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An investigation is made of the basic phases of development of giant pulses of coherent light: 
the formation of the field distribution in the linear domain of generation and the dependence 
of the distribution on the random initial amplitudes of the electromagnetic field, the trans
verse development of the generation in the nonlinear domain. The effect of the inhomogeneity 
in the index of refraction of the medium inside the resonator on the dynamics of generation 
of giant pulses is investigated. 

1. INTRODUCTION 

IN[!) (in future denoted by I) a theoretical investi
gation was given of the dynamics of generation of 
giant pulses of coherent light by an instantaneously 
Q-switched laser. Reference I was based on two 
nonlinear partial differential equations - an equa
tion for the complex amplitude of the electromag
netic field in a resonator filled by an active 
medium, and an equation for the imaginary part of 
the dielectric permittivity of an active medium. 
The principal results of I were obtained by a nu
merical integration of these equations. The elec
trodynamic approach made it possible to investi
gate the space-time development of the pulse, the 
role played by the inhomogeneity of the distribu
tion of the population inversion, the fine structure 
of the pulse and the divergence of the radiation. 
In particular, it was shown that the generation of 
the giant pulse proper begins in the central region 
of the crystal and in a time of the order of the 
duration of the pulse develops in a transverse 
direction encompassing the whole crystal. This 
result was verified by experimental investiga
tions [2, 3] 0 • In [2) it was noted that the inhomo
geneities in the index of refraction of the crystal 
exert a considerable influence on the space-time 
development of the generation and that it is neces
sary to take them into account. 

The object of the present paper, which is a 
continuation of I, is, firstly, to investigate ana
lytically the principal phases of the development 

1 )It should be noted that observation of the transverse de
velopment of a giant pulse made it possible to understand why 
a giant pulse does not contract in the course of propagation in 
a nonlinearly amplifying and absorbing medium, and to propose 
a method of combatting this phenomenon [4]. 

of a giant pulse (the formation of a "jet" in the 
linear domain of generation, the dependence on 
the initial amplitudes of the electromagnetic field, 
the speed of transverse development of generation 
in the nonlinear domain) and, secondly, to investi
gate the effect of the inhomogeneities of the index 
of refraction of the medium inside the resonator 
on the dynamics of generation of a giant pulse. 

The investigation is based on the equation for 
the complex amplitude of the electromagnetic 
field c ( x, t) taking into account the inhomogenei
ties of the real part of the dielectric permittivity 
OE I (X) [5]: 

a[f (x, t) . c2 a2[f (x, t) 
--::-- = '-- ----''-~ at 2eomo ax2 

+ i6e' ( x)] [f ( x, t), 

roo 
-[eo"- e" (x, t) 
2eo 

( 1) 

where E~' and E"(x, t) describe respectively the 
losses and the amplification of the radiation, and 
on the equation for the imaginary part of the die
lectric permittivity E"( x, t ): 

ae" (X, t) 20' , 
_ _;___-'-= --.:-E (x,t)l(x,t), 

at nmo 
I(x t) = ~ [f{f* 

' 8:rt 2 ' 
(2) 

where I ( x, t) is the flux density of the radiation, 
while the geometry of the problem and the notation 
is the same as in I. 

The generation of a giant pulse can be divided 
into two phases. During the first phase after the 
Q switching, an exponential increase of the ampli
tude of the electromagnetic field occurs in the 
modes, from the spontaneous noise level up to a 
level almost sufficient for saturation of the ampli
fication of the medium, but no appreciable satura
tion occurs as yet. Therefore, the first phase in 
the development of the pulse, the duration of which 
has been named the delay time, [S] can be called 
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the linear range of generation. During this time a 
"jet" of generation becomes established in the 
central region of the crystal. During the second 
phase saturation of the amplification of the medium 
occurs, i.e., radiation by the majority of the active 
particles. The generation of the giant pulse proper 
of radiation occurs during this time. The second 
phase may be called the domain of the nonlinear 
development of the generation. During this time 
the development of the initial "jet" occurs in the 
transverse direction and the generation encom
passes the whole crystal. 

2. LINEAR DEVELOPMENT OF GENERATION 
SOLUTION OF EQUATIONS 

In the domain of the linear development of 
generation one can neglect the saturation of am
plication E"(x, t) and take E"(x, t) = E'(x). 
Then the investigation reduces to the solution of 
the single equation (1), which is analytically pos
sible only for certain special forms of the func
tions 6E' ( x) and E" ( x). Of practical interest are 
E' ( x) and E " ( x) which have the following form: 

e' (x) = eo+ beo' I ch2 px, e" (x) = em" I ch2 px. (3)* 

Here E' ( x) represents, depending on the sign of 
oE0, a positive or a negative lens 2> while E"( x) 
describes the distribution of the population inver
sion with a maximum at the center of the crystal. 

We seek the solution of (1) in the form 

(8 (x, t) = U(x)e-Wt. (4) 

We obtain the following equation for the eigenfunc
tions and eigenvalues: 

lPU + kZ(ieo" _ iem" + 6eo' + 2Qeo) U = O, (5) 
dx2 ch2 px Wo 

where k = w0 I c. We consider only the discrete 
spectrum. The solution of (5) finite at x = oo, is [B) 

u = (1- s2)~±t.!F(J.t±- q, ll± + q + 1, J.l± + 1, 112(1- s) ), 
( 6) 

where F is the hypergeometric function; 
~ =tanh x; 

. k [. " 2Qeo ]'/, 
J.l± = ± ~- ~eo +--

p Wo 

2q + 1 = [ 1- :~2 (6eo' + iem") ]'/, ; 

the + sign corresponds to a positive lens ( oE0 
> 0) and vice versa. In order that the solution 
should remain finite at x = - oo it is necessary to 

*ch =o cosh. 
2)The case oE 1

0 = 0 has been investigated in [']. 

have (then F is a polynomial of the n-th degree 
in U 

J.l+- q = -n, J.t-- q = n + 1, n = 0, 1, 2, ... (7) 

Relation ( 7) determines the complex eigenfre
quencies .Qn = Q~ + m~ of the different types of 
oscillations. In lasers utilizing luminescent 
crystals and glasses we have 

Therefore, one can use the approximation 

Then for I oE0 I » E~ the expressions for the 
eigenfrequencies have the form 

2Qn'eo = _ beo' + (n + ~ \!.._ { 2 ybeo' } 
Wo 2 J k em" /1 I beo'l 

( 1 )2 p2 - n+- -. 
2 k 2 

( 8) 

( 9) 

2Qn"eo =em"_ eo"- (n +~)!!_{ em"/ybeo' l, 
wo ' 2 1 k 2 1 /6 eo' 1 1 ( 10) 

where the upper line inside the curly brackets 
corresponds to oE0 > 0 while the lower line corre
sponds to oE0 < 0. For oE0 = 0 we have correspond
ingly 

2Qn'eo ( 1) p -,~ (. 1 )z p2 
-;;;- = n + 2 k 12em - n + 2 k 2 , 

2Qn" eo 11 11 ( 1 ) P --" --- = Em - eo - n +- -- · Y2em . 
~ 2 k 

(11) 

The expressions for the eigenfrequencies .Qn 
have the following physical meaning. The term 
(w0/2E0)oE0 in (9) is a frequency shift which is 
the same for all the transverse modes by an 
amount determined by the change in the optical 
length at the center of the crystal. This term is 
of no interest to us. The second term linear in n 
is much larger than the third term which is 
quadratic in n since for reasonable values of n 
we have ( n + Y2 )p/k « 1. Thus, there exists a 
set of practically equidistant modes, and this is 
in agreement with the theory of confocal reso
nators[9•10J. The term (w0 /2E0 )(E~- E~) in (10) 
describes the rate of increase in amplitude which 
is the same for all modes and which is determined 
by the amplification at the center of the crystal. 
The second term, which is usually much smaller 
than the first, characterizes the decrease in the 
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amplification coefficient for a particular mode as 
the number of this mode increases. 

Substituting the values of J-4 into ( 6) we obtain 
expressions for the distribution of the square of 
the amplitude of the field of the principal mode 
over the end of the crystal: 

I Uol 2 = (1 / ch px)bh/p+l, 

b = )'2em" for 6eo' = 0 l2)'6eo' for 6eo' ~em", 6eo' > 0 

Bm11 /l'li!eo'l for l6eo'l ~em", f:Jeo' < 0 (12 

where usually bk » p. 

3. FIELD DISTRIBUTION AND DEPENDENCE ON 
INITIAL CONDITIONS 

The distribution of the field in a laser at the 
end of the linear development of the pulse is, 
generally speaking, determined by a superposition 
of different types of oscillations 

~ EonUn(x)exp {-iQn't'd}. 
n 

where Eon are the initial random complex ampli
tudes of the field in different modes, and T d is 
the duration of the l~near development of the pulse 
(the delay time). The delay time is obtained from 
the condition of a definite, say 20%, saturation of 
the amplification of the medium. From (2) it fol
lows that for this it is necessary that the following 
condition be satisfied 

"a 
£; \ liw 

- <Eo2> J exp {2Qo"t} dt ~-, 
8:n: 0 100' 

( 13) 

where ( E~) is the average square of the intensity 
of spontaneous radiation in the given oscillation 
mode which was evaluated in I, and n~' is deter
mined by expression ( 10). As a result of this we 
obtain a general expression for the time of linear 
development of generation: 

1 ( 5Qo''liw) 
't'd ~ 2Qo" In crc <Eo2> ' (14) 

which is valid for a laser with an inhomogeneous 
distribution of the population inversion and of the 
index of refraction. 

If during the delay time T d the amplitude of the 
principal mode becomes much larger than the am
plitude of the subsequent modes then, firstly, the 
distribution of the field over the end of the crystal 
at the instant of generation of the giant pulse 
proper will not depend on the random initial am
plitudes of the field and, secondly, the form of the 
distribution will be determined by expression (12) 
for I U0 ( x) 12• This holds under the condition 

exp [ (Qo" - Qt")-ra] '?> 1 or -ra (Qo" - Q/') ~ 2. ( 15) 

We first consider the case OE0 = 0. Then condi
tion (15) assumes the form 

't"dCP 1/ em" >. 1 (16) 
2eo f 2 P · 

For Q-switched lasers using luminescent crystals 
and glasses T d ~ 50 nsec, Eo ~ 3, £~ ~ 2 x 10-6• 

Condition (16) is satisfied for pi::. 4 cm- 1• Conse
quently, an inhomogeneity of population inversion 
with a transverse dimension of the order of 0.5 em 
leads to a lack of dependence of the giant pulse on 
random initial conditions for the field. 

In the case of an inhomogeneity of the refrac
tive index I 6£0 I » E~ the following condition 
must be satisfied instead of (16): 

T:dCP {em" /2 if:! eo'.} ~ t, ( 1 7) 

2eo 2l' I f:Jeo'l 

where the upper row inside the figure brackets 
corresponds to 6E0 > 0, while the lower row cor
responds to 6£0 < 0. In the case of an inhomo
geneity of the type of a positive lens, 6£0 must be 
sufficiently small ( ~ 3 x 10-6 ), otherwise a de
pendence on the initial conditions would be ob
served. But a small inhomogeneity of the type of 
a negative lens ( i::. 10-6 ) is sufficient to produce 
a lack of dependence on initial conditions. 
Physically these results are explained by the fact 
that for OE0 > 0 the adjacent transverse modes 
are grouped near the axis of the resonator and 
are therefore amplified in the case of an inhomo
geneous distribution of E " ( x) in practically the 
same manner. For 6£0 < 0 the transverse modes 
conversely extend into regions with smaller am
plification, and this leads to a difference in their 
amplification coefficient. 

Thus, an inhomogeneity in the distribution of 
population inversion and an inhomogeneity in the 
index of refraction of the type of a negative lens 
lead to a lack of dependence of the field distribu
tion over the end of the crystal I o ( x ) 12 on ran
dom initial conditions. In this case the field dis
tribution towards the end of the linear build up of 
the pulse is J3(x) 12 ~I U0 (x) 12• The magnitude 
of the generation at that instant (the size of the 
"jet") 2x0 is determined by the condition 
I Uo ( xo) 12 = Y2. 

The results obtained above for an infinite layer 
can be directly carried over to the case of a finite 
layer (crystal) if the dimension of the established 
field distribution 2x0 is smaller than the crystal 
diameter 2a so that diffraction phenomena can be 
neglected. 
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In the other limiting case, when there are no 
transverse inhomogeneities in the population in
version and in the index of refraction, conditions 
(16) and (17) are not satisfied. Only the diffraction 
losses at the edges of the mirrors can discrimi
nate between various modes, but during the short 
time of linear build upS> ( T d :S 10-7 sec) the role 
played by such discrimination for the lower modes 
is unimportant. Therefore, the field distribution 
towards the end of the linear buildup of generation 
is random. In multimode lasers which usually 
generate tens of axial modes the random distribu
tions for the different axial modes are averaged 
out and the total distribution is homogeneous. In 
such a laser the transverse development of the 
generation and the stretching out of the giant pulse 
associated with it do not occur. In single-mode 
lasers with instantaneous Q-switching and with a 
high degree of homogeneity of the resonator and of 
the population inversion the field distribution at 
the beginning of the generation of the giant pulse 
proper must be random. 

We now proceed to investigate the transverse 
development of the region of generation in the 
case when the size of the region of generation is 
considerably smaller than the crystal diameter 
towards the end of the linear buildup. 

4. NONLINEAR TRANSVERSE DEVELOPMENT 
OF GENERATION 

The nonlinear phase of generation during which 
the giant pulse proper is generated begins from 
the moment when the field distribution formed 
during the linear buildup reaches an amplitude 
sufficient to saturate amplification. Saturation of 
amplification occurs first within the region of 
maximum amplitude of I ft(x, t) 12, and then as the 
intensity is built up in th~ peripheral regions it 
extends in the transverse direction. Thus, the 
nonlinear transverse development of the region of 
generation is a result of the delay in the develop
ment of the amplitude of the field in the edge 
regions of the generator. 

The transverse development of generation can 
be investigated with the aid of Eqs. (1) and (2). 
The term with a 2g/ax2 in (1) describes the linear 
(diffraction) diffusion of the field. For xg /LA. » 1 
the contribution of this term is negligibly small 
and it may be neglected. Results of exact calcula
tions in I also show that the rate of diffraction 
diffusion of the field is small compared to the 
rate of the nonlinear transverse build up of gener-

3)The case of Q-switching by bleachable filters is not con
sidered here. 

ation. In this approximation going over to the in
tensity I( x, t) Eqs. ( 1) and (2) can be rewritten 
in the form 

1 
iJJ(xa-r) [ { 2crr ·} ] -iJ~- = e"(x)exp - hw J l(x,-r')d't' - e0" l(x,-r), 

0 (1~ 

where T = t - T d• T d is the time of the linear 
buildup (delay), E"(x) describes the initial dis
tribution of the population inversion. To determine 
the rate of transverse buildup it is sufficient to 
follow the transverse motion of the boundary of 
saturation of amplification. 

The motion of a given level of saturation 
6 = E " ( x, T )/ E 11 ( x) is determined by the condition 

.... 
r 1 1 
J I(x,-r)d-r =-ln-. 
0 2a 6 

(19) 

We follow the level of low saturation ( 6 ~ 0. 8 ) 
when E"(x, T < rs) can be considered as coinci
dent with E"(x). Then we have 

I (x, -r < -r.) = Io(x) exp{ ;;
0 

[e" (x)- eo"] 't}, 

where I0 ( x) = I ( x, 0) is the distribution of the 
field intensity towards the end of the linear build
up. Substituting the expression for I ( x, T < T s) 
into (19) we obtain 

{ wo } 1 1 roo lo(x)exp -[e"(x)- eo"]'ts ~ -ln--[e"(x)- eo'1. 
eo ' 2a 6 eo 

(20) 
Differentiating (20), and taking into account the 
fact that E " ( x) is a smoother function than I0 ( s) 

1 iJlo (x) 1 Be" (x) 
-----~----
Io(x) iJx e"(x) iJx ' 

we determine the velocity of the motion of the 
saturation boundary v = dx/ drs= 

v=- wo[e"(x)-eo"] lo(x) I (21) 
eo iJlo(x)/iJx x=(..-il • 

The quantity 

s = lo(x) j iJlo(x) I 
iJx x=x(;) 

determines the spatial steepness of the fronts of 
the initial distribution I0 ( x). For a bell-shaped 
distribution with an exponential dependence of 
I0 ( x) for I xI - a the spatial steepness s is con
stant ( Io ( x) ~ exp (-I xI/ s ), lx I 2:. Xo) and is re
lated to the half-width of the distribution by the 
approximate relation s ~ 0. 7x0• However, if the 
index of refraction is inhomogeneous in the reso
nator the quantity s can vary along the fronts 
Io ( x). For example, in a confocal resonator the 
quantity s decreases as I xI increases. 

Introducing the amplification and loss coeffi
cients per unit length 
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wo 
a.(x)=-e"(x), 

EoC 

Wo 
v =-eo". 

8QC 

we obtain the following expression for the velocity 
of the transverse buildup of a giant pulse; 

v = (a- v)cs. (22) 

The time for the transverse development of gen
eration T tr during which generation extends over 
the whole crystal of diameter 2a can be estimated 
with the aid of the expression 

1 Cl 

a=--~ a(x)dx, 
a-x0 x. 

a-xo 
(23) 

(a-v)cs 

where a is the average amplification coefficient 
per unit length in the region of the transverse 
buildup of the pulse. 

We compare the estimate (23) with the exact 
calculation of the transverse build up given in I. 
In I we considered a laser with the parameters 

a ~ 0.04 Cm - 11, V ~ 0,02 Cm - 1 , Xo .~ 0.25 a, S = 0.7Xo. 

Then formula (23) yields Ttr:::::: 7 nsec which 
agrees with the time for the transverse buildup of 
10 nsec obtained in 1 by means of a numerical in
tegration of exact eY.uations. 

Thus, the time for the transverse buildup of a 
giant pulse is determined by the shape of the field 
distribution towards the end of the linear buildup. 
In order to obtain the shortest possible light 
pulses it is necessary to reduce the time for the 
transverse buildup by increasing the degree of 
homogeneity of the index of refraction and of the 
population inversion of the crystals and glasses at 
the time of Q-switching. 

5. EFFECT OF INHOMOGENEITY OF THE INDEX 
OF REFRACTION 

In Sees. 2 and 3 an investigation was made of the 
the effect of a lens-like inhomogeneity in the index 
of refraction on the field distribution in the region 
of the linear development of generation. It is of 
interest (cf., for example, [2]) to investigate the 
effect of such an inhomogeneity and of a wedge 
type inhomogeneity on the dynamics of generation 
of the whole pulse. This can be accomplished by 
the method of numerical integration of Eqs. ( 1) 
and (2) utilized in I. For this it is convenient to 
represent Eq. (1) in the form of a system of equa
tions for the complex amplitudes Ak = Ak_ + iAk:: 

00 00 

. wo "' Wo 
AA'(t) = 28o ,L.J Am'(t)Bhm"(t)+ 2 ~ Am"(t)ehm'(t) 

m=l Eom=l 

00 00 

• Wo ~ roo 
Ah"(t)=-2 L.J Am"(t)8Am"(t)-- L; Am'(t)8Am'(t) 

eo m=l 2eo m=t 

- (QA- Q,)AA' (t), (24) 

where 
Cl 

EAm'= ~ Uh(x)6e'(x)Um(x)dx, (25) 
-a 

while the rest of the notation is the same as in I. 
An inhomogeneity of the lens type can be de

scribed by specifying OE ' ( x) in the form 

«Se' (x) = -6eo' (xI a) 2, 

where OE~ > 0 corresponds to a positive lens, 
while 6E0 < 0 corresponds to a negative lens. 

(26) 

Figures 1 and 2 present a picture of the devel
opment of a giant pulse with a small inhomogeneity 
in the index of refraction of the type of a positive 
lens ( OE~ = 2 x 10-7 ), where for the sake of defi
niteness all the remaining parameters of the laser 
and the initial conditions are retained the same as 
in I (Sec. 3). First of all we can clearly see a 
marked decrease in the divergence cp 0 down to a 
limiting value equal to the divergence of the prin
cipal mode. Physically this is associated with the 
fact that an inhomogeneous distribution of inver
sion E" with a maximum at the center is equiva
lent to a small negative lens which distorts the 
wave front of the field. The introduction of a 
small inhomogeneity OE' of opposite properties 
compensates for this effect and as a result the 
field approaches a plane wave having minimum 
divergence. For larger values of OE~ the effect of 
the positive lens predominates and the divergence 
again increases. It is interesting to note that in 
this case the velocity of propagation of generation 
in the transverse direction is somewhat lowered -

.@1 Nti~ 
.R(O) w 

1,0 
11 1,5 

X 
II. 

lO 

0,5 
u.s 

0 

FIG. 1. Variation in the power P(t) of a giant light pulse, 
the total number of active particles in the resonator R(t), the 
half-width of the region of generation at half-height x0(t), the 
half-divergence of the radiation at half-height cp0 (t) in the 
case that the index of refraction of the medium in the resonator 
has an inhomogeneity of the positive lens type. 



DYNAMICS OF GENERATION OF GIANT COHERENT LIGHT PULSES. II. 187 

FIG. 2. Instantaneous distributions of intensity over the end 
I(x) and with respect to the angles I( cp) (a is the half-width of 
the resonator, 2cp, is the divergence with respect to the half
height of the principal type of oscillations) when the index of 
refraction of the medium in the resonator has an inhomogeneity 
of the positive lens type (numbers adjacent to the curves repre
sent time in nsec). 

the trailing edge of the pulse is delayed as can be 
seen even in Fig. 1a. This effect is explained by 
an increase in steepness, i.e., by a decrease in 
the quantity s at the edges of the initial distribu
tion 10 ( x) due to the effect of the positive lens. 

Figures 3 and 4 show the development of a 
giant pulse in the case of a small inhomogeneity in 
the index of refraction of the negative-lens type 
( 6E0 = - 2 x 10- 7 ) and with former values of the 
remaining parameters of the laser. The negative 
lens distorts the wave front and, therefore, ap
preciably increases the divergence of the radia
tion. In contrast to the case 6E0 > 0 a small nega-

MM ( 
R !.5 

1,0 
:Cg(t) 

a <flo(t) 
1,0 1,0 Tt 

12 

1,5 
0,5 

8 
0,5 

4 

0 
0 6 7 

t·/0~ sec 

FIG. 3. The same as in Fig. 1, but for the case when the 
index of refraction of the medium in the resonator has an in
homogeneity of the negative lens type. 

[{X) 

J.O 

2,0 

1.0 

1,0 

0.5 

18 

o,.'i Ill 
J:/0 

0"'¥'--'"'f"'.-.-----'"---,-c::_~__::::""-"~ 
-8 -4 -2 0 2 4 8 

'1'/<f, 

FIG. 4. The same as in Fig. 2, but for the case when the 
index of refraction of the medium in the resonator has an in
homogeneity of the negative lens type. 

tive lens does not increase the time for the 
transverse development of generation. 

An inhomogeneity in the index of refraction of 
the wedge type was taken in the form 

6e' (x) = -6eo' (x /a). (27) 

Figures 5 and 6 show the development of a giant 
pulse in this case for 6E0 = 2 x 10-7 and with the 
values of all the remaining parameters the same. 
At the top of Fig. 5 there is also shown the dis
placement of the field distribution along the end 
during the time of generation (the solid lines cor
respond to the half-heights of the distribution I ( x) 
at a given instant). It can be seen that towards the 
end of the linear buildup of generation ( t ~ 44 nsec) 
the distribution has been displaced towards the 
"open" end of the resonator. Therefore, genera
tion at the opposite end of the resonator begins 
much later, and this leads to an increase in the 

0.5 

0 

IP!fl. 
rp, 
8 

FIG. 5. The same as in Fig. 1, but for the case when the 
index of refraction of the medium in the resonator has an in
homogeneity of the wedge type. At the top is shown the mo
tion of the field distribution along the end of the generator 
(solid lines correspond to the half-maxima of the distribution.) 
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!(x)i 

!S r 

0 f<=~'--';-=------,~"-""-_::_,_--, 
-1,0 (0 

J(rp X/II 

2,0 

1,0 

0 -
-5 -4 -2 0 4 6 

'P/<fl, 

FIG. 6. The same as in Fig. 2, but for the case when the 
index of refraction of the medium in the resonator has an in
homogeneity of the wedge type. 

time of the transverse development and, conse
quently, of the duration of the giant pulse. This 
result agrees with the experiments carried out 
in [2] 

6. CONCLUSION 

In I and in the present paper (II) we investigated 
the dynamics of processes in a Q-switched laser. 
This work was stimulated by absence of data on 
the space-time development of generation in spite 
of the evident importance of having such data for 
utilizing giant light pulses in investigations of 
nonlinear interaction between radiation and matter. 
As the result of a consistent investigation of a 
comparatively simple model of a Q-switched 
laser an analytic investigation has been given of 
the two principal phases of the development of a 
giant pulse - the phase of linear development of 
generation beginning from amplification of spon
taneous radiation in various types of oscillations, 
and the phase of nonlinear transverse develop
ment of generation during which the giant light 
pulse proper is radiated. Moreover, for a de
tailed investigation of the picture of the develop
ment of a pulse as a whole, numerical integration 
of equations was carried out. 

Experiments which followed later [2, 3] have 
confirmed the existence of a transverse develop-

ment of a giant pulse, and recent experiments on 
nonlinear amplification [4] have shown the impor
tance of this effect for the propagation of a giant 
pulse in a nonlinear medium. The knowledge of 
the transverse development of a giant pulse is 
apparently essential for an exact determination 
of the true intensity of the light field in experi
ments on multiphoton processes (report by N. G. 
Basov at the colloquium of the laboratory of oscil
lations and quantum radiophysics, Physics Insti
tute, Academy of Sciences, U.S.S.R., 1965). The 
theory developed above also yields recommenda
tions regarding the construction of quantum gen
erators of giant light pulses of shortest possible 
duration and of smallest possible divergence of 
the radiation. 
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