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The photon wave-function constant Z3 is calculated under the assumption of absence of in
finities in quantum electrodynamics. The result is that z;1 diverges as the first power of 
the logarithm of A (ultraviolet cut-off parameter). The result is discussed within the frame
work of perturbation theory. 

1. In our previous paper [1] we have developed a 
scheme for the solution of the asymptotic 
Schwinger-Dyson equations for the unrenormalized 
electron propagator S ( p), on the assumption that 

I¥n D(k2) = k-2, 
k-+oo 

(1) 

where D ( k2 ) is the unrenormalized invariant 
photon propagator. A finite nontrivial solution for 
S ( p) was obtained, which behaves like 1/yp for 
large p under the condition that the bare electron 
mass vanishes. In order that the hypothesis (1) be 
self consistent, the photon wave function renormal
ization constant, calculated under the conditions of 
the same hypothesis, must be finite. If Eq. ( 1) is 
valid, then one may set D ( k2 ) = k-2 in calculating 
the main contributions to z3 (i.e., that part of z3 
which diverges in perturbation theory). 

We have carried out such calculations and ob
tained the following result: if 

(2) 

then 

Z3- 1 -1 = f(a0) (" dp2 +finite terms, (3) 
J p2 

where f ( a 0 ) is a function of the unrenormalized 
fine-structure constant. In other words, we find 
that if D ( k2 ) = k- 2, then Z31 diverges as the first 
power of the logarithm of the ultraviolet cut-off 
parameter. Consequently, if a nonvanishing value 
of a 0 exists, for which f ( a 0 ) = 0, then the quan
tity Z31 should be finite for this value of a 0• This 
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would mean that hypothesis (1) is self consistentY 
In that case the unrenormalized equations of quan
tum electrodynamics have solutions, which in 
general contain no infinities5>. All conventional 
infinities would in that case be simply the result 
of an improper use of perturbation theory. 

The analysis carried out by us shows that the 
function f( a 0 ) may be expressed in the form 

f(ao)= ;: [ ~ +g(ao) J. (4) 

where 

g(ao) = ft(ao)+2Mao)+!z2 (ao) +I ( ) (5) 
1-ft(ao) 3 ao · 

The functions f1 ( a 0 ), f2 ( a 0 ) and f3 ( a 0 ) are ex
pressed here in terms of the asymptotic form of 
the kernel of the Bethe-Salpeter equation 

Ka = Ka (p + k I 2, p - k I 2; p' + k I 2, p' - k I 2) 

for electron-positron scattering with the help of 
the following equations 

1 (" d•p' 
!t(ao) = 48 J (2n)• 

X Sp (Va('VP')'VIl ;;,711 (yp') "fa) Ka (p', P) ('Yil (VP)'Va 

- "fa('YP)'V!l), (6) 

4 >In practice, to obtain self-consistency one also needs the 
condition f'( a 0 ) < 0. 

5 >Making use of general arguments of the renormalization 
group, Gell-Mann and Low [2 ] arrive at analogous conclusions 
on the existence of an equation for the prope_r value of a 0• How
ever, our explicit result (Eq. (3)) for z,-' - 1 shows directly 
how a theory may arise which contains no divergences. 

205 



206 JOHNSON, WILLEY, and BAKER 

(8) 

where 

Ka(p',p) == Kalk=o, (9) 

Ka.a(p', P) == a:a. Kalk=o, (10) 
{}2 

Ka.pa (p', p) == 8ka. iJkp Ka I k=O· ( 11) 

The symptotic value of the kernel of the Bethe
Salpeter equation Ka may be obtained from its 
exact value by replacing all propagators S ( p) of 
internal electron lines by 1/( yp), and all propa
gators DfJ.v of internal photon lines by D~11 , where 

D,. .. o = ( g,. .. - k,.k .. ) _!.._ + b k,.kv ( 12) 
\ k2;k2 k~' 

with the gauge constant b fixed by the requirement 
that the function r be finite. 8> The convergence of 
the integrals (6), (7), and (8) is the essential point 
in the proof of Eq. (6). We have shown that the in
tegrals indeed converge in the case when Ka may 
be expressed in the form of a power series in a 0 

up to an arbitrary order of perturbation theory. 
Thus the generality of our proof of Eq. (3) is 

limited by considerations of Ka in perturbation 
theory. 

The Feynman graphs corresponding to some 
of the first terms in the perturbation-theory series 
for K are shown in Fig. 1. 

The term % in the brackets of Eq. (4) corre
sponds to the weak coupling limit for the quantity 
Z 31 (the Landau approximation) [3]. Our results 
show that if D ( k2) is taken equal to k-2, then in 
the exact asymptotic form for Z 31 there appear 
no higher powers of In A. Moreover, the coeffi
cient of the logarithm of A is obtained by replac
ing % by % + g ( a 0 ). The requirement of internal 
consistency for the theory 

( 13) 

means, that the sum of all the terms of higher 
order precisely cancels the effect obtained in the 
first approximation in the coupling constant. We 
can calculate g( a 0 ) with the help of Eq. (5) and 
Eqs. (6)-(8) for f1, f2, and f3• 

If lowest order perturbation theory is used for 
calculation of Ka, then expression (5) for g ( a 0 ) 

amounts to a sum of the contributions to Z 31 due 

6 >we have obtained an explicit formula expressing b in terms 
of Ka(O, p'). 

=B==I+:X:+ 
+I+ K +····· 
FIG. 1. Perturbation-theory diagrams for K. 

to "uncrossed" ladder diagrams. In that case we 
find f1 = ao I 21r and f2 = f3 = 0. It follows hence 
that 

ao/2n 
g ( ao) = --:-~--:-::,.---

1- ao/2n' 

and that no positive a 0 exists for which Eq. (13) 
is satisfied. 

Let us calculate now higher order corrections 
to f1, f2, and f3• Since we are making use here of 
perturbation theory the results are valid only for 
small a 0• In that region, generally speaking, it 
should be true that I g ( a 0 ) I « o/a. However it may 
turn out that the sum of diagrams of a certain 
class may give a large value of g ( a 0 ) for small 
a 0• But if that is not the case, then for the study 
of Eq. (13), in particular for the study of the ques
tion whether it has at all a solution, it is essential 
to know how to calculate g ( a 0 ) outside the frame
work of the perturbation theory. 

In conclusion of this section let us emphasize 
that the calculation of the basic function of quantum 
electrodynamics g ( a 0 ) has not yet been per
formed. We hope that we have made it sufficiently 
clear how important it is to obtain this function. 

Below, in Sec. 2, we shall study some ideas 
which lead to our main result-Eq. (3)-within the 
framework of perturbation theory. A detailed de
rivation of Eqs. (3)-(8) will be given in a separate 
article. 

2. The quantity Z 31 is defined as follows in 
terms of the photon operator IIJJ.v ( k): 

1 a 8 
Za-1 = 1 + 24 8ka. 8ka n,.,.(k) lk=O, (14) 

where 

ll!J.v(k) =- ieo2 ~ d•p 
(2n)4 

x.spv,.S (P +~) r .. (p + ~, P- ~)s ( P- .!!__) . (15) 
2 \ 2 2 \ 2, 

Let us rewrite Eq. (15) in a Euclidean system of 
coordinates, 
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8 c 

E F 

Then making use of Eq. (14), we obtain the 
following expression for Z 31: 

00 

D 

G 

Z3-t = 1 + S dp2p2a (p2), (16) 

where 

(17) 

We consider a theory in which m0 = 0. This 
means that the complete electron propagator S ( p) 
will be finite for an appropriate choice of gauge. 
The complete electron propagator S ( p) differs 
from 11 ( yp) by terms which depend on the physi
cal electron mass m; these terms give a finite 
contribution to Z 31• Below, in the discussion of 
Z31 on the basis of perturbation theory, we neglect 
the mass dependence of all such internal electron 
propagators, and therefore in the end the integrals 
automatically give the asymptotic form for p2a ( p2 ). 

Certain characteristic perturbation-theory 
graphs for ITJ.L11 ( k,) are shown in Fig. 2, Since 
D = 1/k2 and the photon propagator D~11 , appearing 
in these diagrams, is defined by Eq. (12), it follows 
that IIJ.L 11 ( k) does not depend on the value of the 
constant b. We shall choose b so that rJ.L is 
finite. This will substantially simplify the calcu
lations. 

The diagram in Fig. 3A does not enter into 
IIIL11 ( k), since it corresponds to the photon self
energy correction to the internal photon propagator. 
Should Z'31 turn out to be a finite quantity, then the 
use of the exact Green's function (Fig. 3B) for the 

A 8 

FIG. 3. Photon self-energy corrections to II11v(k). 

FIG. 2. Perturbation-theory diagrams for II11v(k). 

internal photon line in this diagram makes no 
contribution to the asymptotic value of p2a ( p 2). 

Therefore in the calculation of ITJ.L 11 ( k) one should 
not take into account the contribution from the 
graphs of the form Fig. 3A. 

We see from Eqs. (16) and (17) that to calculate 
Z 31 or a ( p2 ), all internal lines with photon mo
mentum k, should be twice differentiated. In Fig. 
4 are given certain contributions to Z 31 arising 
in differentiation of the diagrams of Fig. 2. The 
line with one (two) strokes represents the electron 
propagator differentiated once (twice). In Fig. 4A 
is shown the result of conventional perturbation 
theory in lowest order: 

1. 2 ( ao 1 
liD p (j p2) =--. 
p'-+oo 3:rt p2 

(18) 

In order to calculate p2a ( p 2) to order a8, we 
take b = 0 (the Landau gauge) 7>. The graph 4B1 
gives a contribution of the form 

1 < s d4p' 1 1 ) 
p (2:rt)4 (p- p')2 p'3 

( 19) 

to the quantity p2a ( p2 ). The quantity ( 19) is the 
vertex diagram differentiated once; it is written 
out with only the powers of p and p' taken into 
account since common factors, spinor and vector 
indices are inessential 'lor our purposes. It is 
clearly seen that the Eq. (19) has neither infrared 
divergences (in the region p'- 0), nor ultraviolet 
ones (in the region p' - oo). It then follows from 
dimensional considerations (from expression (19)) 
that 

p2a (p2) = const · p-2• (20) 

The graph 4B2 gives an integral of the form 
1 \ d4p' 1 
p2 J (P- p')2 p'2 (21) 

for p 2a ( p2 ). The integral ( 21) is a correction to 
the vertex, is finite in the ultraviolet region in the 

7 )The choice b = 0 corresponds to the fact that in the 
Landau gauge the correction to [' 11 in lowest order is given by 
a convergent integral. 
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A, 

FIG. 4. Second- and fourth-order diagrams 
for z,-•. 

Landau gauge and, as can be seen, finite in the 
infrared region in an arbitrary gauge. It follows 
therefore from dimensional considerations that in 
the Landau gauge the integral (21), like the graph 
4B1, also has the required form. Bl 

The integral over the internal photon line in the 
graph of Fig. 2C converges in the Landau gauge 
when m0 = 0. From dimensional considerations it 
follows that in that case the final correction to the 
internal electron propagator has the form const · 
( yp r 1• It follows hence that the contribution of 
the diagram Fig. 2C is proportional to the contri
bution from the diagram of Fig. 2A and when dif
ferentiated gives for the quantity p2u ( p2) an ex
pression of the desired form (20). 

Thus, in the Landau gauge, the separate contri
butions of the diagrams B1, B2, and C have the 
desired form (20). In any other gauge the contri
bution of each of the diagrams B2 and C have 
divergences of higher order, which must cancel 
each other as a consequence of the gauge invari
ance of the theory. 

In precisely the same way in order to simplify 
the sixth order calculation of Z3\ we choose the 
gauge 

b= b<2)=~~ 
2 4n ' 

8 >As a consequence of the Ward identity, this contribution 
to p2 a(p 2) exactly cancels the contribution to the diagram 2C. 
The contribution to the divergent part of z,-• of order a 02 is 
due, consequently, entirely to the diagrams 48,. A simple cal
culation of the contribution to second order gives the Yost-
Luttinger result. 

1 ( ao )" lim p 2cr(p2 ) =- -
P 2-oo P2 2:rt 

~ ----<X>---
IJ, I/2 

~ ~ 
Ila I/4 

~ ~ 
E, F, 

~ ---<0>--
F2 FJ 

FIG. 5. Sixth-order diagrams for z,-•. 

in which, as can be shown, r iJ. is finite. Then con
tributions of sixth order to IIiJ.v ( k) arise not only 
from graphs of the typeD, E. F, and G of Fig. 2, 
calculated in the Landau gauge, but also from 
gauge corrections to B and C, calculated for a 
photon propagator taken equal to 

3 ao k 11kv 
-----

2 4rt k~ 

Some of the sixth-order contributions resulting 
from differentiation of the diagrams D, E, and F 
are shown in Fig. 5. Counting the powers of the 
momentum in the integrands for u ( p2) from the 
contributions of the graphs D1, D3, D4, and F 1 we 
find that these integrals (similar to the integral 
( 19) corresponding to the graph B1) contain 
neither ultraviolet nor infrared divergences. It 
follows therefore from dimensional considerations 
that they will also contribute to p2u ( p2 ) in the 
form const · p - 2. 

The same considerations apply to the graph E 1, 

if we take into account the fact that the second
order vertex parts contained in them are finite in 
the Landau gauge. The graph D2 contains a diverg
ent vertex part of fourth order. However, the sum 
of the graph D2 and the gauge correction to the 
graph B2 have a finite vertex correction. This 
sum gives a contribution to p2u ( p2 ) of the desired 
form (20). In precisely the same way the gauge 
correction to the graph C cancels the infinite 
electron self-energy part, contained in the graph 
G. 

H 1 
FIG. 6. Eighth-order diagrams with three photon lines for 

IIJ.tv(k). 
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H, 

FIG. 7. Eighth-order diagrams with three photon lines for 
Z -· 3 • 

Let us summarize the results of perturbation 
theory. In order to calculate p2a ( p2) with an ac
curacy to order 2n, we choose a gauge in which 
r J.L is finite up to 2 ( n - 1 )st order inclusive. In 
our expressions for p2a ( p2) are contained contri
butions from the graphs of type Bi, Di, and Da 
which have no nondifferentiable vertex or self
energy parts. With the help of arguments based on 
simple counting of powers, it can be shown that 
the contributions of these graphs have no diverg
ences. Therefore they give a contribution to 
p2a ( p2) of the form const · p - 2. The diagrams of 
the type B2, D2, and F2, containing nondifferenti
able vertex parts, are cancelled by a choice of 
gauge. 

However, the above mentioned arguments, based 
on simple counting of powers, are not sufficiently 
general. It can be shown that a class of diagrams 
containing three photon intermediate states is an 
exception (and the only exception), i.e., it gives 
rise to divergences in p2a ( p2). It can be shown, 
however, that even these diagrams give a contri
bution of the form Eq. (20) if one makes use of 
gauge invariance considerations. 

Let us consider the simplest example of such 
a case-the graphs H and I, Fig. 6. Certain char
acteristic contributions to Z 3i, arising from dif
ferentiation of the graph H, are shown in Fig. 7. 
To these graphs we should add the corresponding 
contributions obtained from differentiation of the 
graph I. By simple counting of powers it is easy 
to see that the graph H also gives a contribution 
of the form (20) to p2a ( p2). 

However, such simple arguments cannot be used 
for the analysis of the graphs Hi and H3• The in
tegral of the twice differentiated photon line in the 
graph H3, for example, is manifestly divergent in 
the infrared region. However, each of the graphs 
Hi, H3, and H4 contains insertions of the type of 
a photon-photon scattering amplitude, where one 
of the photons (external) has zero momentum. It 
follows from gauge invariance that such an ampli
tude should vanish. From here it follows that if 
the photon-photon scattering amplitude appearing 

in the graphs Hi, H3, and H4 is calculated with 
gauge invariance taken into account, then the con
tributions of these graphs should vanish9). 

Let us note the correspondence between our 
discussion of perturbation theory and the functions 
fi, f2, and fa (which describe the exact behavior 
of p2a( p2) for large p2). The graphs Bi, Di, E2, 
and H2 contain the nondifferentiated Bethe-Sal
peter kernel and thus contribute to f1 (see Eq. 
( 6)). The graphs D4 ( D3 ) contain the kernel differ
entiated once (twice), and thus give contributions 
to f2 (fa) (see Eqs. (7) and (8)). The contribution 
of the diagram of type F i• which contains the 
iteration of the nondifferentiated kernel, enters 
into g( a 0 ) through f1 in the,denominator of Eq. 
(5). As a consequence of the Ward identity, the 
graphs B2, D2, F2 and F 3, which contain the non
differentiated external vertex corrections, give 
contributions to g ( a 0 ) which are exactly can
celled by the graphs containing the electron self
energy parts. Therefore all electron propagators 
and two external vertices enter into the equations 
for fi, f2, and fa without corrections. Moreover, 
the arguments based on simple counting of powers, 
mentioned before in the discussion of the pertur
bation theory diagrams, serve as a basis for the 
proof that the integrals defining f1, f2, and f3 con
verge. 

In conclusion we note that the function g' (a 0 ) 

is related to the asymptotic behavior of the Bethe
Salpeter kernel for scattering of light by light. 
This circumstance may turn out to be useful for 
devising methods for calculation of g ( a 0 ). How
ever, we have not studied this possibility in detail 
as yet. 

In order to understand whether the nonrenor
malized quantum electrodynamics is or is not a 
finite theory, it is necessary to determine the 
function g ( a 0 ) with sufficient accuracy. If it 
should turn out that Eq. (13) has some nonvanish
ing a 0 as a solution, then quantum electrodynam
ics can be thought of as a fully internally consistent 
theory. 
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9 >For example, the use of the correct gauge-invariant cur
rent gives rise to the appearance of subtraction terms in the 
photon-photon scattering amplitude, which ensure its vanish
ing fork= 0. 
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