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General relations are derived, which make it possible to construct matrix elements of wave 
processes of arbitrary order in which free oscillations participate. The Lagrange function of 
a collisionless plasma is used. The obtained general formulas are further used to calculate 
the following concrete quantities: the rate of growth of the energy of the Alfven waves result­
ing from helicon decay, and the relaxation times in a "gas" of Alfven oscillations (3- and 
4-wave processes are considered). 

1. The investigation of relaxation and kinetic 
phenomena in a plasma containing superthermal 
waves and oscillations is the main problem of the 
theory of collective processes. This problem is 
solved in most complete form with the aid of the 
formalism of the kinetic equation for the distribu­
tion function of the waves in phase space. The 
formulation of kinetic equations that take into ac­
count, besides the quasilinear effect, also purely 
nonlinear effects denotes essentially a transition 
from the dynamic description to the statistical de­
scription of the excited oscillations. In a turbulent 
plasma, as a rule, a tremendous number of waves 
is excited simultaneously, and therefore such a 
description is more advantageous and convenient. 
On the other hand, any concrete transition is 
realized by averaging over the phases of the os­
cillations, under the assumption that they are fully 
uncorrelated (although we cannot point at present 
to any direct experiment confirming the correct­
ness of this assumption). This is precisely the 
method used in [1- 41 to construct kinetic equations 
for the waves. 

However, the presence of a large number of 
excited oscillations and the fact that their phases 
are not correlated makes it possible to simplify 
the problem to some degree from the very outset, 
by using the analogy with elementary excitations 
in condensed media. Indeed, under the conditions 
noted above, the wave interaction reduces to colli­
sions between waves, and the kinetic equation for 
the distribution function of the waves in phase 
space can be written in the same form as the 
equations for phonons or magnons in solids [S-7]. 

This is followed by the question of deriving the 
matrix elements contained in the terms describing 
the collisions. This problem is simplest to solve 

with the aid of the complete Lagrange function of 
a collisionless plasma. 

In this paper, which should be regarded as a 
continuation of [7- 91, we derive general relations 
between the Fourier components of the particle 
displacement and of the wave field. These rela­
tions are very important, since they allow us to 
construct, using the prescription developed in the 
paper, the matrix elements of wave processes of 
any order in which free oscillations participate. 
It seems to us that the possibility of such a unifi­
cation of the matrix-element derivation is the 
advantage of the Lagrange-function method. The 
matrix elements of each concrete process can be 
obtained from the general formulas, by taking in 
them the corresponding limits. It is precisely in 
this manner that we derive here the matrix ele­
ments that determine the probabilities of 3- and 
4-wave processes inside a "gas" of Alfven oscil­
lations, and the probability of the decay of a heli­
con into a helicon and an Alfven wave. By way of 
examples we obtain estimates of certain weakly­
turbulent anisotropic-plasma characteristics that 
are governed by the foregoing processes. 

2. We first separate in the complete Lagrange 
function of a collisionless plasma the perturbation­
induced deviations of the physical quantities from 
their values in the stationary state; the function is 
then written in the form [10] 

2 = ~ ) ) dsdvf«(s. v) { ~(]. (v + va.ra.) 2 - ea.q>o(s + r<J.) 
(]. 

e"' - ea.q>'(s + ra.)+-(v +Da.ra.)[Ao(s + ra.) 
c 

+A' (s + ra.))}/+ __!_) dv[(Eo + E') 2 - (Ho + H') 2]. 

. 8Jt (1) 

Here r', cp ', and A' are the displacement of the 
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particle and the deviations of the scalar and vector 
potentials from their equilibrium values cp0 and 
A0 in the initial state; fa ( ~, v) is the distribu­
tion function of the particles of species a; Da 
denotes the operator 

a ( ea ) Da =- -f- vV -f- -Eo -f- [vffimx] V v, 
at ma 

ffiHa = eaHo /mac. (2)* 

Expanding in powers of ra, cp', and A', we 
represent the Lagrangian ( 1) in the form 

n 

:J 0 is a functional of stationary quantities and is 
of no interest; .'L 1 vanishes identically; by varying 
the action function f.'£ 2dt with respect to ra, cp', 
and A' we obtain a system of linear equations 
which is equivalent to the system of Maxwell equa­
tions for self-consistent fields and the linearized 
Vlasov-Boltzmann equation. Consequently, .'£ 2 

describes the natural oscillations of the plasma; 
then the Lagrangians of higher orders in the per­
turbation amplitude will describe oscillations be­
tween the natural oscillations. 

3. We are interested in this paper in 3- and 
4-wave processes in which transverse oscillations 
of an anisotropic plasma take place. For the sake 
of generality we shall not specify concretely the 
types of waves at the beginning. We choose for the 
potentials a gauge such that the scalar potential in 
the wave vanishes; in the case of a homogeneous 
stationary magnetic field, the Lagrangians of in­
terest to us are of the form 

(3) 

(4) 

We shall develop here the mathematical pro­
cedure for deriving the matrix element for the 
case of 3-wave processes only, illustrating by the 
same token the general scheme. 

Following Landau and Rumer [11 1, we represent 
the particle displacement ra and the potential A' 
of the wave field in the form 

ra= ~ r11a, A'=~ An, 
n=l n=l 

where the indices 1, 2, and 3 pertain to waves 

*[vw]=vxw. 

with wave vectors ki> k2, and k3 and frequencies 
wk1, Wk2, and wk3• We expand rg' and An in 
Fourier series: 

a. " a ik ; rn = ..:::..J rk e n ' n 
kn 

(5) 

Substituting these expressions in (3) and recogniz­
ing that the wave vector is conserved during the 
interaction, we get 

:£3 = !_ ~ e ~ ~ dvj(v) { (kar~t,) (B~t,A~t,) + (k2r1t,) (B~t,A~t,) 
c klk2k'3 

-f- (k3r~t,) (B~t,A~t,) -f- (k,r~t,) (B~t,A~t,) -f- (k2r1t,) (B~t,A~t,) 

+ (k,r~t,} (B~t,A~t,) + i [ (r~t,kJ) (r~t,k3) (vA~t,) 
-f- (r~t,k2) (r~t,k2 ) (vA~t,) 

where 

~(x)={1,x=O_ 
0, X 7'= () 

We have left out the burdensome index for the 
particle species. 

( 6) 

We now express rk and Bk in terms of Ak. To 
this end we use the equation 

D2r -f- [ffiHDr] = _!___( E' -f- -~(vH'J). (7) 
rn c 

This equation is obtained by varying f <'£ 2dt with 
respect to r. Integrating ( 7) along the trajectory 
of undisturbed particle motion, we gett) 

t 

r o= ~ B(t')dt', ( 8) 

[Mx cos WH (t'- t)- My sin WH(t'- t)] dt', 
( 9) 

t 

B 11 = _ _!___ ~ [MycoswH(t'-t)-f-MxsinwH(t'-t)]dt', 
rn 

-oo (10) 
t 

B" = - ..!!__ I Mzdt', 
m .l 

-00 

where we have introduced the notation 

1 aA' 1 , 
M =------[v[VA]]. 

c at c 

From ( 9) -( 11) it follows that 

(11) 

( 12) 

B~t= i:~" ~ x,exp[ik~ v('r)d-r-iw~t(t'--t)] dt'. (13) 
t 

l)It is assumed that there is no stationary electric field, 
and the stationary magnetic field is directed along the z axis. 
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The equations of the unperturbed particle motion 
yield 

Vz ('t) = Vzo, Vx (t) = V _LOCOS (~o- WH't), 

Vy('t") = V_LO Sin(~o- WH't); 

therefore ,, 
ik~ v(T)d• = iT)[sing(t)- sing(t')J+ ikzVzo(t'- t), 

g(t)=~o-WHt-~~, ~1=arctg(ky/kx). (14) 

We expand the exponential of (13) in a Bessel­
function series 

+co 
exp[-iT)sing{t')J= ~ ln(TJ)exp[-ing(t')]. (15) 

n=-oo 

Taking (14) and (15) into account and using the 
well known relations 

ln-1 (TJ) = ~ ln (TJ) + ln' (TJ), ln+i(TJ) = ~ ln (TJ)- ln' (TJ), 
TJ TJ 

we get after rather cumbersome calculations 

where 
+co 

P=i ~ eiTJsing-ing0~l[P<IlJn(TJ)+P<2lJn'(TJ)J, 
n=-oo 

00 

O~n) = - i ~ exp [i ( Wh- nWH- kzVzo) tJ dt 
0 

Similar calculations yield 

where 

+oo 

(16) 

( 18) 

Q=i ~ ei'lslng-ingo~)[Q(IlJn(TJ)+Q<:i>Jn'(TJ)J. (18') 
n=-oo 

6xpressions for P <t l, P <2>, Q <t >, and Q <2> are 
given in the Appendix. 

With our gauge for the potentials, the energy of 
the transverse oscillations in a transparent 
medium is given by 

( 4nc2) -1 ~ w"2 [ a (we~~) + e~~ l xaxpAii +A", 
li a(J) .JW=Wk 

Ali 
X= ""ILl' 

where E~/3 is the hermitian part of the plasma 
dielectric tensor. We denote the number of trans­
verse waves with wave vector k and frequency 
Wk by Nk- We normalize the Fourier components 
of the vector potential in accord with the equation 

and introduce symbols which will prove useful 
later on 

where 

(20) 

I { 4 ~. 2/ [ a(we~~) , J }''• 
v = 1tr£C Wkv aw + l:lafl w=wk XvaXvp ; (21) 

" the normalization condition then becomes 

~ nwhah+ah = ~ NhnWh· 
k k 

It follows hence that the quantities a k and ak 
can be treated respectively as operators for the 
creation and annihilation of a transverse wave with 
vector k and frequency Wk. The nonzero matrix 
elements of these operators are 

(Nk -1lak1Nh) = "YNk e-iwkt, 

(N" + 1la~<+IN") = "YN" + 1ei"'k1• 

With the aid of (16), (18), and (2) we rewrite the 
Lagrangian ( 6) in the form 

where 

2a = ~, <Dh,h,k,ak,ak.ak, 
klk;dl-3 

i es S <Dk,k,k, = 3 ~ - 2- 2 /1/2/s dvf(v) { (kaQ2) (P1xs) 
C mWH 

+ (k2Qs) (P1x2) + (ksQ!) (Pzxa) + (ktQs) (Pzx1) 

(22) 

+ (k2Q1) (Paxz) + (k1Q2) (Psx1) + i [ (Qtks) (Q2ks) (vx3) 

+(Qtkz) (Qskz) (vx2) +(Q2k1) (Qskt) (vx1)]}. (23) 

The summation in the Lagrangian (22) is over 
wave vectors satisfying the conservation law k1 

+ k2 + k3 = 0. 
We obtain analogously the general expression 

for the matrix element in the case of 4-wave 
processes. It is very complicated and therefore, 
without writing it out, we proceed directly to con­
sider concrete examples. 

4. In an anisotropic plasma it is possible for 
helicons and Alfven waves to propagate. If we 
take into account nonlinear effects, then the decay 
of a helicon into an Alfven wave and a helicon of 
lower frequency is possible. The corresponding 
conservation laws are 

h h A 
Wk = Wk-q + Wq . (24) 

Here w~ is the frequency of the helicon with wave 
vector k and w~ is the frequency of the Alfven 
wave with wave vector q. 
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We confine ourselves to the case of a one­
dimensional spectrum of excited oscillations 
propagating along an external magnetic field. Then 
the dispersion laws are written in the form [l 2] 

(J)He 
WI/=-- c2k2 {WHi <WI(< 'WHe); 

QOe 2 (25) 
ffiqA = CAq, 

where CA is the Alfven velocity and c is the speed 
of light. Equation (24), as can be readily seen, has 
a positive solution with respect to the wave num­
ber q if k > ko, where k0 = Y2 ( miM )112 Qoe I c 
(Sloe =plasma frequency). This condition is satis­
fied even by the minimum wave number of the 
helicon kmin = ( miM) Q0e I c. Therefore the heli­
cons from the very beginning of the spectrum can 
decay into Alfven waves and into helicons with 
lower frequencies. This process is the Cerenkov 
radiation of an Alfven wave by the helicon. Let us 
determine the rate at which this effect increases 
the energy density of the Alfven oscillations. 

We put in the Lagrangian (22) k1 = k, k2 = k 
- q, and k3 = q, and denote the number of Alfven 
waves by nq. We shall use the following expres­
sions for the components of the tensor Eaf3: 

Qo2 
Bxx = 8yy = 1 - ~ , 

w2- WH2 

Bxz = 8yz = Bzx = Bzy = 0, 

we then get from (21) 

/1,2 = c(~H•)( 2~h f', 
Oe (J)k1,2 

(26) 

fa= c( ~: )(: )"' (!:~ r (27) 

To find P and Q in the one-dimensional case, 
we must represent the Bessel function in the form 

T]n [ 7]2 :] 
ln(TJ)=-znn! 1 - 2(2n+2) + ... 

and take in ( 17) and ( 181) the limit as 7J -- 0. With­
out presenting this simple mathematical procedure, 
we write out immediately the resultant approxi­
mate expression for the matrix element: 

Ill~ (: )"'n'f, ( ~:) : QoeRD3(wkrWkr_qWqA)-'hk2(k- q)q. 

(28) 
We have left out here the ionic term, since its 
contribution is smaller than the electronic one by 
a factor ( m/M )2• 

The kinetic equation for the distribution flmc­
tion of the Alfven oscillations is set up with the 
aid of the Lagrangian (22) in accordance with the 

usual scheme. Retaining in the collision integral 
of this equation the required terms, we have 

onq 2n ~ r dt= h2 L.J I<I>I 2NkNk-qb(wkr_<J)k-q-WqA). (29) 
k 

With the aid of the normalization condition (19), 
we express the functions Nk and nq in term the 
spectral field intensity: 

, 1 ( Qoe )2 
1\k=-- - 1Ekl2, 

2rrhwkr WHe 
(30) 

Substituting these relations in (29) and using the 
matrix element (28), we get 

X 
lfJ(wkr-wr -w A)foq--1- ' k-q q q-ql 

where 

(32) 

Assume that we have a packet of helicons of 
width k2 - k1 = ~ k1, where k2 < kmax• k1 > kmin· 
and the energy density in this interval of the wave 
vectors is constant. Then, integrating (32) with 
respect to dq, we obtain for the rate of increase 
of the energy density of the Alfven oscillations the 
following final order-of-magnitude estimate: 

fJW 2( m) ( QOe )H( Vre )8 QOe 
at~ iO- M WHe ---;;- (Rn!'!.k) 2 

X [ln k2- 2ko + ___ k_o!'!._k ___ J IE I:- IE l2• 

kt- 2ko (k2- 2ko) (k1- 2ko) _ nmc 
(33) 

5. Let us proceed to estimate certain charac­
teristic quantities describing the "gas" of inter­
acting Alfven oscillations. We consider first pro­
cesses in which three waves participate - the de­
cay of one wave into two waves and the merging of 
two waves into one. The corresponding matrix 
element is obtained from (23) and, provided the 
magnetic-energy density does not exceed the par­
ticle thermal energy density, is of the form 

<D' ~ (2n)21i'/, ( Oo.r) _!:_ ( m )''• Qo eRv3 

WHe m M 

X (wqAw:-q,Wq,A)-'1, q2 (q- qt)q,. 

(34) 

Let us set up the kinetic equation for nq and 
retain in the collision integral of this equation 
only the terms quadratic in the number of waves; 
we get 
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anq 2:rt "' ' Tt = fF LJ I <D 12£nq-q,nq,- nqnq-q, 

q, 

A 
- nqnq,] 8 ( WqA- Olq-q, - Wq, A). 

(35) 

Substituting here the matrix element (34), we ob­
tain the order of magnitude of the reciprocal re­
laxation time due to the 3-wave processes: 

( m ) 2 ( Qoe )~ ( VTe ) 4 I E 12 
't3-1 ~ 10-2 - - - (Rn!1q)2wq,--. (36) 

M WHe CA nmcA2 

We have again assumed that the energy density of 
the Alfven oscillations differs from zero and is 
constant in the wave-vector interval 

[qo-!1q/2, qo+l!..q/2]. 

Let us consider now processes in which four 
Alfven waves take part-decay of one wave into 
three, merging of three waves into one, and scat­
tering of one wave by another. All these processes 
are of the same order and we can confine ourselves 
to one of them in estimates of the characteristic 
quantities. 

The matrix element takes the form 

qr ~ -- - ___!_:__ -q2(qRn)2. ( m )2( Qae )z( v )2 fi2 

M WHe CA mn 
(37) 

We substitute this expression in the Lagrangian 
. '£ 4 and replace aq by ( nq) 1/ 2• Taking ( 31) into 
account, we get the following order of magnitude 
for the energy density of the 4-wave interactions: 

U,~ 1i)-3(Q .. Oe-)6(VTe)2(Rv!1q)2_1EI: IEiz. (38) 
ftllh , CA ntnCA 

From the corresponding kinetic equation we 
can readily obtain for the reciprocal relaxation 
time due to the 4-wave processes 

't>-1 =· Tt-1 + T2-1, 

where T 11 is the contribution from .'J 4 : 

'tC1 ~ 10-·2 -- _e _e (Rn!1q)~Wq, --- (39) (, m ) 2 ( vT )' ( Q0 )s ( 1 E 1z )z 
M CA WHe 1 nmcA2 1' 

and T :/ is the contribution from .'£ 3 in second­
order perturbation theory: 

't2-1 ~ 102(; Y( ~=e )\1-1. (40) 

We can obtain analogously quantities of the type 
T 3 and T 4 for other branches of the oscillations, by 
starting from the general expressions for the 
matrix elements. It must be noted that these quan­
tities determine such characteristics of a weakly 
turbulent plasma as, for example, the time of non­
linear decay of the wave spectrum, the energy 
transport in the gas of waves, etc. Consequently, 
they enable us to obtain important information on 
processes occurring in a weakly turbulent plasma. 

I am sincerely grateful to A. A. Vedenov for 
valuable remarks and interest in the work. 

APPENDIX 

After cumbersome calculations, the procedure 
for which is described in detail in Sec. 2., we ob­
tain the following expressions for the components 
of P(1), p<2l, Qw, and Q< 2l: 

P (l) · -1 ( + · ) + · " (A x = m'Y] !J.o COS g !J.I Sill g WH . ~'\/zV j_QWH Sill pO-WHt) 1 

P~~l = in'Y]-1 ( !J.o sing - !J.t cos g) WH -i'VzWHV j_O cos(~o-wHt), 
P~11 = iWuWk?<z + iv ..t_on'Y]-1 (vy cos~~ -'Vx sin ~t) WH, 

P~21 = WH(!J.t cos g- !J.o sin g), 
P~21 = wH(IJ.tSing+ !J.ocosg), 
p ~2) =• WHV j_O ( 'Vx COS ~~ + Vy Sin ~t) 1 

(! ~) = iv,v j_O cos (g + ~1) - if.lt + in'Y]-1 ( !J.t cos g 

- !J.o sin g - v,v j_O cos ~t), 

Q ~l = i"V,Vj_o sin (g + ~t) + if-tt - in'Y)-1 (I-tt cos g + !J.o sing 
+ iv,v j_O sin~~), 

Q~l) = [ -W~tXz- Vj_on'Y]-1 (vy cos~~- 'Vx sin ~t) ]wn6+(nJ, 
Q(2) • • A 

x = - !J.o cos g - IJ.t sm g - v,v j_O sm ...,1, 
QiJl= -i(!J.t sing+ !J.o cos g- Vzl.lj_o cos ~ 1 ), 
Q~2) = iv j_OWH ( Vx cos ~~ + Vy sin ~1) l\+(nJ, 

where 

!J.o = WkXx- 'VyVzo, !J.t = -WI!.Xy - 'VxVzo, 

If we put intense formulas v __... 0 and replace 
w kKI c by -k, we obtain the matrix elements for 
the case of potential oscillations of an isotropic 
plasma . 
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