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We consider flute instability of a maximally inhomogeneous plasma cylinder, in which the 
thickness of the transition layer between the plasma and the vacuum amounts to two ionic 
Larmor radii. We show that the mode I m I = 1 is not stabilized even with a large Larmor 
radius (comparable with the radius of the cylinder). We present an example of a distribu
tion which is unstable against perturbations of higher modes with I m I > 1, at an arbitrarily 
small value of a gravitational force imitating the curvature of the magnetic-field force line. 

J. It is known that a finite Larmor radius sup
presses flute instability in a plasma with suffic
iently hot ions. This stabilizing effect was investi
gated in the case of a weakly inhomogeneous 
plasma, in which the characteristic inhomogeneity 
dimension L is much larger than the average ion 
Larmor radius Ri. It has turned out that in this 
case all the modes can be stabilized in a cylinder 
of the inhomogeneous plasma, except the mode 
I m I = 1 [i, 2]. Since the transverse dimension of 
some experimental installations, such as "Ogra," 
is comparable with Ri, it is of interest to con
sider the flute instability of the cylinder without 
assuming weak inhomogeneity Ri « L. In particu
lar, the question arises whether the mode I ml = 1 
is stabilized by a large Larmor radius (compara
ble with the radius of the cylinder. 

We consider in this paper the flute instability 
of a cylinder with maximally strong inhomogeneity. 
We choose as the ionic distribution function the 
following function of the integrals of motion 
( z II H0 ) 

No 
fo; = -'J- O(v.L- v0)Q;([(x + vy/w;) 2 

~:rtvo 

+ (y- Vx/ w;)2J''') /11 (v,), 
( 1) 

where v1 =) v_i + vg, wi = eH0 /mic is the ion
cyclotron frequency, and Qi is a function charac
terizing the inhomogeneity: 

Q; = { 1, r< a 
0, r> a. 

(2) 

The distribution fll( Vz) with respect to the longi
tudinal velocities drops out of the equations in the 
flute-instability problem. 

Let Ri « du, where du = [miv5/4rre2N0 ]112 is 
the "transverse" ionic Deybe length. Then we can 
retain in the right-hand side of the Poisson equa-

tion 'V 2 cp = -4rr(pi + Pe) (cp = exp(im 0- iwt ), 
0 is the azimuthal angle and m is the number of 
the mode) only the terms connected with the in
homogeneity and containing the derivative dQi/dr. 
We assume that the electrons are cold and neglect 
the finite length of the electron Larmor radius 
Re ( Re = 0). In the calculations of the charge 
densities Pe and Pi we can carry out the integra
tion over the velocities by using the Fourier
Bessel integral representation for the perturbed 
quantities (in lieu of the usual Fourier representa
tion in the plane case [3]). Under these assump
tions, the equation for the oscillations of the cylin
der (in dimensionless quantities) takes the form 
(I w I « Wi) [4] 

<D(x) ( 1 1) 
!2o2 = Q+Q* Q 

"" 1 "" 
X ~ KJm>(x, A)<D(A)dA -Q ~Kim> (x, A)<D(A)dA. 

0 0 
"" 

<D(x)=x'h'ljl(x), 'ljl(x)='~ 'ljl(r)lm(xr/a)rdr (3) 
0 

is the Fourier-Bessel integral of the potential 
1/J ( r) 

(m) m 
Ko (x, A)= -=lm(x)lo(ex)lm(A)lo(eA), (4) 

l'xA 

.(m) ~ m+s 
K1 (x, A)= L..J --=-lm+s(x)l.(ex)lm+s(A)ls(I!A), 

S=-oo l'xA (5) 
s*O 

E '= v0 I wia is the dimensionless Larmor radius, 
Q 0 =wj_1 (4rre 2N0/mi) 112, Q =wlwi, fl* =mw*lwi, 
and w* is the precession frequency in a field with 
curved force lines. We shall henceforth assume 
for concreteness that m > 0. 

142 

2. Neglecting the finite length of the ionic 
Larmor radius (E = 0), Eq. (3) has a unique solu-
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tion 4» = K-11 2Jm ( K) (in the coordinate represen
tation it corresponds to a solution If; ( r) equal to 
(r/a)m when r <a and (r/a)-m when r >a), 
corresponding to the dimensionless frequencies 

Q = - 1/2Q* ± 1/2(Q*2-2Q<fQ*)''·· (6) 

The perturbations are unstable if Q* < 2Q~. We 
note that when E = 0 instability sets in for arbi
trarily small Q*. 

Let us consider now the oscillations of the 
cylinder when E -..t 0. In a weakly inhomogeneous 
plasma, the finite Larmor radius exerts a stabiliz
ing influence: when Q* ~ E4 Q~ the perturbations 
are stable (except the mode m = 1). We shall show 
that in the case of the maximal inhomogeneity (2), 
not only is the mode m = 1 not stabilized, but the 
higher modes m > 1 are also unstable, at least 
for one value of E. 

We seek the solutions of (3) in the form of the 
sum 

(m) m/ 1/ 2 (m) where 4»0 = ( K) Jm ( K )J0 ( EK ), and 4»q 
are mutually orthogonal eigenfunctions of the 
kernel Kfl: 

"" 

(7) 

<D~m) (x) = 1-l~m) ~ xfml (x,,/c)<Dt> (!c)dlc. (8) 
u 

Let us substitute ( 7) in ( 3). Recognizing that 
K~m)( K, A) = 4»~m)( K) 4»~m) (A), and assuming that 

the functions <I>~m) and <I>~m) are linearly inde
pendent, we equate the coefficients of these func
tions in the right and left sides of (3). Eliminating 
aq ( q = 1, 2, 3, ... ) from the resultant system of 
equations, we obtain the following equation for the 
frequency: 

00 b 2 

( 1 - ~ b :; , ) boo' = 0, 
q=t 00 qq 

where 

In the region of interest to us, l Q l « Q6, we 
have 

~ b0q2/bqq' ~ ~ boq2/bqq == S, 

and ( 9) has an unstable root ( Im Q > 0 ) , deter
mined from the equation 

(9) 

s Q(Q+Q*) 
boo- + Qo2Q* =0, (10) 

if S < b00 and Q* < 4~l~(b00 - S). (The case E =0 
considered above corresponds to S = 0 and b00 

= Y2 ). The stability problem reduces thus to a 
check on the completeness of the system of func
tions <~>4m) in the "class" (containing one function) 
4»~m). If the system 4»&m) is not complete in the 
class <l>~m), then S < b00 [ 5) and the instability 
exists at arbitrarily small Q*. 

3. We consider first the mode m = 1. We shall 
show that in this case the system <1>~1> is not com
plete in the "class" 4»~ 1 > = J 1 ( K) J 1 ( EK )/..;-;. Let 
us assume the contrary, and then the Fourier 
series 

q 

can be integrated in the interval [ 0, oo] term by 
term with weight ~, where ~ is any function with 
integrable square [5): 

~ boq ~ s(x)<D~) (x)dx = r s(x)<D~1)(x)dx. 
q bqq 0 0 

(11) 

We choose the function ~ in the form ~ (1> 

= J 1 ( aK )/..;-;, where a > 1 +E. This function is 
orthogonal to the kernel K W ( (sJ, formula 6.578), 
so that the left side of (11) vanishes. At the same 

time Joo 4»0 ( K ) ~ (1) ( K) dn = Y2 a. The resultant 
0 

contradiction proves the incompleteness of the 
system <1>~1) in the class <~>ci1>. This result obvi
ously does not depend on the value of E, and con
sequently in our case of a plasma having a sharp 
boundary the mode m = 1 does not become 
stabilized even by an arbitrarily large ion Larmor 
radius (comparable with the radius of the cylinder). 

4. We consider now the modes m > 1. As an 
example we take the particular case E = 1, for 
which the kernel K~m)( K, A) simplifies to 

-1 
(mJ "" m+ s K1 (x, A.)e=i = LJ ---=-lm+s(x)ls(x)lm+s(A.)ls(l..) 

ixt.. oo s=-(m-1) 

+~ boq lm+s(x)l8 (x)lm+s(I..)J,(I..). (12) 
•=1 fxA. 

Let m = 3. Assuming the system <1>~3 > to be com
plete, we have 

~ boq fs(x)<D~3)(x)dx = r 6(x)<D~) (x)dx. (13) 
bqq 0 0 

we take ~ in the form 

~<3> = ~ + 2a(1- ~2) / 1 (ax) 2~ (1- a2) lt(~x). 
xl• ~2 _ a2 x'l• + a2 _ ~2 x'l• ' 

a, ~>2~ a =I=~· 

Then the right side of (13) is equal to --.1 3/24, and 
the left side vanishes, since it is easy to see that 
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~<a> is orthogonal to the kernel K<a> ( K, A. )E=1· This 
contradiction means that actually the system q,~<a> 
is not complete in the class <P~ 3 >. Therefore in
stability for arbitrarily small Q* takes place also 
for the mode m = 3 in the case E = 1. The insta
bility of the remaining modes at E = 1 is proved 
similarly. 

5. In a strongly inhomogeneous plasma cylinder 
whose radius is comparable with the ion Larmor 
radius, the electron and ion drift velocities in the 
electric field of the perturbation are markedly 
different, owing to averaging of the field acting on 
the ion, so that one could expect a finite Ri to 
have a stabilizing effect. However, in our case of 
a maximally strong inhomogeneity, this averaging 
not only does not stabilize the mode m = 1, but, 
as we have already seen in one example, it can 
lead (unlike the case of a weakly inhomogeneous 
plasma) also to instability of the higher modes. 
We note that in the frequency region I Q I « Q~ 
under consideration we have for unstable solutions 
<P, defined by formula ( 7). aq ~ - aoboq /bqq. so 
that 

t"" 
- ~ Ki(X, A.}<D{A.)dA. ~ 0. (14) 
Q 0 

Since the difference between the electronic and 
ionic charge densities Pe and Pi is characterized 

precisely by the quantity Q - 1 J K1 <PdA., it follows 
that (14) signifies that Qpe ~ ( Q + Q*) Pi in the 
unstable oscillations found by us. A similar situa
tion obtains, as is well known, in the oscillations 
of the mode m = 1 of a weakly inhomogeneous 
plasma, which cannot be stabilized by a finite 
Larmor radius. 

I am grateful to Yu. N. Dnestrovskii, D. P. 
Kostomarev, and B. B. Kadomtsev for valuable 
remarks. 
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