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It is shown that the detonation mode in an unbounded medium may become nonunique in the 
case of nonmonotonic heat release. The stability of detonation modes with respect to their 
transformations into one another is investigated. Under some minor restrictions, the num­
ber of stable modes is larger by unity than the number of unstable ones. A simple model of 
nonmonotonic heat release is considered by way of an illustration. 

THE Chapman-Jouguet rule, formulated as the unbounded medium can become nonunique under 
condition that the equilibrium detonation adiabat be certain conditions. In this connection, we consider 
tangent on the pressure-volume plane to the also the question of the stability of the mode 
straight line 1-2 joining the initial and final states against a transition into another possible mode, 
on the discontinuity, determines the minimum ve- and the question of the number of modes. We ana-
locity D* of the discontinuity corresponding to the lyze the general qualitative aspect of the question, 
transition to the equilibrium state. The velocity which we illustrate with a numerical calculation of 
determined in this manner is a thermodynamic a simple heat-release model. 
quantity in the sense that it does not depend on the 1. Unlike q*, the quantity qmax is a kinetic 
concrete kinetic mechanism of detonation combus- characteristic of the process and depends itself on 
tion. It is known [t] that this quantity is not always the concrete path followed by the transition to the 
to the velocity D of a plane detonation wave in an equilibrium state. Indeed, qmax is determined by 
unbounded medium, but only provided the irreversi- the relation between the characteristic times T i 
ble chemical process occurring behind the shock- of two or several physico-chemical processes 
wave front is exothermal in all its stages.O (chemical reactions, vibrational relaxation, 

If the transition to the equilibrium state corre- thermal conductivity in the case of an inhomogen-
sponds to a heat release q*, and if during the eous medium, etc.) governing the irreversible 
combustion process there is first released the process as a whole. But since Ti usually depends 
maximum heat qmax > q* (we shall call such a strongly on the conditions under which the reac-
heat-release process nonmonotonic), then the tion takes place, for example on the temperature 
speed of the detonation wave in an unbounded distribution, qmax is likewise generally speaking 
medium is determined by the condition that the dependent on the same conditions. 
straight line 1-2 be tangent to the adiabat of the Let us consider first the particular case when 
intermediate states [tJ, which corresponds to a heat the character of the heat release behind the front 
release qmax• so that D > D*. (We bear in mind of the shock wave is determined by the intensity of 
the fact that a larger heat release usually corre- that wave, independently (or practically independ-
sponds on the pressure-volume plane to a higher- ently) of the possible variations of the picture of 
lying adiabat.) the flow behind the front. This makes it possible 

We show in this paper that in the case of non- to trace in the simplest manner the main qualita-
monotonic heat release the detonation mode in an tive laws of the phenomenon. It will be shown in 

1 >n has been shown in recent years that the front of a deto­
nation wave is not always plane [2], and this may lead to a 
change in D. However, if the energy of the related "turbulent" 
pulsations [3' 4 ] is small compared with the energy of the deto­
nation wave, then D does not change noticeably. Moreover, the 
role of the pulsation is in general insignificant ['] if the value 
of the Gruneisen coefficient for the explosion products is larger 
larger than or equal to 2/3. 

Sec. 3 that they remain in force also in the general 
case of heat release. 

We represent the dependence of qmax on the 
velocity of the shock wave in the form 

qmax = cp(D). (1) 

However, independently of (1), for the normal 
detonation mode it is necessary also to satisfy the 
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tangency condition, which can be represented in 
the form 2> 

The equation 

cp(D) =¢(D) 

(2) 

(3) 

determines in general not necessarily one value, 
but a certain discrete set of values of D for 
normal detonation modes. We note that if the heat 
release can be only monotonic, then qmax = q* 
and the equation 

¢(D) = q• (4) 

has a unique solution under the condition that on 
the detonation adiabat we have for the second de­
rivative of the pressure with respect to volume 
d2P/ dV2 > 0. In the opposite case the solution of 
(4) can also be nonunique, and if this is the case, 
then only the one mode with the smallest D is 
stable. All the modes (3) satisfying the tangency 
conditions with larger D are unstable against per­
turbations that decrease D. Figure 1 shows an 
equilibrium detonation adiabat which does not 
satisfy the condition d2P/dV2 > 0, and two tangents 
to it passing through the initial point 1 and re­
spectively through the tangency points 2 and 3. 

If the solution of (3) for nonmonotonic heat re­
lease is not unique, then the question arises of the 
stability of the detonation mode against transition 
to another mode which is possible in accord with 
(3). We shall henceforth define "stability" in just 
this sense. The stability of the detonation front 
against a bending of its front and against propaga­
tion of a second detonation wave through shock-

. t' t d . [G - 9] d . s compressed matter was mves 1ga e m an 1 
not considered here. 

We assume that the intensity of a shock wave of 
velocity satisfying (3) has become altered for 
some accidental reason, so that 

D = D1 + 6D, 0 < 6D <~t;,D1 • (5) 

A chemical transformation process behind the 

2)For a strong detonation wave in a gas with a constant 
adiabatic exponent y, Eq. (2) has, as is well known, the form 

qmax =D2 /2(y2 -11). 
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wave front leads under the new condition to another 
heat release: 

.q1 + 6q = q1 + cp' (D) f>D, 

to which, in accord with the tangency condition (2), 
corresponds a new value of D: 

(cp' and l/J' are the derivatives of cp and l/J with 
respect to D. In accordance with the physical 
meaning, it is assumed that the functions cp and 
l/J are single-valued, continuous, and have first 
derivatives3> .) 

(6) 

If the shock-wave velocity (5) is larger than 
given by (6), then the perturbed motion under con­
sideration is an overcompressed detonation wave 
(Fig. 2, dashed shock adiabat), which, as is well 
known, attenuates and goes over into a detonation 
wave that satisfies (3). The reciprocal relation 
between velocities (5) and (6) denotes that the 
velocity of the shock wave is smaller than that of 
the detonation wave (Fig. 3). The shock wave will 
in this case become intensified by the chemical 
reaction (is always the case when a weak initiating 
shock wave toes out into the stationary detonation 
mode [2•10 - 121). In other words, the perturbation 
will grow. 

We analyze in similar form the development of 
a small perturbation that weakens the wave: 

D-:- Dt- I6DI. 

The considered stability condition is expressed 
in more compact form as follows: The detonation 
wave propagating with velocity D1 is stable (in the 
sense defined above) against small perturbations if 

1J>' (D) > cp' (D), D = D1, ( 7) 

3)In the case when the detonation adiabat has kinks that 
are connected, say, with phase transitions, it is necessary to 
consider the derivatives on both sides of the kink, and this 
does not involve any fundamental difficulties. This case, how­
ever, is rarely encountered and is not considered here. 
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and unstable4> when the inequality sign in (7) is re­
versed. If the first derivatives of cp and 1/J are 
equal at the point D1, i.e., dcp I dlj! = 1, then it is 
necessary to investigate derivatives of higher 
order. However, the relative probability of realiz­
ing such an equality simultaneously with (3) is 
equal to zero. 

Let us prove two premises characterizing the 
properties of the solutions (3). 

1) Assume that there are no kinks on the deto­
nation adiabat, and that at the points Di satisfying 
(3) we have 

( 8) 

It is stated that the maximum ( Dmax ) and mini­
mum ( Dmin) roots of Eq. (3) describes modes 
that are stable with respect to transitions into one 
another or into any other modes ( 3). (The quantities 
D and Dmin exist, since q is bounded from 

max . * 
above by energy considerations and q 2: q .) 

We shall prove the stability of the solution 
Dmax by contradiction. We assume that the solu­
tion Dmax is unstable, i.e., an inequality inverse 
to (7) is satisfied at the point Dmax· This means 
that at small positive increments oD we should 
have 

( 9) 

But when D increases without limit the function 
ljJ becomes infinite, whereas cp is bounded because 
the heat release is limited. It follows therefore 
that when the excess D > Dmax is sufficient, the 
inequality sign in (9) is reversed. This proves, by 
virtue of the continuity of cp and 1/J, the existence 
of a solution of (3) when D > Dmax• contradicting 
the initial condition and thereby proving the sta­
bility of Dmax· The stability of Dmin is proved 
in a similar manner. 

2) Two neighboring values of the roots of Eq. 
(3), Di and Di+t• correspond under the restriction 

4 l A condition similar to (7) was used by Schall ["] in his 
analysis of the stability of a detonation in an unbounded med­
ium. Schall defines a function similar to cp as having the mean­
ing of the heat released in the region between the discontin­
uity and the tangency point. But in the investigation of the 
stability of the stationary mode it is necessary to consider 
perturbed motion, for which a tangency point does not neces­
sarily exist, and the analog of cp which is defined verbally 
in [12] has no concrete meaning. In addition, even for the sta­
tionary mode in a bounded medium cp should be defined not as 
the heat release, but as the difference between the heat re­
lease and the losses at that instant when their time deriva­
tives are equal ['"]. We shall not deal here with other papers 
touching to one degree or another upon the question of stabil­
ity of detonation with losses in bounded media. 
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(8) to opposite characters of the stability, i.e., if 
the mode at point Di is unstable (stable), then it 
is stable (unstable) at the point Di +1· This property 
of the solutions of (3) follows directly from the 
stability criterion (7), and from the continuity and 
uniqueness of the functions cp and 1/J (Fig. 4). 

From properties 1) and 2) there follows, under 
the same·minor restriction (8), that: a) Eq. (3) has 
an odd number of solutions; b) if the solution of 
(3) is unique, then it is stable; c) if Eq. (3) has 
three solutions, then the solutions with the maxi­
mum and minimum Di are stable, and the third 
unstable. 

2. Let us consider one simple model of non­
monotonic heat release. Let the transition to the 
equilibrium state behind the shock wave in an un­
bounded medium be characterized by heat release 
x and heat absorption y, so that the total heat re­
leased by the instant of time t is equal to q = x 
- y. 

We denote the equilibrium values of q, x, and 
y by q*. x*, andy* (x* > y*, since q* > 0) and 
assume that the kinetics of the process is de­
scribed by the equations 

dx I at = (x* - x) I 't1, dy I at = (y* - y) I 't2, 

x = y = Olt=o, x* = const, y• = const, x• > y*; 
(10) 

here T 1 and T 2 are the relaxation times, which in 
this model depend only on the shock-wave intensi­
ties, i.e., on the thermodynamic parameters 
directly behind the shock-wave discontinuity. The 
value of qmax depends on the ratio a= T1/T2. 

After integrating ( 10) and carrying out simple 
calculations, we obtain for the extremum point 

qex = 1 + _b_ (!!_)1/(a-1) (~ -1)' b == x: . (11) 
q* b -1 a a y 

Analyzing the solution of Eqs. ( 10) together with 
(11), we can show that if a decreases in the region 
1 <a< 0, then qmax = qex and increases mono­
tonically from q* to x* with decreasing a. For 
all a :;:: 1 the maximum heat release is attained in 
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the limit as t -oo and is equal to q*. (When 
a > b the extremum determined by ( 11) corre­
sponds to a minimum. The solutions (11) in the 
region 1 < a < b pertain to negative t and have no 
physical meaning.) The dependence of qmax I q* 
on a when b = 2 is shown in Fig. 5. 

For convenience in the calculations we shall 
characterize the intensity of the shock wave not 
by its velocity, but by the temperature T of its 
front5>, and assume that the dependence of a on T 
is determined by the Arrhenius law 

a= A exp [JAB I RT] (12) 

(!-'-molecular weight of the initial material, R­
gas constant, A - constant factor preceding the 
exponential). If T 2 ~ const, then E has the mean­
ing of the specific activation energy for an exo­
thermal reaction. The model under consideration 
describes approximately the heat-release kinetics 
in the detonation of a mechanical mixture of an 
active substance with inert matter having a small 
coefficient of thermal expansion (or a large speci­
fic heat). An exothermal reaction (for example, 
monomolecular disintegration of the active sub­
stance) can then be described by a relation such 
as (12), and an endothermal reaction (decrease in 
pressure as a result of transfer of heat to an 
inert medium) is characterized by the tempera­
ture equalization time T 2. This time is determined 
by the geometry of the system and by the thermal 
conductivity coefficient, and depends little on T. 

Equations (11) and (12) express a connection of 
type (1) between the shock-wave intensity and the 
heat release. 

The tangency condition establishes a second 
connection between T and qmax· In gases with a 
constant adiabatic exponent y, the dependence of 
T on qmax for strong detonation waves is linear 
and is of the form 

T = J.tqmax('Y- 1) (y2- 1) I yR. 

This formula is obtained from the relation be­
tween T and the square of the velocity of a strong 
shock wave, and from the tangency conditions D2 

= 2(y2- 1)qmax· 
In the general case T and qmax are connected 

in a more complicated manner, but in first ap­
proximation, which certainly is sufficient for the 
model in question), we can assume 

T = cqmax == C'ljl, c = const. ( 13) 

5 )The temperature and velocity of the front are connected 
by a unique relation, at any rate if (aP ;aT)v > 0. 
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It assumed that the initial matter has a tempera­
ture T1 « T. 

Relation ( 13) constitutes, for the model in ques­
tion, the concrete form of an equation of type (2), 
and together with ( 11) and ( 12) it makes up one 
equation (3) determining the values of qi and the 
corresponding Ti and Di for the detonation modes. 

The solutions of (11)-(13) depend on the 
parameters A, b, and K = 1-'EIRcq*. The physical 
meaning of b is clear from the foregoing. The 
values of A and K are determined by the concrete 
mechanisms of the exothermal and endothermal 
reactions. For the discussed effect of nonunique­
ness of the solution of (3), the most interesting 
variants are A « 1 and K > 1. When these in­
equalities are satisfied, there exist sufficiently 
broad ranges of shock-wave intensity at which 
qmaxlq* > 1 and qmaxlq* = 1. 

Figure 6 shows plots of cplq* and l/Jiq* against 
the values of lf;lq* determined by Eqs. (11)-(13) 
at certain values of A, b, and K. Curve 1 corre­
sponds to A = 3.2 x 10-5, b = 2 and K = 10; curve 
2 to A = 9 x 10-5, b = 2, and K = 10; and curve 3 
to A= 7 x 10-3, b = 2, and K = 10. Solutions of 
Eq. (3) correspond to the points of intersection of 
the cplq* and l/J/q* curves. It is seen from Fig. 
6 that one stable solution with qmax I q* = 2 and 
qmaxlq* ~ 1 is realized in variants 1 and 3. In 
variant 2 there are three solutions, two of which 
(with maximum and minimum qmaxlq*) are 
stable and the third unstable. 

3. The properties of the number of detonation 
modes and their stability, established in Sec. 1, 
are actually valid also in the general case, i.e., 
when qmax depends not only on the shock-wave 
intensity, but also on the field of the gas dynamic 
quantities behind the shock-wave discontinuity. 
This statement will be proven if we succeed in 
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proving that in the general case there exists a 
certain single-valued function f (D) which coin­
cides with cp (D) at all points Di where (3) is 
stationary (the function cp ( Di) has the same mean­
ing as before also in the general case considered 
here, since the structure of the wave and qmax 
are determined uniquely by the wave velocity at 
the stationary points) and which characterizes, in 
full analogy with (7), the stable mode when the 
following inequality is satisfied 

'¢'(D) > j'(D), D = D; (14) 

and the unstable mode when the opposite inequality 
holds. 

Such a function exists and can be constructed in 
the following manner. If a continuous transition 
from the point 2 on the shock adiabat to the equili­
brium state (Fig. 2) along the line 2-1, which 
characterizes the shock-wave velocity, is possible 
(overcompressed detonation wave or one satisfying 
the condition of tangency with qmax), the f ( D) is 
equal to the maximum heat released in this process. 
But if such a transition is impossible, then f (D) 
is equal to the maximum heat released during the 
course of an irreversible chemical transformation 
from the point 2 along the line 2-1 to the point with 
the minimum value Pmin (the point where the 
course of the irreversible reaction becomes in­
compatible with the requirement for the variation 
of P and V along the line 2-1) and further along 
the isobar Pmin through the adiabat with heat re­
lease f( D) to the equilibrium state 2* (Fig. 7, 
thick line). Motion along the isobar proceeds 
either with a monotonic increase of volume, or 
with an increase followed by a decrease, depend­
ing on whether f( D) = q* or f (D) > q*. The func­
tion constructed in this manner is a single-valued 
function of the shock-wave velocity D, and coin­
cides by definition with cp ( Di) at all the points 
where (3) is stationary, i.e., at all the stationary 
points 

j(D;) ='¢(D;). ( 15) 

To clarify the connection between ( 14) and the 
stability of the detonation wave, we assume (as in 
Sec. 1) that the intensity of the shock wave whose 

velocity Di satisfies (15) and whose width from 
the front to the point of tangency is equal to l has 
increased accidentally by a small amount oD, with 
a corresponding small change in the gas dynamic 
quantities in the entire interval l, so that the re­
sultant wave motion is quasistationary (stationary 
during the time t > l/D). The fact that we are 
considering a small perturbation of a special type 
does not limit the generality of the proof that 
follows. If the mode is stable against the given 
"broad" perturbation, it will be stable also with 
respect a narrower perturbation having the same 
amplitude. On the other hand, to prove the insta­
bility of a mode it is sufficient to prove instability 
against an arbitrary small perturbation. 

If we have for the considered perturbed motion 

j(D) >'¢(D), (16) 

then this means that not all the heat is released in 
the new quasistationary discontinuity. A certain 
part of the heat is released in the nonstationary 
wave (the total heat release will exceed 1/J (D) but 
will not nee es sarily equal f ( D ) ) , leading to an in­
crease of pressure in the rarefaction wave6> and, 
in final analysis, to a new intensification of the 
wave. The detail picture of the buildup of the per­
turbation can be quite complicated, but does not 
differ in essence from what occurs when a weak 
initiating shock wave goes over into the normal 
detonation mode with monotonic heat release, a 
situation investigated in sufficient detail both ex­
perimentally and theoretically ( [2, 10 • 11 ] and others). 

It is also easy to verify that if 

j(D) <'¢(D), ( 17) 

then the resultant perturbation is an overcom­
pressed detonation wave, i.e., the perturbation 
attenuates. We can prove similarly stability 
against a small decrease of the wave intensity. 
With this, unlike the case oD > 0, a stable mode 
corresponds to the inequality (16) and an unstable 
one to ( 17). The stability of the Di mode against 
small perturbations of arbitrary sign is expressed 
in unified fashion in the form of the inequality (14), 
q.e.d. The restriction (8), with which the results 
of Sec. 1 were obtained, is formulated for the 
general case in analogy with ( 8) except that cp is 
replaced by f. 

6 )The stationarity requirement leads in this case to a ve­
locity discontinuity and to the occurrence at the point Pmin of 
a shock wave moving in the direction of the detonation wave 
front. 
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DISCUSSION OF RESULTS AND CONCLUSIONS 

In the case of nonmonotonic heat release, even 
in an unbounded medium, there can be not one but 
several detonation modes. Subject to the minor 
restriction (8), the total number of modes is odd. 
Among them are modes that are stable and un­
stable against transformation into one another 
under small perturbations. The number of stable 
modes exceeds by unity the number of unstable 
ones. 

The model considered in Sec. 2 should be re­
garded only as an illustration of the general laws 
developed above. For concrete detonation pro­
cesses, the form of the dependences of f and l/J 

will be other, but the qualitative features of the 
phenomenon remain the same. 

If the equations of state of the initial matter and 
of the products are known, as well as the kinetics 
of the exothermal and endothermal reactions, then 
the problem can always be solved quantitatively. 
On the other hand, we can hope that an analysis of 
the corresponding experimental data, with allow­
ance for the foregoing, will yield new information 
on the kinetics of physico-chemical processes in 
detonation waves. 

Nonmonotonic heat release in a detonation wave 
is a relatively rare phenomenon. It must be noted, 
however, that the foregoing analysis of the num­
ber and stability of the detonation modes is rele­
vant also for a bounded medium with monotonic 
heat release, in which the analog of heat absorp­
tion is lateral dispersion of the detonation prod-

ucts [lO]. This problem will be considered sep­
arately. 
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