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We investigate the influence of the regularity of the crystal lattice on the change in the parame
ters of the nuclear resonance level in the presence of lattice vibrations, and also with due al
lowance for the spin and isotopic incoherent scattering. A consistent derivation is presented 
of a system of dynamic equations for the motion of particles in regular crystals, for both 
particles satisfying the Schrodinger equation and for y quanta and x rays. In the case of 
resonant interaction, we analyze the question of the influence of the change in the resonance 
parameters of the level on the coefficients of this system. We also consider the tempera-
ture dependence of the coefficients of the dynamic systems under potential scattering (neu
trons and x rays) with a consistent account taken of the processes of coherent scattering of 
particles with excitation (absorption) of phonons. 

1. INTRODUCTION 

THE authors have shown in an earlier paper [t] 
that when particles resonantly interacting with 
nuclei move in regular crystals, the true reso
nance width is not the total width r of the reso
nance level of the nucleus, but also the inelastic 
part r 2 of the width. This result was obtained 
under the assumption that the spin of the ground 
state of the nucleus is zero, and that the nuclei 
themselves do not vibrate. Physically, such a 
strong change in the width is connected with the 
fact that the presence of translational symmetry 
gives rise to the absence of elastic scattering 
even in the case of pure resonance interaction. 

The situation is different in a vibrating lattice. 
Indeed, in this case it becomes possible for par
ticles to be scattered with simultaneous emission 
or absorption of phonons. This should give rise 
to an increase in the width as compared with r 2• 

The resonance width should then depend on the 
temperature. Another cause of the increase in 
width for a regular crystal, compared with r 2, is 
the dependence of the resonant interaction on the 
spin of the nucleus in the ground state (spin in
coherence), and also the isotopic incoherence in 
the case when the concentration of the resonant 
nuclei differs from unity. 

The question of the change of the resonant 
nuclear width in regular crystals is important in 
the general case also for the dynamic theory. 
Such a theory, for particles moving in crystal and 
experiencing resonant nuclear interaction, was 
developed in connection with the effect of suppres-

sion of inelastic channels in papers by the 
authors. [2, 31 The derivation of a general dynamic 
system of equations, which takes into account both 
the presence of inelastic nuclear channels and the 
vibrations of the nuclei, the spin, and the isotopic 
coherence, was based on the assumption that the 
amplitude of the scattering by the nucleus in the 
crystal has the same value as in the case of an 
isolated nucleus. In connection with the possibility 
of changing the elastic part of the resonance 
width in the crystal, such an assumption, as al
ready noted, corresponds to the assumption that 
the inelastic part of the nuclear width is large 
compared with the elastic one. A consistent al
lowance for a change in the width makes it possi
ble to develop the dynamic theory to include the 
general case. 

The method developed in this paper allows us 
to consider not only the case of resonant interac
tion, but also pure potential interaction, which is 
characteristic, in particular, of x rays and neu
trons. This raises the analogous problem of de
termining the coefficients of the system of dy
namic equations, a problem connected with a con
sistent allowance for the processes of the coherent 
particle scattering and excitation (absorption) of 
phonons. 

All the questions noted above are considered in 
the present paper. 

2. DERIVATION OF GENERAL SYSTEM OF 
EQUATIONS 

Let us consider a regular crystal made up of 
nuclei with low-lying resonant energy level E0• 
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The state of the crystal will be described by an 
aggregate of occupation numbers n of the phonons 
and an aggregate of spin projections j of all the 
nuclei. For simplicity, where possible, we shall 
use a unified index v, characterizing the state of 
the system as a whole. The state of the particle 
will be described by a wave vector k with spin 
projection u (in the case of y quanta, u will de
fine the polarization). 

We shall analyze the problem of particle motion 
in such a crystal by a method similar to that used 
in the analysis of resonance fluorescence within 
the framework of the usual nonstationary pertur
bation theory [4]. We introduce the following state 
amplitudes: Ckav-all tne nuclei of the crystal in 
the ground state, the particle has parameters ku; 
Csv-the s-th nucleus in the crystal is excited (in 
this case the aggregate index v contains the pro
jection of the spin of the s-th nucleus in the excited 
state); Cspv-state arising after the decay along 
the inelastic channel, with s characterizing the 
new nucleus in the s-th lattice point (in the case 
of conversion-new state of the atom); p-momen
tum of the emitted secondary particle. (We do not 
distinguish explicitly the spin indices of the out
going particles and of the nucleus in the new 
state.) 

For these amplitudes, in the energy represen
tation, we get the following system of equations: 

(2.1) 

Here E0 is the energy of the nucleus produced as 
a result of the reaction f}.Ev includes both the 
phonon energy (the crystal vibrations are con
sidered in the harmonic approximation), and the 
energy of the hyperfine interaction of the nuclei 
in the ground and excited states, reckoned from 
the energy Ev0 of the ground state of the crystal 
as a whole. The particle energy Ek is assumed 
independent of the spin. Summation is implied 
over repeated indices in the right side of (2.1) 
(the summation with respect to the index s is 
marked explicitly). 

Eliminating the amplitudes Cspv in the second 
equation, we get 

(2.2) 

(2.3) 

As usual, in equations of type (2.1) E contains a 

small positive imaginary addition, which we have 
separated in explicit form in ( 2.3). 

For the matrix elements of the operator H, 
which are contained in (2.3), the following formu
las apply in the most general case: 

H sv - {HsPv')• . L( '') ipR ( ipu) spv'- sv = Pls e s e s nn'· (2.4) 

We have separated here the index is, which char
acterizes the spin projections of the excited state 
of the s-th nucleus (this matrix element is of 
course diagonal in the spin variables of the re
maining nuclei); Rs is the equilibrium position of 
the s-th nucleus and Us is the displacement rela
tive to the equilibrium position, connected with the 
crystal vibrations. 

Usually the energy of the secondary particle 
Ep is much larger than either the characteristic 
energy of the photons w0, or the energies of the 
hyperfine interaction. Therefore in summing over 
p in the right side of (2.3) we can omit f}.Ev" from 
the denominator. Using this circumstance, and 
also formula (2.4), we get 

R··= ["'"' L(pi.)L"(pis') ]{) , (2.5) 
vv L:.J E - Eo - E P + i{) nn . 

p 

The expression in the square brackets of (2.5) 
is diagonal in the indices is and i~. Indeed, this 
expression can be r!lgarded as matrix elements of 
a certain operator R, acting on the spin variables 
of the nucleus in the excited §_tate. But the only 
scalar operator from which R can be constructed 
is I2 (I is the operator of the total momentum of 
the nucleus). As a result we obtain 

(2.6) 

!J.Ez = ReR2, 

fz =-21m R2 = 2tt 2; JL(pi) J2 b(E- Ep- Eo). (2. 7) 
p 

We shall be interested in the values of E ~ Eko 
~ E0• Taking this circumstance into account, r 2 

is simply the probability, per unit time, of the de
cay of the excited state of the nucleus with emis
sion of a secondary particle, i.e., the inelastic 
part of the nuclear level; f}.E 2 is the renormaliza
tion of the nuclear-level energy, connected with 
the presence of inelastic channels. Substituting 
now (2.3), with allowance for (2.5)-(2.7), in (2.2), 
we arrive at the equation 

(E- Eo- Mz- !J.Ev + if2/2)Csv =.H:'crvCk<JV'· (2.8) 

We now express the amplitudes Csv from this 
equation and substitute them in the first equation 
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of (2.1). As a result we obtain an equation relating 
only the amplitudes Ckav: 

(2. 9) 

(2.10) 

Let us determine the character of the motion 
of a particle with definite wave vector ko and 
spin projection a0 • To this end we shall consider 
formally the right side of (2.9) as a perturbation, 
and express, as usual, all other amplitudes in 
terms of CkoaoVo• and then substitute them in the 
equation of the system (2.9) with kav = koao~'o· 

However, in the case when the particle is incident 
on the crystal at a Bragg angle, it is necessary to 
separate the system of equations for Ckoaovo and 
Ckia'v0• where ki are the wave vectors of the 
particles scattered at Bragg angles, since these 
amplitudes are of the same order as Ckoaovo· We 
confine ourselves for simplicity to the case where 
not more than one diffracted wave is produced 
(with wave vector k1 = ko + K1, where K 1 is the 
reciprocal-lattice vector multiplied by 2 1r ), and 
write the system of equations for Ckoav0 and 
Ck1a'vo• which we shall henceforth denote simply 
by Ckoa and Ck1 a~. Eliminating successively all 
the remaining amplitudes from the system (2.9), 
we get 

cra' aa' ( 2 11) 
(E- Ek ,)Ck,a = V10 Ck,"' + Vu Ck,"'· · 

I 

The coefficients vgg (a, {3 = 0, 1) are determined 
by the following series: 

Va{3 = 2] ~~aPiJ + 2] 2]' ;~aPGP (E) ;~P~ 
ss' p 

(2.12) 

+ 2] ~· ~·~arc; (E) ;;;r,(;r, (E) ~;;;r~ + ... 
ss's" pp' 

We have written out this expansion in operator 
form with respect to the spin variables. With this 

kO'V s'V 11 

8 00' _ ~ Hsv 11 Hk'O''V' 

(v ) rr - Li E E' till + T 12' 
VP _...- 0 - V" 'L 2 

(2.13) 

c;"' = 6""' (E- Ek- fillv + ib)-1• (2.14) 

Here p is the aggregate of the quantum numbers 
kv, Pa = kav0, and P{3 = kpv0• The matrix elements 
of the operator H which enter in (2.13) can be 
represented in the most general case in the form 

k<JV ltv' • _ . k<Jj s ikR iku Hsv' = (Hkav) - Jt i., e •(e •)nn' (2.15) 

(as in the case (2.4), this matrix element is 
diagonal in the spin variables of the remaining 
nuclei). 

(as in the case (2.4), this matrix element is 
diagonal in the spin variables of the remaining 
nuclei). 

We confine ourselves to cases in which the 
particle energy Ek is much larger than either the 
characteristic phonon energy w0 or the energy of 
the hyperfine interaction. In this case we can 
neglect in (2.14) ~Ev compared with Ek. As a 
result we obtain 

(2.16) 

The primed summation signs in (2.12) denote that 

P =Po, Pt· 
In the analysis of the motion of the particles 

described by the Schrodinger equation, we confine 
ourselves to a consideration of s-scattering only. 
Then the operators vgr are diagonal in the spin 
indices: 

V""'- v """' a~ - a~u ' (2.17) 

and the system ( 2.11) breaks up into ( 28 + 1) 
pairs of identical equations ( S is the particle 
spin). This pair of equations is written in the 
following form: 

(ko2 I x2 - 1)Ck, = gooCk, + gotCku 

(2.18) 

we have introduced here the notation K2 = 2mE, 
where m is the particle mass 

KaP = -Vap/ E. (2.19) 

In the problem involving the motion of photons 
( y quanta and x rays), V a{3 remains an operator 
in the variable a, which in this case describes the 
polarization values. By virtue of the transversality 
of the electromagnetic waves, a acquires two 
values for a given k. It is convenient to introduce 
formally a third longitudinal polarization. Then 
the matrix elements V~f3 and ( vS )~~· (the indices 
i and l run already through three values) can be 
regarded as components of ordinary second-rank 
tensors, and the amplitudes Ckz can be regarded 
as components of a certain vector Ck. 

In order that formula (2.12) remain in force, it 
is sufficient to use in place of the function Gp (E), 
defined by means of formula (2.16), the following 
formula: 

Gpil(E) = (Bil_ kikl I k2) (E- Ek + iB)-1• (2.20) 

The vector amplitude Ck has the meaning of the 
Fourier component with respect to time of the 
photon wave function in the momentum representa
tion ( cf. [5]; in the notation of [5] ck is the tem
poral Fourier component of fk) and is connected 
with the corresponding Fourier components of the 
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electric field intensity ltk by the relation 

(E + ck) ;gkz = 2kN(k)Ckz, 

where N ( k) is a certain normalization factor and 
c is the speed of light. 

For ltl it is now easy to obtain the following 

system of equations: 

(ko2 I x2 - 1) It koi = gooilft ko1 + gotilft k,1, 

(kt2 I x2- 1) S' k,i = giO;z;g k.Z + guilS' k.Z, 

k,ift ka' = 0, 

where K = E/ c, and 

ga~il = -2Va~il I E. 

(2.21) 

(2.22) 

In writing out (2.22) we have used also the fact 
that E and ck0 are close in magnitude, and we 
have put E + cko ~ 2E. 

The systems (2.18) and (2.21) correspond ex
actly to the systems of dynamic equations ob
tained earlier by the authors [2, aJ in connection 
with the problems of neutron motion (cf. (2.14) 
in[3]) and 'Y quanta (cf. (3.1) in[2J). The expres
sions contained in these papers for the coeffi
cients ga{3 and g~~ actually corresponded to the 
assumption that the inelastic width of the reso
nance level r 2 is much larger than the elastic 
width r 1• The formulas obtained above for these 
coefficients solve the problem in the general case, 
for an arbitrary ratio of r 2 to r 1• In comparing 
the results of the present paper with the results 
of [2] it should be remembered that the term 
(k~k~IK 2 ) oaf3• which enters in the expression for 

g~{3 in [2] but is missing in the present paper, is 
lnsignificant by virtue of the transversality of the 
.vaves. 

Far from the Bragg condition we have Ck1 = 0, 

and the motion of the particle in the crystal is de
scribed by the equation 

(ko2 I x2 - 1- goo)Ck, = 0, 

in other words, by a dispersion equation of the 
form 

(2.23) 

Equation (2.23), together with the formulas that 
determine g00 , is a generalization of the problem 
considered earlier by the authors, concernin~ the 
change in the resonance nuclear parameters tJ, 
which occurs when the particles move in a regu
lar crystal, to include the case of a vibrating 
lattice, a nonzero spin of the ground state of the 
nucleus, and an arbitrary concentration of the 
resonant nuclei. With this, the intensity of the 

beam moving over the crystal is defined as 
exp( -JJ.x), where 

f-t = 2 Im ko ~ x Im goo. (2.24) 

Before.we proceed to calculate !he coefficients 
g0{3 and g~f3' let us write out for V a{3 the follow
ing formula, which follows directly from (2.12): 

(2.25) 

where 

(2.26) 

A solution of this equation, as can be readily veri
fied by direct substitution, is determined by the 
expression 

....... kov s\1" 
-. s ""' H sv" H k'a'v' 
Vpp' = .L.J . • 

isv" E- Eo- !1Ev" + il'/2 
(2.27) 

Here r = r 1 + r2 is the total width of the reso
nance level of the individual nucleus. The elastic 
part of the width r 1 is determined in this case by 
the expression 

ft = 2n ~ !.&e~"il 2 b(Eo-Ek); (2. 28) 
k"i 

E0 is the true value of the resonance level, corre
sponding to an isolated nucleus: 

Eo=Eo'+!1Et, !1E1 =P.2; I.JC~"il 2 (2.29) 
ki Eo -Ek 

(the symbol P signifies that the sum is taken in 
the sense of the principal value). In the derivation 
of (2,27)-(2.29) it is necessary to use formula 
(2.15). The diagonality in the spin indices is 
follows from the same reasons as in the case of 
(2.5). 

We shall stop to analyze only the limiting cases: 
that of a narrow line, when 

r<{oo, 

and a wide line, when 

r>wo. 

(2.30) 

(2,31) 

Here w0 is the characteristic frequency of the 
phonon spectrum. In both cases, the expressions 
for ~ gp' are greatly simplified. In addition, in 
this paper we confine ourselves to cases when 
there is no hyperfine splitting (it is clear that this 
limitation is important only for narrow lines). 
Then l:.Ev = l:.En· 

In the case of a narrow line, when the inequality 
(2.30) occurs, we should confine ourselves in 
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summing with respect to v" in (2.27), as usual, to 
terms for which n" =no. Using this circumstance, 
as well as (2.15), we readily obtain 

-VAs ~ (kj., k'j.') i(k-k')R ( iku) ( -ik'u ) 
pp' = E- Eo+ if/2 e • e s nno e • non'• (2.32) 

where 

aaa' (kj,, klj.') = ~ .Jt tai, .it ~·'a'is'· (2.33) 
i, 

In the opposite limiting case, when the inequal
ity (2.31) holds, we can neglect AEv" compared 
with r/2 in the denominators of (2.27). As are-
sult we obtain 

.e. , = ~ (kj., k'j.') ei(k-k')R8 (ei(k-k')u8 ) , (2 34) 
Vpp E -Eo+ if/2 nn • • 

For a particle with spin S = Y2 and for s-scat
tering (this is precisely the case of interest to us) 
the general expression for the operator ;_ is 

~ (i., is')= aollj8 j: + a1 (IoS);8 i:· (2.35) 

With the aid of (2.33) and (2.28) we easily get 

n 21+1 
ao=--;;;;~rio ~= 2 (2Io+ 1) (2.36) 

Here I0 and I are the spins of the nuclei in the 
ground and in the excited states. The constants 
ao and a1 are interrelated in the same manner as 
the ordinary coherent and incoherent amplitudes 
in the case of pure resonance scattering: 

llt = +4ao/ (.2/ + 1). (2.37) 

The plus sign corresponds to the case I = I0 

+ Y2, and the minus sign to I = Io - Y2. 
In the case of phonons, using in H, owing to the 

resonance character of the interaction, only the 
term which is linear in the vector potential, we 
can easily obtain for (2.33) the formula 

2n ~ ~ ~ 
ail(kj8,k1j.')=E .LI (i1i(k));8 ; 8 (jl(k1))i8 i.'· (2.38) 

;. 

We have used here the notation of the earlier 
paper[2l. 

It will be convenient in what follows to repre
sent ail ( kjs, k 1 j~) in a form similar to (2.35): 

ail(kj8,k1js')== a0il(kk1 )l>i i•+a1il(kj8,k1j.'), (2.39) 
s 8 

aoil(kk1)= 1 ~ail(kj.,k1j.). (2.40) 
2Io+ 1 . 

'· 
From the definitions of (2.40) and (2.39) it follows 
that 

~ a1i 1(kj., k 1is) = 0. 
i. 

(2.41) 

This tensor is proportional to the tensor Iil in-

traduced in [2). Using the results of that paper, we 
find directly that in the case of M1 and E2 transi
tions we have respectively 

aoi1(kk1) = b1 [(kk1)6i1- k1ik1], 
(2.42) 

where 
bl = nc 21 + 1 rf. 

2x 2Io+ 1 
(2.43) 

Following the reasoning used in [2) to determine 
I il, we can easily obtain an expression for 
ajl ( k · k1 ) for the case of the E 1 transition, too; 

(2.44) 

We shall henceforth consider only E1, M1, and 
E2 transitions. 

3. CHANGE IN WIDTH AND SHIFT OF RESO
NANCE NUCLEAR LEVEL IN CRYSTAL 

1. In this section we consider the change in the 
resonance parameters in the case when the parti
cles satisfy the Schrodinger equation. We begin 
the analysis with the case of a narrow resonance 
line (see (2.30)) and assume at first that the spin 
Io of the lower state of the nuclei is equal to zero 
and the concentration Tl of the resonant isotopes 
is equal to unity. 

Let us find the explicit form of ga/3 (2.19) by 
using the representation (2.25). To this end we 
substitute in (2.25) the expression (2.32) with al
lowance for (2.35) and (2.36). After simple trans
formations we obtain 

{ nff/mx 
gall = -fa.ftl No E -Eo+ if /2 

(nf1/mx) 2 ~ 1 

+ (E- E + if/2) 2 .LI 5' (s, 8 ) 
0 s'=l=s 

( nf1/mx )3 ~ cr ( 1) cr ( 1 ") + + E- Eo+ if/2 s"=l=~s'=l=• J" s, s J" S 's ... ' 
. (3.1) 

1 _ ~' exp {i(ko-k) (R.-R..•)} 
6' (s, 8 )- .LI E- Ek + il> 

k 

:<l(exp {ik(u,,- Us)} )nonoo (3.2) 

where N0 is the number of atoms per unit volume. 

ing 
The quantity fa in (3.1) has the following mean-

/a.= (exp{ika.us} )nono = exp{-1/~(ka.)}, 

Z(ka.)=-1 - .~ lka.e(q,Jl) 1
2[2n(q,Jl)+ 1]. (3.3) 

2M No q~' w ( q, !1) 

Here q and fJ. are the wave vector and the number 
of the branch of the phonon, w ( q, fJ.) is the pho-



T E M P E RAT U R E VARIA T I 0 N 0 F WIDTH AND S H IF T 0 F R E S 0 NAN C E L E V E L 129 

non frequency, e ( q, fl. ) the polarization vector, 
ii ( q, Jl.) the average phonon occupation numbers, 
and M the mass of the atom in the lattice (for 
simplicity we consider a monatomic crystal 
lattice). 

We note that taking the diagonal matrix element 
with respect to the stationary state of the micro
scopic system n0 is equivalent to averaging over 
the thermodynamic equilibrium. We have used 
this circumstance in writing out (3.3), and we 
shall use it throughout in what follows. 

In a regular crystal ff( s, s') depends only on 
the difference Rs - Rs'. It follows directly there
fore that the sum "I;ff ( s, s') over s' ~ s does not 
depend on s. The series ( 3 .1) is then a geometric 
progression and contracts to the expression 

2fi ft 
gap= -fu.fp Qox3 E- Eo+ if/2 + R(E)' (3 .4) 

nft 
R(E)= --

mx 

X ~ ~, exp{i(ko-k)R.}(exp{i~(Us-Uo)})n,no 
1 

"*0 ..: E- Ek + ~o 
(3.5) 

where ll0 = 1./N0 is the volume of the unit cell. 
Thus, the width and the position of the resonance 
level change significantly by amounts 

~r = 2 lmR(Eo), M = -ReR(E0). (3.6) 

Let us determine in explicit form the matrix 
element contained in (3.5). Direct calculations 
yield 

(exp{ik(us- Uo)} )nono = exp{-Z(k) + Y,(k)}, 

Y 1 ""lke(q,~-t)lz[ . 
s(k)= 2MN "'-! ( ) 2n(q,~-t)+1]cosqR •. (3.7) 

0 q, It w q, I-t 

At temperatures that are large compared with 
wo, this expression decreases exponentially with 
increasing T. By virtue of this, R vanishes in 
this limiting case and the resonance dependence 
of the quantities ga{3 remains practically the 
same as for the individual nucleus. 

In the opposite case, at low temperatures and 
in a sufficiently rigid lattice, (3. 7) can be re
placed by unity. Taking into account the fact that 
we have eliminated from the sum over k the 
values k = ko and k = k1, we obtain directly for 
the change in the width 

2n2ft r dk 
~r= ---J-,-----O(Eo-Ek)=-ft (3.8) 

mx. (2n) 3 

and for the shift 

M=- 2nr1(~' 1 -~C dq ] 
xQo K (ko + K) 2 - k02 (2n)3 ~ q2- k02 • 

(3.9) 

The prime in the summation over K denotes 
exclusion of the term with K = 0, as well as 
K = K1 if the Bragg condition is satisfied. 

The expressions obtained for the width and for 
the shift coincide exactly with the results ob
tained in [t] by another method. 

The greatest interest attaches in our case to 
the intermediate region, where the change in the 
width and the shift of the nuclear resonance level 
begin to depend on the temperature. To analyze 
this case we expand the exponential (3. 7), which 
enters in (3.5), in powers of Ys(k). In this ex
pansion, a significant term besides the first, is 
the second one, inasmuch as Y s ( k) itself de
creases slowly with increasing Rs, which leads 
to a logarithmic divergence in the summation over 
s. The remaining terms decrease with increasing 
Rs sufficiently rapidly, and will be disregarded in 
the analysis that follows. Then 

R(E)~- nft ~ ~·exp{i(ko-k~Rs} e-Z(kl(1+Ys(k}). 
mx. •*0 k E- Ek + ~o 

. . (3.10) 

As shown by direct calculations, the contribution 
made to Re R ( E) by the second term in the 
brackets in (3.10) is small. We then get for the 
line shift 

(3.11) 

For the change in width we get after simple 
calculations, assuming cubic symmetry of the 
crystal 

(3.12) 

The quantity ~r', which is the result of the 
second term in the brackets in (3.10), is given by 

, 2n2ft{ "" Qo ~ dk } ~r =--- ..QP.(ko+K)--- --p(ko+k) 
mx K (2n) 3 (2n)3 ' 

where 
(3.13) 

p(k)= _1_~ S ~e-z(k+qJ I (k+q)e(q,!l) lz 
2M · (2n) 3 {J)(q, 1-t) 

It 

X [2ii{q, ~-t) + 1] 0 (E- Euq). (3.14) 

A special role in the sum over K is played by 
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the term with K = 0, and if the Bragg condition is 
satisfied also by the term with K = K1. Indeed, as 
can be readily verified directly, in these cases the 
integral (3.14) diverges logarithmically at small 
values of q: 

mx 3T ( qo ) p(k;) ~ --2 · 2 e-z(k;J}n -- , (3.15) 
(2:rt) Mcas qmin 

1 =3lim~ ~ dQq ln;e(q,!L)I2 {l(qn;). n;=:= k;. 
C3 s2 q-->-0 2:n: c~"2 ( q) q k; 

I" 

(3.15') 

Here q0 is a quantity on the order of the limiting 
wave vector of the phonons; as regards qmin• it 
can be shown that its limiting value is determined 
by the larger of the two quantities 1/L or r ( L 
is the linear dimension of the crystal); c JJ. ( q) 
= w (q, J.J.)/q. 

The result (3.15) is connected with the logarith
mic divergence of the cross section for single
phonon scattering, which is known for the case of 
Bragg scattering of x rays. It is exceedingly in
teresting that in the case of a narrow line this 
section diverges also for small-angle scattering 
(the term with K = 0). We note that the remain
ing part in (3.13) is as a rule much smaller than 
(3.15). 

For limited values of the temperature, 
T « ® D ( ® D is the De bye temperature), and for 
low-lying resonance levels, when Z ( ko) « 1, we 
get ..:lr ~ - r 1, and the vanishing of the elastic 
width occurs in full measure. With increasing 
temperature, a noticeable decrease takes place in 
l..:lr 1. For large values of ko, the decisive role 
will then be played by the drop in the probability 
exp [- Z ( ko)) of the Moss bauer effect, and for 
small k0 the role of the term (3.15) in ..:lr' be
comes very important. 

We note that the change in width in the presence 
of Bragg scattering is different than in its ab
sence. 

As to the temperature dependence of ..:lE, we 
note only a general tendency for the shift to de
crease with temperature. The presence of factors 
that depend on the vibrations of the nuclei leads 
here to a rapid convergence of the terms of the 
series in K and of the integral in (3.11). 

2. Unlike the case of a narrow resonance line, 
the case of a broad line is much more compli
cated. The situation becomes even more compli
cated if we consider simultaneously nuclei with 
Io "'- 0 and 1J "'- 1. By virtue of this, in the analysis 
of all these factors we confine ourselves to an 
examination of the most interesting case, when the 
change in the width and the shift of the level are 

small compared with r. Then the series (2.25) 
converges rapidly and we can confine ourselves to 
allowance for only the first two terms. Substitut
ing in (2.25) the expressions (2.32) or (2.34) we 
get, with account of (2.35) 

where in the case of a narrow line (see (3.2), 
(2.32)) 

faf'> = lair., 1Dar. (s, s') = fafr.ff (s, s'), 

and in the case of a broad line 

(3.17) 

II> (s s') = '""' (exp{i(ka- k)us + i(k- kt~)Us•}) nono 

af'> ' ~ E - E k + ib 

xexp{i(ko-k)(R.-R •. )}. (3.18) 

The tilde over the summation sign in (3.16) means 
that the summation over s and s' is taken only 
over the lattice points where the resonance nuclei 
are situated. It is natural to assume here that 
these nuclei are randomly distributed over the 
crystal-lattice points. 

In the case of unpolarized nuclei, the terms 
that depend on the nuclear spins vanish upon sum
mation over the lattice points in (3.16), since all 
the projections of the nuclear spins are equally 
probable. Going over to summation over all the 
lattice sites, we get 

'"" ao 
Vat! = 'llfaf'> LJ E -·-E_o_+_if_/_2 

s 

(3.19) 

ao2 
+'112 ~' (E-Eo+if/2)2 ll>ar.(s,s'). 

s'==Fs 

Using the fact that <Pap ( s, s') depends only on the 
difference Rs - Rs'• and also formula (2.36), and 
going over to the expression for ga{3 (2.19), we 
get 

gaf'> = _ 2:rtlJ~iatl . ft (t- Rat~ ) . 
Q 0x 3 E -Eo + if /2 E - Eo+ if /2 

Alternately, with the same accuracy with which 
(3.16) is determined, we have 

2:rtl]~fatl ft 
gat!=- Qox3 E-Eo+if/2+Rar. · (3 · 20) 

Here 
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.1tf1'11~ "" Ra.p =---fafl-i.c.J <I>ap(s,O). 
mx · 

•*0 
(3.21) 

In the case of a narrow line Ra/3 does not depend 
on the indices a and j3: 

Rap= T)~, (3.22) 

where R coincides with the value in (3.5). 
Thus, the change of the width and the shift of 

the resonance line (3.6) turn out to be directly 
proportional to the concentration and to the spin 
factor (2.36), which determines the coherent part 
of the scattering amplitude. The presence of these 
factors in the general case leads to a decrease in 
I ~r I and I L1E I, which is connected with the ap
pearance of an isotopic and spin incoherent
scattering channel. For a sufficiently low concen
tration, Ra{:J turns out to be small, and the reso
nance parameters, naturally, tend to their values 
for the isolated nucleus. 

In the case of a broad line, calculating (3.18) in 
explicit form, we get 

""~'exp{i(ko-k)R8 -Zap(k)+X.afl(k)}. 
X LJ .;.J E - E + i6 ' 

.,..~ k k (3.23) 

x.a~(k)= _1. ~ [(ka- k)e(q, ~t)][(kp- k)e(q, ~tU_ 
· 2NoM . w(q, ~t) 

q,!l 

x (2n(q, Jt) +1) cos qR •. (3.24) 

As in the case of the narrow line, we expand the 
exponential in (3,23) in powers of xa;, confin
ing ourselves to the first two terms of the series. 
Here again the real part of Raj3 is determined 
essentially by the first term of the expansion, and 
the ratio ~Eaf3faf3 ITJt (the shift and the change in 
the width enter differently in the different coef
ficients ga/3) will be described by formula (3.11), 
in which the exponential exp [- Z ( k)], which en
ters in the sum over K and in the integral, must 
be replaced by exp [- Zaj3 ( k)]. For ~r a/3 we 
have in the case of cubic crystal symmetry 

Afap= 

_ 1'fJ _ 1 k0 exp{-2Z(ko)} [ {Jka + kpj Z(ko)} 
TJ., all 2lka+kpJZ(ko) exp ko 

- exp{- lka! kpj Z(ko)} J + fafl-1TJ~fafl', (3.25) 

where ~r~/3 is determined by formula (3.12) with 

1 "" 1 dq PaB(k) = 2M.c.J J (2n)3 exp {-Zafl(k + q)} 
11 

x[(ka- k- q)e(q, ~tnH~~-=-k- q)e(q, JL)l 
w(q, ~t) 

X [2n(q, p.) +1J 6(E-EkH). 

(3.26) 

It is interesting that, unlike the case of a nar
row line, the diverging term in (3.13) in the sum 
over K appears only in the presence of Bragg 
scattering. Therefore, in the penetration problem, 
when there is no Bragg scattering, ~r' is small 
and the expression for the change in the width is 
defined by 

ar ~- "'f t- exp{-4Z(~)}. (3.27) 
TJ., 1 4Z (ko) 

We note that in the case of a broad line the 
temperature dependence of L1r, has an entirely 
different character than in the case (3.12)-(3.15) 
of a narrow one. In particular, at high tempera
tures, when Z ( ko) ~ T, ~r tends to zero ex
ponentially in the case of a narrow line, and only 
like 1/T in the case of a broad one. 

On the other hand, in the case of Bragg scatter
ing there appear in ~r~/3 with a = {3 diverging 
terms corresponding to Poo ( K1 ) and p11 ( 0) and 
playing a decisive role in ~r~a. It is interesting 
that when a ;t! {3 there is no divergence and 
~r a{3 in this case again is determined essentially 
only by the first term of (3.25), Then 

mx 3T Kt2 qo 
poo(Kt)= pu(O) ~ -----= -e-Z(K,Jin~, (3.28) 

(2n) 2 Mc1s;und'iG2 {jmin 

where c~ound is determined by (3.15') with ni 
= K 1 /K1. Unlike the case of a narrow line, here 
qmin is determined by the larger of the quantities 
1/L or g00K. 

4. CHANGE IN WIDTH AND SHIFT OF RESO
NANCE NUCLEAR LEVEL IN CRYSTAL. CASE 
OF y QUANTA 

1. In this section we confine ourselves to only 
the most important case, that of a narrow reso
nance line (see (2,30)). 

We separate again the case when the spin of the 
ground state of the nucleus Io is equal to. zero, 
and TJ = 1. We determine the values of g1l (2.22), 
using the expansion (2.25). We substituteaformulas 
(2.32) and (2.39) in (2.25) and take account of the 
fact that when I0 = 0 we have afl = 0. Then in the 
case of an E1 transition, using expression (2.44), 
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and making the same transformations as in the 
derivation of (3.1), we get 

. 2b'x { ()il 
ga.fl't= -/a.lfl cQo E-Eo+if/2 

Ri! RiPRPl } 
- (E -Eo+ if/2)2 + (E -Eo+ if/2)3- ... '(4 ·1) 

Ril= -b'xZ ~ ~' exp{i(ko-k)R.}exp{-~(k)+ Y.(k)} 

•*O k E- Ek + i6 

X (()il- kikl ) 
k2 . (4.2) 

In the coordinate system in which the tensor Ril 
reduces to its diagonal form, all the tensors giJp 
are diagonal, and the series (4.1) turns into geo
metric series. As a result we obtain 

u- -fa.! 2b'x 1 (4.3) 
ga.fl - fl cQ0 E-Eo+if/2+R11 

and analogous expressions for the other two 
principal values of the tensor. 

We note that in the general case R11 ;>' &22 

;>' R33, and thus, coefficients with different values 
of the resonance parameters enter in the dynamic 
problem. (It must be emphasized that the reduc
tion of the tensors g~p to diagonal form does not 
mean that the corresponding equations (2.21) will 
separate in this coordinate frame into three in
dependent eguations, or into the transversality 
condition k~ ~lka = 0.) In the particular problem 
involving the penetration of a y quantum through 
a crystal in the absence of Bragg scattering, it is 
obviously sufficient to know the properties of the 
tensor g0~P, where A. and p are the coordinates 
in the plane perpendicular to the direction of the 
vector ko· From the first equation of (2.21), we 
obtain in this case, putting ftl k = 0, the following 
dispersion equation: 1 

I (knx2 -1)l>"P- goo'-PI = 0. (4.4) 

This equation gives a value of ko in the crystal 
corresponding to two values of polarization. 

If we assume for simplicity that ko is directed 
along the symmetry axis, then 

goo"P = g00l>"P, 

and we obtain two identical roots for ko 
ko ~ x(1 + 1/2goo). 

With this, g00 takes the form (4.3) with 

R= -ncxft 

(4.5) 

(4.6) 

X "" ""' e4p{i(ko- k)R.}exp{-Z (k) +Y.(k)} 
£.J £.J E -E~r. +i6 cp(k), 
•*O k · (4 • 7) 

(4.8) 

In writing out (4. 7) we used the explicit form of 
(2.43), and also the fact that in the case of E1 
transitions and when Io = 0 we always have I = 1. 

If we make in (4. 7) the same transformations 
as in the transition from (3.5) to (3.10)-(3.14), 
then we readily get 

llE = _ nr 1 { L cp (ko + K) e-z<~<a+K> 
Qox2 · K I ko + K 1- ko 

--~ c cp(q)e-Z(q) } 
(2n) 3 1 q-ko dq ' 

and for .6.r we again obtain (3.12) with 

Ill"= ncxrt{ ~cp(ko + K)p(ko+ K) 
K 

- (~;)3 ~ dkcp(ko + k)p(ko + k)}, 

(4.9) 

(4.10) 

where p(k) is determined by formula (3.14). 
Thus, the shift and change in width have qualita
tively the same character of the temperature de
pendence as in the case of particles experiencing 
s scattering (see the preceding section). 

A similar analysis can be made for M1 transi
tions. The problem reduces completely to that of 
the preceding case of E 1 transition, if we go over 
from ft ~ to the Fourier components of the mag
netic -field vector. 

2. We now proceed to the general case, when 
Io ;>' 0 and T/ ;>' 1. As in the preceding section, we 
confine ourselves to the case when l.6.r I and 
I.6.E I are small compared with r. Then, if we 
retain only the first two terms in the expansion 
(2.25), the reasoning remains exactly the same as 
in Heading 2 of the preceding section. In summing 
over the spin variables it is necessary to use 
here Eq. (2.41), wh!ch leads to the vanishing of 
terms containing a}l. All the results of the pre
ceding part of this section remain in force, with 
the substitution 

~ = (21 + 1) / (2l + 1) (2/o + 1) (4.11) 

( l is the multi polarity of the transition). 
The character of the influence of the spin and 

isotopic incoherence on the change in the width 
and on the shift of the nuclear level turn out to be 
the same as in the case of particles experiencing 
s scattering. 

5. DYNAMIC SYSTEM OF EQUATIONS IN A 
CRYSTAL 

The results obtained in the preceding sections 
show that the vibrations of the nuclei as well as 
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spin and isotopic incoherence can lead to a change 
in the resonance parameters of the nuclei, and at 
the same time lead to a rather nontrivial change 
in the coefficients ga(3 in the system of the dy
namic equations (2.18) and (2.21), compared with 
those values obtained in earlier papers [2, 3J, with 
account taken of the vibrations of the crystal 
lattice and also of the spin and isotopic scattering. 
In most cases r 2 » r 1, and thus the change in the 
resonance parameters is really small. However, 
we can indicate a whole number of cases when r 1 

is comparable with r 2 and, consequently it be
comes necessary to use the general expressions 
for ga_f3 obtained in the present paper. 

The method developed here can, of course, be 
used for an analysis of the dynamic problem also 
in the case of potential scattering of particles, 
such as ordinary scattering of x rays, neutrons, 
and electrons. Taking into account all the inelastic 
processes connected with the interaction with an 
individual atom we arrive at the system of equa
tions (2.11) and (2.12) with 

(5.1) 

aa' aa' aa' ( 2) vkk' = vo (k, k')- iv2 (k, k'). 5. 
I 

Here v[{a ( k, k' ) corresponds to the amplitude of 
the Born scattering and vfa' ( k, k' ) character
izes the imaginary part of the scattering ampli
tude, due to the inelastic processes. 

As usual, we shall assume that the interaction 
with the individual atom is weak, and that I v21 

« I v0 1. We therefore confine ourselves in (2.12) 
to the first two terms of the expansion 

""' exp{-1/2Z(ka-k~)} v a;jl = --'-------
Qo 

,.[ ""' ~ ""' zfo"" (ka, k) zY{"' (k, kp) 
)', vkk' + LJ LJ _ E . 

8 kcr" E k + 16 

xexp {i(ko-k)R.-Zap(k)+X.all(k)}]. 

(5.3) 

We have used here the notation given in (3.3) and 
(3.24). 1) The second term in (5.3) is actually a 
small correction to the first. However, strictly 
speaking, this statement is valid only for the real 
part, since the imaginary correction, by virtue of 
the condition I v2l « I v0 I, may turn out to be sig
nificant. We confine ourselves below only to the 
analysis of Im vg{/. 

In the case of sufficiently high temperatures, 
all the terms of the sum over s in (5.3) vanish, 

1 )In the derivation of (5.3) we have also assumed that the 
energy of the incident particle Ek0 is much larger than w 0 • 

with the exception of s = 0. Then 

I V'w = exp {-1/~(ka-kp)}[ ""'(k k )+ ""'(k k )] m a;jl Q V2 a, . p . V:t . a, 11 ., 
0 (5.4) 

aa' ~ a.a'' a"a' 
Vt (ka,kp)=lt LJVo (ka,k)vo (k,kp)6(E-Ek); 

kcr" (5.5) 

v1 actually determines that part of the total cross 
section of the interaction connected with pure 
elastic coherent scattering by an individual atom. 

At low temperatures, when we can neglect the 
lattice vibrations, the second term in (5.3) turns 
out to be pure real because we have excluded 
from the sum over K the terms with K = 0 and 
K = K1• Then Im vgr is determined only by the 

first term in (5.4), i.e., only by inelastic processes. 
The approximate value for arbitrary tempera

tures can be obtained by the same method as in 
the derivation of (3.12)-(3.14), if we separate 
first in explicit form the term with s = 0. As a 
result we add to (5.4) the expression 

+ __:: { ~ p""' (ko + K)-~I dk p""' (ko + k)}; 
Q0 -; ajl (2n)3J a6 

· exp {-Zap(k + q)} 

X [(ka- k ~ q)e(q, f.1)1{(k11 - k- q)e(q, f.l)] 

w(q,f.l) 

x(2n(q, f.l) + 1)6(E- Ek+q). 

(5.6) 

(5. 7) 

From this expression it follows that the imag
inary part of the coefficients of the dynamic sys
tem of equations contains a temperature depend
ence which is more complicated than that deter
mined by the Debye-Waller factor. This result is 
significant when the scattering cross section is 
comparable with the absorption cross section. In 
the opposite case, we can neglect the term (5.6) 
and we arrive at the values obtained in [2, 3] for the 
coefficients of the dynamic system in the case of 
a broad line. (In the case of a broad nuclear line 
( r » w0 ) potential scattering and resonance scat
tering are physically equivalent.) 

In the case of x rays we have 

. 2n~ ( ) .1 vo'1(q)= ----F q 6', 
me XC 

(5.8) 

where F ( q) is the atomic form factor and me is 
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the electron mass. In this case in the coefficients 
~gfj13 (2.22) of the system (2.21), connected with 
scattering by the phonons (second term in the 
brackets in (5.4) and the term (5.6)), is given by 

qmin =max {1/L,goox}. (5.9) 

Here the tensor oil - kikZ /k2 picks out, upon in
tegration over the directions of the vector k, only 
the transverse polarizations (see the derivation 
of the systems (2.10) and (2.11)). 

We have retained in the last term of (5.6) only 
the diverging logarithmic part. It is interesting 
that it appears only for the diagonal coefficients 
of the dynamic system. This is very important 
for anomalous penetration. 
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