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A model is considered in which a point is subjected to random displacements in a pseudo­
euclidean plane. This model does not allow for a description in terms of a probability density 
only (i.e., within the framework of usual probability theory). An attempt to enlarge the mathe­
matical formalism leads to the conclusion that it is possible to find a probabilistic theory in 
which a solution to the proposed problem exists and which turns out to be unique under suf­
ficiently broad assumptions, and is such that the mathematical formalism and the postulates 
are identical to those of quantum mechanics_ 

1. We consider the following model: a point is 
subjected to random displacements in a pseudo­
euclidean plane. In addition we require the fol­
lowing conditions to be satisfied: i) invariance 
with respect to pseudoeuclidean rotations; ii) inde­
pendence of the displacements along the two axes 
and equivalence of the two directions along each of 
the axes. 

We wish to find the probability density for find­
ing the point in a given region of the plane. We 
denote this quantity by w and consider that, in 
addition to its dependence on the initial and final 
coordinates of the point, it also depends on an in­
variant, nondecreasing parameter T which we 
agree to call the "proper time" of the wandering 
point. We further assume homogeneity of the two­
dimensional space and of the T axis. Thus the 
problem becomes completely defined. But before 
starting to analyze it, we wish to stress the fact 
that the model is a purely mathematical construc­
tion, and at this stage no attempt is being made to 
attach any physical interpretation to it. 

Thus, if at the "instant" T i (we shall omit the 
quotation marks in the sequel) the point had the 
coordinates xi, the probability density for finding 
it at the point x2 at the instant T2 can depend only 
on the differences of the corresponding variables: 
w ( x2 - xi, T 2 - T i ), owing to the assumed homo­
geneity of the space and the variable T. 

Further, it follows from assumption i) that the 
process under consideration must not single out 
any direction in space. This implies that the func­
tion w ( x, T) can depend only on the invariants 
which can be formed out of the vector x, namely 
on x 2 and e ( x 0 ) e ( x 2 ). The condition ii) allows 
the function to depend only on x2, and by the defi-

nition of the function ~ ( x2, T) = w ( x, T ), the 
following condition must be satisfied 

( 1) 

(independence of the displacements along the two 
axes). This condition leads to the following ex­
plicit form of the function w ( x, T ): 

w(x,T) = A('r)e"-(t)x', ( 2) 

where A ( T ) and a ( T ) are functions of the 
parameter T. However, the function (2) cannot be 
interpreted as a probability density for any func­
tion a ( T ) since both for a ( T) > 0 and for 0! ( T) 

< 0 the normalization integral diverges: 

~w(x,T)d2x=A(T) ~ea.(tXxo'-x,')dx0 dx1 ==. (3) 

(In fact, even condition i) implies that w is not 
normalizable, but we shall make use of the form 
(2) which was determined by making use of the 
condition (ii) .) 

We have thus arrived at a contradiction. The 
question arises how to interpret the contradiction 
we have found. Does (3) mean that the process is 
impossible under the conditions i) and ii) we have 
imposed? Or is it a consequence of the mathe­
matical formalism we have used? Apparently it is 
more correct to assume the second point of view, 
since we shall show below that a probabilistic 
scheme exists such that the proposed model ad­
mits a noncontradictory description within its 
framework. 

2. We try to use a more flexible mathematical 
machinery, assuming that the model is based not 
on a probability density w ( x, T) but on an auxil-
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iary quantity v ( x, T) which allows a unique de­
termination of w ( x, T ) • Conditions i) and ii) will 
be imposed on this new quantity v ( x, T ), rather 
than on the probability density. The function 
v ( x, T ) does not need to be assumed to be either 
positive or even real. Repeating the reasoning that 
led to Eq. (2) (in particular, reinterpreting the 
condition ii) as the validity of ( 1) for the new func­
tion v( x, T )) we obtain a similar expression for 
v: 

v(x,-r) =A(-r) exp {a(-r)x2}. (4) 

where A ( T ) and a ( T) are complex-valued func­
tions1>. 

By specifying a relation between the auxiliary 
quantity v(x, T ), which we shall call probability 
amplitude, and the probability density w ( x, T ) , 

we determine the structure of the probabilistic 
scheme. We restrict our attention to the "local" 
case, when w ( x, T) depends on the values of 
v ( x, T ) only at the same point, and is independent 
of the values taken at other points. This means that 
the relation between w and v is of the form 

w(x,-r) =(jl{v(x,-r)), (5) 

where cp ( v) is a nonnegative function. 
We now find the form of this function. Since the 

applicability of Eq. (1) was assumed for the 
amplitudes v ( x, T ) , this means that the amplitude 
of a composite event must be the product of the 
amplitudes of the independent events. The same 
must also be true for probability densities. This 
leads to the following functional equation for the 
function cp: 

( 6) 

which has as positive solutions the functions of the 
form 

with p a real number. Taking into account the 
normalization condition for w, we conclude that 
the probability amplitudes must belong to the 
function space Lp and must be normalized: 

~ lv(x,"C)IPd2x=,1. (8) 

We now turn to the explicit form (4) of the func­
tion v ( x, T) which we have determined before. 
We note first that the function a( T) must be re-

1)In general, nothing compels us to choose the functions 
A(r) and a(r) as complex-valued functions. One could have 
chosen for a(r) an antihermitian matrix. There may exist 
schemes with an even more complicated mathematical struc­
ture. 

garded as pure imaginary: 

Re a(-r) = 0 (9) 

(otherwise the probability density turns out to be 
exponentially increasing at infinity). But then 
I v(x, T) I =I A(T) I. i.e., independent of x, and 
therefore w ( x, T) is again not normalizable. It 
seems that we have accomplished nothing. How­
ever the crux of the matter is the fact that the 
probability amplitude (4) is the transition ampli­
tude from an initial distribution which is not 
normalizable, therefore the distribution at time 
T it is also not normalizable. But before showing 
this we make the form of the function v ( x, T ) 

more precise by imposing an additional condition: 
iii) the probability amplitude v ( x, T ) is subjected 
to the composition law (convolution): 

v(x,-r)= ~ v(x-x',"C-r')v(r,'t")d2x'. (10) 

The requirement (10) for the amplitudes is new 
and independent. But since we propose as a start­
ing point the amplitudes and impose physical re­
quirements on these quantities, rather than on the 
w ( x, T) as is usually done, the requirement (10) 

looks quite natural. In describing Brownian motion 
in Euclidean space this condition is imposed on 
w ( x, T ) and is a consequence of the axioms of the 
theory of probability_2l 

It is easy to see that the condition ( 10) leads to 
the following relations for a ( T) and A ( T) (in 
relation to the function v ( x, T) represented by 
Eq. (4), with Rea (t) = 0, the integral (10) is an 
improper integral, but can easily be made mean­
ingful): 

1 1 1 ---+-=-a(-r--r') a('t") a(-r)' 
(11) 

:n: 
A(-r--r')A(-r') a(-r-r')+a(-r') =A(-r). (12) 

The solution of these functional equations is given 
by 

k 
a(-r)=-~ 

'( 

k 
A (-r) =- e~<,..:. 

:rt't' 

In deriving Eqs. (11)-(13) we have substituted 

(13) 

a ( T) - ia ( T ), in order to deal with a real func­
tion a ( T). Therefore the arbitrary constant k in 
(13) is real whereas the other arbitrary constant 
k1 must always be chosen pure imaginary, in order 
to avoid exponential growth (or decay) of the 
probability as T - oo. For simplicity we set this 
constant equal to zero for the time being. This 

2 )In place of iii) one could postulate the superposition 
pt:inciple for amplitudes (cf. Sec. 3, condition b)). Then Eq. 
(10) would be a consequence. 
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will not affect the fundamental results of the pres­
ent section. Thus, finally we derive the following 
expression for the amplitude v ( x, T): 

v(x,'t') = _!!_ei~<:x•tr. 
ll't' 

(14) 

We now prove that if at T = 0 we have a nor­
malized distribution with amplitude f( x ), i.e., 

Slt(x)!Pd2x=1, (15) 

there exists a unique p for which this property is 
maintained at an arbitrary instant T, i.e., such 
that 

~ 1/(x,'t') !Pd2x = 1, (16) 

where, according to conditions ii) and iii), the 
function f ( x, T ) is given by the equation 

f(x,'t')= ~ v(x-x','t')j(x')d2x', (17) 

where v(x, T) is given by (14). Indeed, choosing 
the concrete initial distribution 

f(x) = (ap I n) 11P exp {-a(xo2 + Xt2)}, a= const > 0, 

which is normalized according to (15), it is easy 
to compute f ( x, T ) • The absolute value of this 
function turns out to have the following expression: 

with b2 = a2 + k2/T.2• The norm of f ( x, T ) 

termined by 
is de-

( k )p-2 
~ lf(x,'t') lPd2x = 1n: . ' (19) 

which shows that the normalization is conserved 
only for a theory with p = 2. Thus a formalism of 
the type of quantum mechanics is the only ac­
ceptable one. 

It remains to verify that for p = 2 the conser­
vation of norm holds for an arbitrary initial dis­
tribution. But this follows simply from the re­
mark that (14) satisfies the equation 

~ v*(x-Xt,'t')v(x-x2,'t')d2x=b(xt-x2). (20) 

Here o ( x) is the two-dimensional delta-function. 
It becomes clear now that the choice of the 

function ( 14) as probability amplitude at time T 

means that at time T = 0 the initial amplitude 
f ( x) was a delta-function o ( x), i.e., not square­
integrable. For the same reason the norm of 
v ( x, T) turned out to be infinite. In contradistinc­
tion, the probability density w ( x, T ), even if we 
disregard its non-normalizability, transforms an 
initially normalized distribution into an unnormal­
izable one. This is easy to see by noting that the 

delta-function is a normalizable distribution in 
this case. 

In conclusion we discuss the fact that the am­
plitude f ( x, T ) we have obtained is still a non­
invariant function (in addition to the vector x it 
also depends some supplementary constant vec­
tors, as a consequence of its normalizability). 
But this noninvariance (the appearance of addi­
tional vectors) is not related to the properties of 
the space or to peculiarities of the random dis­
placements of the point, but is exclusively related 
to the noninvariant character of the initial distri­
bution, which cannot be invariant since it is 
normalizable. In quantum mechanics a similar 
noninvariance would be related to the presence of 
macroscopic bodies which participate in the 
preparation of the system (formation of the initial 
distribution) but which do not affsct the ultimate 
development of the motion. 

3. We formulate explicitly the rules of opera­
tion with probability amplitudes, which are conse­
quences of the arguments of the preceding section. 
There are two such rules: 

3. We formulate explicitly the rules of opera­
tion with probability amplitudes, which are conse­
quences of the arguments of the preceding section. 
There are two such rules: 

a) The probability amplitude for a composite 
event is the product of the amplitudes of independ­
ent events (applicability of Eq. (1) to amplitudes). 

b) The probability amplitude for the realiza­
tion of at least one of a set of incompatible events 
is the sum of the amplitudes of the individual 
events (superposition principle for probability 
amplitudes; it follows from an interpretation of 
Eq. ( 10) for amplitudes). In an axiomatic approach 
to probability these two rules, together with the 
rule for calculation of probabilities from a known 
probability amplitude, should be included among 
the axioms characterizing a given probabilistic 
scheme. 

There remains one important question to be 
discussed. The rules a) and b) are also true for 
the probabilities themselves and therefore it is 
important to indicate under what circumstances 
they should be applied to probability amplitudes 
and when the probability densities. In quantum 
mechanics the choice between these two possibili­
ties is dictated by the measuring process. If a 
system is not subjected to measurements one 
should use the rules a) and b) for amplitudes. A 
measurement process implies a transition from 
amplitudes to probabilities. Therefore one has to 
introduce into the formalism under consideration 
a concept similar to the concept of quantum­
mechanical measurement. 



110 L. V. PROKHOROV 

Let the point go from the state a into the state 
c via the intermediate state b. The amplitude for 
this transition is given by the formula 

( 21) 

where ~ab and ~be are respectively the transition 
amplitudes from a to b, and from b to c. If one 
does not attempt to specify the model further, one 
can formally describe the "measuring process" 
in the intermediate state b as the operation which 
transforms the function I I) ~abl/lbc 12 into 

b 
I) I ~ ab 12 1 ~be 12• In doing this, one should generally 
b 

treat any transition from amplitudes to probabilities 
as a result of a "measuring process." This makes 
the formalism well defined. 

After introducing complex amplitudes the model 
automatically exhibits other quantum-mechanical 
traits also: the existence of unitary-equivalent 
representations, hermitian operators correspond­
ing to "observables," uncertainty relations, etc. 
This is all easily established and we shall not do 
it in detail ( cf. the Appendix). We only remark the 
following noteworthy fact which is characteristic 
for the model under consideration. Returning to 
Eq. ( 13) we consider the general case when k1 

~ 0 and set k1 = -irn/2. We also set k = m/2, 
i.e., choose v ( x, T) of the form 

v(x,-r)=.!!!_exp{-i.!!!_(X2 +-r)}. (22) 
2nT 2 T 

If one assumes that there is no way of "meas­
uring" the quantity T, i.e., that from the localiza­
tion of the point in a region one cannot infer any­
thing about the value of T, we should in fact be 
interested in the probability amplitude for finding 
the point in a given region for any T. But in order 
to obtain such an amplitude it is necessary to in­
tegrate the function ( 22) over T from 0 to oo 

(superposition over T ) • As a result of this inte­
gration one obtains the Stueckelberg-Feynman 
propagator for a particle of mass m (up to a 
normalization constant which has to be introduced 
at the same time as the T-integration). 

Indeed, the integration over T of the Fourier 
transform of the amplitude ( 22) leads to the rela­
tion 

2mi = f exp { i 2-rm (p2 - m2 + ie) } d-r, ( 23) 
p2- m2 + ie o 

where one should take the limit E- 0. The as­
sumptions underlying the model under considera­
tion make it impossible to attribute a serious 
meaning to this formula. At the same time it is 
not completely devoid of interest, since the model 

process described by it could be considered as 
some relativistically invariant process occurring 
in a two-dimensional space3>, where the role of 
time is played by the coordinate x0• 

4. To summarize, we have established the 
following. First, it was shown that there exist 
stochastic processes which cannot be described 
by means of the usual concept of probability theory 
only, but which can be described in terms of 
probability amplitudes. 

There are, of course, models for which both 
the usual and the quantum-mechanical descriptions 
do not lead to contradictions (for example Brownian 
motion in Euclidean space; in this case the de­
scription in terms of probability amplitudes coin­
cides with the description given in terms of non­
relativistic quantum mechanics). The applicability 
of one or another of the schemes depends in this 
case on the nature of the model under considera­
tion. 

Secondly, under sufficiently broad assumptions, 
the quantum-mechanical scheme (description in 
terms of probability amplitudes belonging to the 
Hilbert space L2) turned out to be the only possi­
ble one for the model under consideration. This 
means that in a certain sense one could take about 
the "uniqueness" of the quantum-mechanical 
description. 

Another fact is worth mentioning, namely the 
fact that only "classical" objects occurred in the 
model: the mathematical point and the pseudo­
euclidean space. Finally, in connection with the 
fact that in quantum mechanics motion is described 
by means of a probability amplitude, there arises 
the question as to the physical causes which are 
responsible for the necessity of just such a de­
scription, i.e., the causes of the quantum-mechan­
ical behavior of elementary particles. In the model 
we have discussed the cause was the pseudo­
euclidean character of the space of random dis­
placements of the point. 

Another interesting question is whether there 
are other schemes, differing from quantum mech­
anics, but allowing a probabilistic interpretation. 

The author would like to express his profound 
gratitude to Yu. V. Novozhilov, V. A. Fock and 
V. A. Franke for an interesting discussion and 
valuable remarks. 

APPENDIX 

We show how the basic elements of the mathe­
matical formalism of quantum mechanics appear 
in the scheme under consideration. 

3 ) A similar formula holds for Minkowski space also. 
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Operators and commutation relations. The ex­
pectation value of the coordinate of the point is 
given by 

x11 (•) =) x11w(x,,;)d2x =) f"(x,,;)x 11f(x,,;)d2x. (A.1) 

The expectation value of the velocity is defined 
by 

v11 =ddx11 (•)=)[ar x11f+f"x11 at]d2x. (A.2) 
• a,; 0. 

Let f ( x, T) be defined by (17), where v ( x, T) 

is chosen as (22), i.e., we consider the general 
situation with k1 ;o' 0. It is easy to check that for 
T > 0 the amplitude f ( x, T ) satisfies the equation 

2mi at(x, •> + ( 0 - m2)f(x, 't) = 0, 
a. ( A.3) 

where 0 = -a 2/ax5 + a 2/ax~. This equation is 
identical to Fock's equation with proper time for 
the free particle[tJ. Substituting into Eq. (A.2) the 
expression for the derivative af/aT given by (A.3), 
an integration by parts leads to the following ex­
pression for vi-': 

. a 
iJ11 = _z g11v) f*(x,>) -f(x,,;)d2x. (A.4) 

m OXv 

Here gl-'11 is the metric tensor: goo = 1, g11 = -1. 
It follows from this equation that the expectation 
value of the velocity of the point equals the expec­
tation value of the operator ( ilm )giL a/ax11 , there­
fore it is natural to associate this operator to the 
velocity of the point: 

i a 
v11 =-g .. v-. 

m OXv 
(A.5) 

This implies the commutation relations for vi-' and ... 
xv: 

~ ~ i 
[v11,Xv] = -g .. v. 

m 
(A.6) 

Transformation theory. The function f ( x, T ) 

determines the probability density for finding the 
point with a coordinate x. We transform to a new 
function by means of the unitary operator U ( y, x) 

f(y,'t)= S U(y,x)f(x~'t)d2x. (A.7) 

,.., 
The unitarity of this operator implies that f ( y, T) 

is also normalized and consequently If( y, T ) 12 

can be interpreted as the probability density de­
scribing the distribution of y. An example of such 
a unitary transformation is a Fourier transform. 
Since this transformation maps the differentiation 
operator into multiplication by a number, if we 
remember that the velocity operator is repre­
sented by a differentiation, it is easy to see that 
the Fourier transform of the function f ( x, T ) is 
the probability amplitude for the velocity distribu­
tion of the point. 

Uncertainty relations. Since the velocity opera­
tor (A.5) and the position operator x are subject 
to the commutation relations (A.6), the uncertainty 
relations can be derived by means of a standard 
procedure (for instance by means of Weyl's 
trick [2]). These relations are of the form 

---- 1 
(~v11)2(~x11)2 ~ _ (A.8) 

4m2 

(no summation over JL). 
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