
SOVIET PHYSICS JETP VOLUME 25, NUMBER 1 JULY, 1967 

EFFECTIVE CROSS SECTIONS FOR THE EXCHANGE EXCITATION OF ATOMS AND IONS 

BY ELECTRON IMPACT 

I. L. BEIGMAN and L. A. VAINSHTEIN 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor July 2, 1966 

J. Exptl. Theoret. Phys. (U.S.S.R.) 52, 185-190 (January, 1967) 

A method is proposed for the calculation of the cross sections for excitation of intercom
binational transitions, based on the use of orthogonalized wave functions of the outer electron. 
It is shown that, in contrast to the Born-Oppenheimer method, the present method is equiva
lent to a first-order perturbation theory. The excitation cross sections are given for the 
transitions H(1s-- 2s), He(ls1S- 2p3P), C2+(2s1S- 2p3P), He(1s1S- 2s3S), 
He( 2s3S- 2s1S), Li+ ( 1s1S- 2s3S), C4+ ( 1s1S-- 2s3S). 

THE solution of many problems in the gas-dis
charge plasma physics and in astrophysics re
quires information on the effective cross sections 
for the excitation, by electron impact, of intercom
binational transitions in atoms and ions. As is 
known, for transitions between levels of the same 
multiplicity, the Born method gives fairly good 
results even at low energies. However, when ex
change effects are included within the framework 
of the Born-Oppenheimer (B.O.) method, the re
sults become quite unsatisfactory. Nevertheless, 
the excitation of intercombinational transitions is 
possible (within the framework of LS coupling) 
only because of exchange effects. Results consid
erably better than those given by the B.O. method 
are sometimes obtained for neutral atoms by a 
modification proposed by Ochkur: [1] the amplitude 
of the exchange scattering is expanded in a series 
of powers of 1/k and only the first nonvanishing 
term is retained in this expansion. Subsequent 
generalization of the Ochkur method to the case of 
ions meets with considerable difficulties because 
it leads to the total exclusion of the effects of the 
long-range Coulomb field. An attempt to "normal
ize" the cross section, for example, by the R
matrix method, [2] also gives rise to difficulties. 

As is known, an important limitation of the B.O. 
method is the use of nonorthogonal wave functions 
in the initial and final states. We can easily show 
that, as a consequence, the B.O. method does not 
represent the first order of the standard perturba
tion theory. We shall consider a method for cal
culating the intercombinational transition cross 
sections, based on the use of orthogonalized wave 
functions. 

For simplicity, we shall first consider the 
scattering of electrons by hydrogen atoms; all the 
results can be generalized easily to any other 
atoms and ions. Since intercom binational transi
tions are the main interest, we shall consider only 
the exchange component of the scattering ampli
tude. 

In the B.O. method, the exchange component of 
the inelastic scattering amplitude is governed by 
the matrix element (atomic units are used): 

1 

where 'Pi are the atomic wave functions and 

( 1) 

(2) 

F = exp ( ik · r) (For an ion, F is the Coulomb 
function). The indices 0 and 1 represent the 
initial and final states. Obviously, the functions 
~o( r 1, r2) and ~1 ( r2, r 1 ), defined by Eq. (2), are 
not orthogonal. Therefore, we shall replace them 
with new functions, in which the wave functions of 
the outer electron are orthogonalized by the 
atomic wave functions: 

In general, it is sufficient to orthogonalize only 
the function F in order to make ~0 ( r 1, r 2 ) and 
~ 1 ( r 2, r 1 ) orthogonal. However, we can show that 
if both functions are orthogonalized, then an ex
pression of the type of Eq. (1) is a first-order 
perturbation theory with an unperturbed Hamilton
ian additive with respect to the variables r 1 and 
r2. We shall consider this in detail. 
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Let H be the total Hamiltonian of a system 
consisting of an atom and an outer electron and 
H0 be the unperturbed Hamiltonian. We shall 
write H0 in the form 

Ho = H1 + H2; H; = - 1/2 V ;2 - '1 / r; + v;. (4) 

Then in the first-order perturbation theory, the 
exchange interaction amplitude is given by Eq. (1), 
where <1> 0 and <1>1 are the eigenfunctions of the 
operator H0 and 

1 
V= H -Ho = - Vt- v2. (5) 

lr1-r2l 

In the B.O. method it is necessary to assume 
that v1 = 0, v2 = 1/r2. However, then <1>1 cannot 
be an eigenfunction of H0 because the operator 
H2 does not have bound states. The use of the 
function <1>1, defined in Eq. (2), represents a sum
mation of some (obviously not very successful) 
sub-series in the perturbation theory series. 

We can also use the so-called "symmetrical" 
method, in which v1 = v2 = 0, i.e., <1> 0, <1> 1 are the 
eigenfunctions of the same Hamiltonian, and, con
sequently, Eq. (1) represents the first-order per
turbation theory. The shortcoming of this method 
is the Coulomb distortion of the wave functions of 
a free electron for large values of r, which 
yields a non-zero cross section at the excitation 
threshold. For ions of high multiplicity this dis
advantage is of little importance. 

The functions <1>, defined in Eq. (3b), are also 
functions of the same Hamiltonian but, in contrast 
to the "symmetrical" method, the functions G0 

and G1 have the correct asymptote (a plane wave 
for a neutral atom). 

The existence of the Hermitian operators 
H1 ( r 1) and H2 ( r 2) with the eigenfunctions 
<Po(r0 ), G1(r1) are <Pt(r2), G0 (r2), respectively, 
is ensured by the orthogonality conditions 
(G0 Ic,o 1 ) = (G1Ic,o 0) = 0. We can easily see that 
the potentials v1 and v2 are then nonlocal. This, 
however, is not important because, in view of the 
orthogonality of the one-electron functions, the 
operators Vi do not make a direct contribution to 
the matrix element of the transition, i.e., instead 
of Eq. (1) we have 

< (jl!(r2)G1(r!) llrt ~r2 ll cpo(r!)Go(r2) ). (6) 

Obviously the functions (3a) correspond to the 
simplest possible variant of the perturbation 
theory. The functions G0 and G1 are nonortho
gonal and, consequently, they cannot be the eigen
functions of one Hermitian Hamiltonian ( H1 or 
H2 ). Therefore, using functions ( 3a), it is not 

possible to find an unperturbed Hamiltonian of the 
type given by Eq. (4) for direct scattering. Since 
the main interest lies in intercombinational transi
tions, we shall not consider this problem in de
tail. We shall mention only that, in principle, this 
shortcoming may be overcome by a suitable se
lection of nonlocal operators v1 and v2. 

The proposed method can be applied without 
difficulty to any atom or ion (in the case of ions 
F represents the Coulomb wave functions in Eq. 
(3a)]. The amplitude of the "exchange" scattering 
is given by the same formula (6),1> if the angular 
momentum of the atomic core is equal to zero. In 
the case of an atomic core with arbitrary orbital 
angular momentum Lp, and spin Sp, it is possible 
to obtain the exchange scattering amplitude in a 
closed form only by separation of the radial and 
angular variables. Let us assume that an atom is 
described by the quantum numbers y, Lp. Sp, n, 
l, L, S ( y, Lp, Sp are the quantum numbers of the 
atomic core) and let the outer electron have an 
angular momentum k and a spin A.. The initial 
and final states are distinguished by the indices 0 
and 1. We shall assume that the one-electron 
atomic functions are orthonormalized. For inter
combinational transitions ( S0 >"- S1 ) only the ex
change scattering amplitude is not equal to zero 
and the total cross section for the 0-1 transition 
is 

(7) 

CxLT = [(2x + 1) (2LT + 1) (2Lp + 1) 

x(2lo+1)(2lt+1)]'hj~: ~1p ~o )· 

LT Lj Ai 

( 9) 

00 00 " 

Yx -: ~ ~ Rnolo (ri) gko/..o (r2) :X~~ Rn 1l1 (r2) gll,/..1 (r1) dr1dr2, 
0 0 > 

where the quantities in parentheses and in braces 
represent the well-known 3j and 9j symbols. 

l)we note that the expression (6) is symmetrical with re
spect to the initial and final states and, therefore, in the 
present case, we do not have the well-known post-prior inde
terminacy which is characteristic of the B.O. method when ap
proximate atomic wave functions are used. 
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Here Rnz /r and ~z/r are the radial components 
of the wave functions of the optical and outer elec
trons; according to Eq. (3a), 

gltol.o = /k,l.o- (f,,1.., 1Rn,z)Rn,l,6l,1., gk11.1 

= /k,l., - (/k,'}., I Rn,z,) Rnolo6lol.u 

where fkA./r is the normalized, to 6 ( k- k' ), 
radial component of a plane wave or a Coulomb 
function. 

(10) 

If one of the angular momenta Lp, l 0, l 1 is 
equal to zero or if we are interested in a cross 
section which represents the sum over L0 or L1, 

the summation over LT can be made explicitly. 
We can easily show that in this case the result 
remains correct if we make the substitution 

~I ~axCxLTY" r-+ 1: laxy,.j 2• (11) 
Lr " . " 

Figure 1 shows the results of calculations car
ried out using various methods and the experi
mental data for the cross section of the 1s -- 2s 
transition in the H atom. This example is given 
purely for illustration, since a direct transition 
is possible and the role of the exchange is rela
tively small. 

0.2 
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FIG. 1. Cross sections for the excitation of the 1s ... 2s 
transition in the H atom: 1) orthogonalized function method; 
2) Born method; 3) Born-Oppenheimer approximation; 
4) "symmetrical" method; 5) Ochkur method; ·-experi
mental values. ['] 

The method proposed in the present paper can 
be applied to neutral atoms and to ions. Since it 
is based on a first-order perturbation theory, its 
accuracy increases with increase of the ion 
charge.2> Unfortunately, there are no experimental 
data on the excitation of intercombinational transi
tions in ions by electron impact. Reliable experi
mental data for intercombinational transitions in 

2)The Coulomb potential is proportional to Z, the perturba
tion 1/[r,- r2 [ is independent of Z, and vi- (Z + 1)/Z. 
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FIG. 2. Cross sections for the excitation of the transition 
1s2 'S -. 1s2p 'P in the He atom: 1) orthogonalized function 
method; 2) Born-Oppenheimer method; 3) Ochkur method; 
x -experimental values. [4 ] 

neutral atoms (with allowance for possible cas
cades, re-absorption, etc.) are available only for 
the He atom. [4, ~] 

Figure 2 shows the exictation functions for the 
intercombinational transition 1s 1S -- 2p 3P in the 
He atom. Semi-empirical atomic wave functions 
were used in the calculations.3> Figure 2 gives 
also the value of the maximum cross section ac
cording to Zapesochny'L's measurements. [4] How
ever, the excitation function obtained in [4] de
creases more slowly than do the functions given 
in Fig. 2. It is difficult to understand such a slow 
decrease on the basis of the existing theories. A 
value of 0.29 x 10-27ra5, obtained by extrapolation 
of the data for transitions to higher levels, has 
been reported in [5] for the E = 108 eV cross sec
tion. The method given in the present paper, the 
Ochkur method, and the B. 0. method give for this 
energy the values of 0.44, 0.16, and 0.3 x 10-2na5, 
respectively; the experimental value is [4] 0.17l'a5. 

The cross section for the excitation of the 
metastable level 2s 3S has been measured only 
over a very narrow range of energies 
( ~1-2 eV) [G] and it is pointless to compare these 

Table I 

Theory Experiment 

o.f. Joch.[1] [•] I ['] 

2BP 180° 740-1 260° -
3 ap 610-1 171-1 120-1 110-1 

4 3P 261-1 660-• 455-S -
5 3P 164-1 372-· 680-4 -
Note. Cross sections are given in 

units of 17a~. The order and the mantissa 
of a number are given; for example, 180° 
represents 0.180 X 10°. 

3 )The results obtained by us using the Ochkur method dif
fer slightly("' 20%) from those given in [1 ] because of a differ
ence in the atomic wave functions employed. 
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Table II 

He (2• '8- 2s '8) He (is 18 - 2o 18) 
Li+ (1s 18- C'+ (Is 18- 2s 88) -2•'8) 

E/ll.E 
I o.f. 'I B.o.j B.O.I Och. o.f. .1 B.o.j Och. , I B.O. I o.f. o,f, o.f. B.O, nonn., norm. 

1.041126+2$ 420+1. 123+2 417+1 113+3 710-2 5JOO 167-I 2800 179+1 294° 248° 
1.16 209+2 480+1 171+2 485+1 155+3 173-1 7050 290-1 220° 111+1 234° 1910 
1.36 238+2 585+1 148+2 600+1 134+3 246-1 6100 322-1 1530 560° 1670 1060 
1.64 228+2 657+1 111+2 653+1 920+2 257-1 400° 272-I 995-1 246 109 555-1 
2.44 163+2 620+1 848+1 456+1 326+2 168-1 116° 129-1 370-1 430-1 417-1 174-1 
3.56 906+1 455+1 730+1 400+1 108+2 803-2 284-1 50T2 135-1 900- 2 157-1 no-a 
5.00 447+1 287+1 443+1 286+1 398+1 346-2 710- 2 2oo-2 523-2 264- 2 655- 2 335-2' 

14,00 153-3 940- 4 236-8 162-S 308-s 25o-s 
2 
4 

8.00 t5o-• 970-5 25o-• 236-• 388-• 35o-• 
7.00 254-5 220-5 55o-• 516-5 810-5 78o-s. 

*The order and mantissa of the number are given; for example, 126+2 represents 0.126 X 10+>. 

results with the first-order perturbation theory. 
As far as the levels lying above the 2p 3P level are 
concerned, we have to allow for transitions through 
intermediate ( 2 3P or 2 3S) levels in order to cal
culate their excitation cross sections. The role of 
such transitions has been considered in [7] for 
alkali metal atoms. This effect can be allowed for 
only in higher orders of the perturbation theory, 
and this meets with very serious computational 
difficulties. A similar situation obtains also in the 
case of "direct" transitions, for which the Born 
method can give seriously wrong results for levels 
lying above the 2p 1P level. Thus, the calculations 
carried out by us show that the Born cross sec
tion for the 3d 1D level is 1.5 times smaller than 
the experimental value, although it is known that 
the Born method normally gives overestimated 
results. 

In view of this, there is little point in compar
ing the experimental values with the cross sec
tions for higher levels, obtained in the first-order 
perturbation theory. Nevertheless we shall men
tion an observation, which seems very strange. 
Extremely small values of the excitation cross 
sections of the np 3P levels have been reported 
in [4, 8]. Table I lists the values of the maximum 
cross sections obtained experimentally [4, 8] and 
calculated by the orthogonalized function (c.f. 
method), proposed in the present paper, and by the 
Ochkur method (Och.). It is not clear whether this 
effect can be explained by the influence of one in
termediate level. 

Figure 3 shows the cross sections for the 
transition 2 18- 2 3P in the C2+ ion. In this case 
the cross section may be greater than the theo
retical limit. Therefore, we normalized the par
tial cross sections by the R-matrix method. [2] In 
our case, the normalized cross section is 

N _ [ k2cr,,,, ]-2 
cr,,,,- cr,,,, 1 + 4(2/..o + 1) , (12) 
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FIG. 3. Cross sections for the excitation of the transition 
2s2 1S ... 2s2p •p in the c•+ ion: 1) orthogonalized function 
method; 2) Born-Oppenheimer method; 3) orthonormalized 
function method; 4) normalized Born-Oppenheimer method. 

where a>.,0 >.,1 is the usual cross section obtained 
using Eqs. (7)-(9) or from the corresponding for
mulas of the B.O. method. 

Table II gives the cross sections for the 2 3s 
- 2 18 transition in the He atom. In this case the 
Ochkur method (Och.) gives a cross section which 
is even greater than the B. 0. value. Table II in
cludes also the results obtained by the o.f. method 
and by the B.O. method, with and without normali
zation. The same table includes the cross sec
tions for the transition 1s 1s - 2s 3s in the He 
atom and some helium-like ions. As expected, 
the difference between the B.O. method and the 
o.f. method decreases as the ion charge Z in
creases. 
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