ac
count the asymmetry of the resonator, and partic
ularly the difference in the losses in mirrors M1 

and M2 (when the mirror loss is taken into ac
count, expression (2) for the field changes). 

Thus, analysis of model of the mode interaction 
in a saturable filter makes it possible to describe 
certain features of the self-synchronization phe
nomenon, and explains the change occurring in the 
form of the output signal when the filter position 
is changed. Therefore such a model can be used 
in principle as the starting point for further study 
of a laser with saturable filter. It is of interest, 
in particular, to investigate the mode interaction 
under nonstationary conditions, while retaining the 
basic assumptions concerning the properties of 
the medium and the spatial distribution of the field. 
This will make it possible to ascertain which mode 
amplitudes and phases are established in real 
cases, and to find a method for synchronizing a 
large number of modes to obtain very short light 
pulses. 
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