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Exact solutions are obtained for the description of stationary nonlinear longitudinal waves in 
nonrelativistic electron beams with external magnetic field. 

THE linear theory of wave processes in electron 
beams is fairly well represented in the physics 
literature ( [1- 31 and elsewhere). The main trend 
in the nonlinear theory is to devise models that 
are suitable for electronic computer calculations. 
There is, however, a number of important papers 
( [ 4- 71 and others) containing a sufficiently detailed 
study of stationary nonlinear longitudinal waves in 
electron-ion beams without a magnetic field. Al
lowance for the magnetic field greatly complicates 
the problem. 

We present below a nonlinear theory of station
ary longitudinal waves in nonrelativistic electron 
beams with an external magnetic field. The exact 
results obtained are simple and easily visualized. 
They offer evidence that a pure electron beam can 
have in the presence of a magnetic field states in 
which nonlinear longitudinal waves oriented along 
the magnetic field behave in the same manner as 
in an electron beam against a stationary ion back
ground in the absence of a magnetic field. 

In a coordinate system moving with velocity 
equal to the phase velocity of the wave, a station
ary wave in a nonrelativistic electron beam is 
represented by a stationary flow, described by the 
following system of equations 

~qJ =,4np, 

div pv = 0, 

(vV)v = 'I]V<p- [vroH], 

( 1) 

(2) 

(3)* 

where cp is the potential of the electric field, p 
the absolute magnitude of the space-charge den
sity, v the velocity of the electron beam, TJ the 
absolute magnitude of the electron specific charge, 
wH = TJC-1 H, where H is the intensity of the ex
ternal magnetic field, and c is the speed of light. 

We shall assume that a/ax = 0, and the vector 
H is directed along the z axis. Then the condi-

tion that the vectors pv and n =curl v- WH are 
solenoidal enables us to introduce the function 
l{J =1/J(y, z) and I/Jo=I/J0 (y, z), suchthat 
ihp 8\jl 8¢o o¢o 
- = Qy, -- = Q,; - = pvy, -- = pv,. (4) 
az ay az ay 
Since 

a 
Q, = - iJy Vx- ffiH, (5) 

we can assume that 

(6) 

Thus, 

Vx=¢-roHy; 
1 8\jlo 

Vy=--, 
p oz 

1 8¢o 
v, =----. (7) 

p ay 

The vector lines n and pv lie respectively on the 
surfaces l{J ( y, z) = const and 1/Jo ( y, z) = const, 
i.e., the functions l{J and 1/Jo are the current func
tions for the electronic fluid. 

Taking the scalar products of (3) with v and 
n, respectively, after first writing (3) in the form 

grad(~2 -'IJqJ)=[v(rotv-roH)], (8) 

we get 

(vV<D) = 0, (QV<D) = 0, ( 9) 

where~ =v2/2- TJ'P. The conditions (9) mean 
that 

98 

1 a ( '¢o, <D) 
=0, 

a('¢, <D) (10) =0, 
p o(z, y) a(z,y) 

i.e., 

¢ = \jl(<D), '¢o = ¢o(<D). (11) 

We shall assume that l{J = l{J ( ~ ), 1/Jo = 1/Jo( ~ ), and 
~ = ~ ( ~ ) , where ~ = ~ ( y, z). The normalization 
of ~ is arbitrary. 

Thus, we can consider the following system as 
the initial system of equations: 

a~ a2qJ- 4n 
iJy2 + az2 - p, 



NONLINEAR LONGITUDINAL WAVES IN ELECTRON BEAMS 99 

alP 1 d\jlo [ a~ a ( 1 d\jlo a~ ) 
TJ-=CilH(WHY-'IJ)+-- -- ---ay p ~ az ay p ~ az 

_ a~ !__(i_ d'iJo ~ )l 
ay {jz p ~ az J' (12) 

( 1 d'IJo )z[( a~ )z ( a~ )2] 2TJrp = ('IJ- WH7J) 2- 2$ + -- - + - . 
p d~ , &y &z 

The independent functions are p ( y, z ), <P ( y, z ), 
and ~ ( y, z). The form of the functions 1/J ( ~ ), 
1/Jo ( ~ ), and .P ( ~) is governed by the state of the 
unperturbed beam. 

We represent the quantities p, <fJ, and ~ in the 
form p = p + p, <P = cp + cp, and ~ = f + 'f, where 
the bars denote quantities pertaining to the unper
turbed beam and the tildes denote the perturbations. 
We shall assume that the unperturbed state of the 
electron beam is such that 

a-
f}z ~(y, z) = 0. 

This enables us to normalize ~ in such a way that 
'[ = y. Such a state of the electron beam can be 
realized, for example, under the following condi-
tions: 

- - - - 4ltpTJ 
p = const, Vz = const, v 11 = 0, Vx = - -- y. 

WH 
Subtracting from (12) the corresponding equa

tions for the unperturbed beam, we obtain 

- -
a2qJ a2cp -- ( P ) 
-+-=4np -=--1 , ay2 az2 p 

- -a - ·- 1 d'IJo [a~ a ( 1 d'IJo a~) 
TJ--cp = WH('IJ-'IJ)+--- -- ---. . ay p d~ az ay p d~ {)z 

- -
_ ( 1 +a~)!____(!._ d'iJo ~)l, 

ay az p ~ az J 

21)~ = 2((5- <D)+ ('IJ- \jJ) ('IJ + \jJ- 2WHY) 

(13) - - -
+ (_!_ d\jl~ )2[(1 + a~ r + (a~ )2] - (! d\jlo )2 . 

p d~ ay az p d~ 

We investigate longitudinal waves, with ~ = 0. 
Since 1/J, ¢ 0, and .P depend on ~ in the same man
ner as ~. ~0· and i depend on r. we get when 
~ = 0: 

\jJ - \jJ = 0, <D - <D = 0, 'i'o - \jJo = 0. 

The system (13) then simplifies greatly: a'$/a y 
= 0, i.e., <P =<fJ ( z), 

211~=(d~o)2 (i_-_1), (14) 
dy p2 p2 

Substituting (14) in (15) and using (7), we get 

d2s/dl2=2(1/l's-1), (16) 

where 

s =(pI p)2, l = zwpflvzl. 

<Op2 = 4rtf]p. 

Equation (16) describes one-dimensional finite 
motion with potential energy V ( s) = 2s - 4/S 
(see the figure), i.e., 

d2s I dP. = -dV Ids. (17) 

Integrating ( 17), we get 

(ds f dl)2 + 2V(s) = C, -4 ~ C < oo. (18) 

Let us determine the period L of the vibrational 
motion for Eq. (18). For case -4 :::s C < 0 we ob
tain 

•• ds 

L = 2 S -:-:(c=---2=V::-:(-=-s).,.--;-;) ''•' ., (19) 

where s 1 and s2 are the roots of the equation 
2V ( s) =C. Carrying out the integration in (19), 
we get 

L=2n. (20) 

Thus, the wavelength A. of the steady-state per
turbation is determined from the relation 

(21) 

Going over to the stationary coordinate frame, we 
obtain in lieu of (21) 

L2 = f...2wp2 I (vo- Vph)2, (22) 

where v0 is the velocity of the unperturbed beam 
in the stationary coordinate system and Vph is the 
phase velocity of the wave. 

From (22), we get, using (20), 

Vph= vo + wp'J... I 2n. (23) 

d2cp -(p ) -=4ltp ~-1 . 
dz2 p 

(15) Formula (23) is the dispersion relation for the 
ordinary fast and slow space-charge waves. It 
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shows that the phase velocity of the wave does not 
depend on its amplitude. 

The possible existence of periodic solutions of 
Eq. (18) for the case 0 :S C < oo calls for additional 
research. In this case it is possible to construct 
periodic discontinuous solutions. As shown by 
V. M. Smirnov[ 7J, these are apparently not 
realized. 
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