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The probability W(J"(J"' of an adiabatic spin-lattice transition ( s > %) at low temperatures is 
calculated for the case of a simple cubic lattice containing an imperfect atom differing from 
the regular atoms in its mass and force constants. The kinetics of the relaxation process is 
investigated. The order of magnitude of W(]"(]"' and its dependence on the transition frequency 
(for small values of the latter), the temperature, and the concentration of defects agree with 
the experimental data. 

THEORETICAL calculations of the spin-lattice 
relaxation time T 1 at low temperatures [1• 2] yield, 
in the case s > Y2 and for the harmonic lattice 
model, to an expression of the form 

1 (w12)(T)(Wt)2 
( 1) 

2Tt ~ Wv e WD ' 

where w1 is the spin-phonon interaction constant, 
wn and ® are the Debye frequency and tempera
ture, Wt is the relaxation transition frequency 
( Wt « wn), and T is the temperature. Equation 
(1), however, does not agree satisfactorily with 
experiment. In the first place, Eq. (1) gives an in
correct dependence of the time T1 on the fre
quency Wt: experimentally, in the region of small 
wv the magnitude of T 1 is independent of the 
transition frequency [3] (or depends on it weakly 
according to a complex law). In the second place, 
the magnitudes of T1 evaluated from Eq. (1) differ 
from the experimental values by several orders 
of magnitude. [4 l 

In previous papers [s,sl one of the present 
authors has shown that these deficiencies of Eq. 
( 1) can be removed by taking into account the non
idealities of the lattice. In these papers estimates 
were made of the effect of isotopic impurities on 
the quantity 1/T 1. In doing this it was found that 
the contribution to 1/T 1 that is independent of wt 
is proportional to the concentration of isotopic 
defects for small values of Wt. 

Here we shall consider the quantity W(]"(]"' 
~ 1/ 2T 1-the probability per unit time of a re
laxation transition between states (]" and (]" 1 of the 
spin operator li3'ts under the influence of the in
teraction 1i :Jtsp between the spin and harmonic 
vibrations of the lattice, whose Hamiltonian lirJCp 
pertains to a lattice with one defect atom, which 
differs from the remaining atoms both in mass 

and force constants; for simplicity we shall con
sider a simple cubic lattice. 

Let 1 be the number of an atom in the lattice 
( 1 = (l 1, Z2, Z3 ); henceforth instead of 1 we shall 
write simply l ) and let the defect atom be at the 
origin ( l = 0). For the force constants and mass, 
following Kagan and Iosilevskil, [7] 

<Drxfl(l, l') = <Drxfl0{l-l'), l, l' =I= 0; 

we use 
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<Drxfl(O, l) = (1- '\')<Drxfl0 (-l), 

<Drxfl(l, 0) = (1- v)<Drxfl0 (l); 

m(l) = m, l =I= 0, m(O) = m(1- e) (2) 

(here and later the index 0 indicates that the 
corresponding quantity pertains to the regular 
lattice, which is obtained from the considered one 
when y = E = 0). It should be noted that the lattice 
model ( 2) has the defect that it corresponds to an 
artificial binding of the atoms to their equilibrium 
positions. In addition, when y > 1 and 
y < [ 1 - <w5) (w(/) r 1 (where < w~ ) is the n-th 
moment of the distribution of the characteristic 
frequencies of the regular crystal), the potential 
energy of the crystal ceases to be in positive
definite form, so that the system becomes un
stable. Because of this, the model has a limited 
range of applicability; in particular, we shall not 
in what follows consider values of y close to the 
indicated limits. 

is 
The Hamiltonian of the system being considered 

ft:Jf = n:Jf p + ft:Jf 8 + n:Jf sp, 

:Jf p = ~; Wq (bqv+ bqv + 1h], 
q,v 

where wq are the characteristic frequencies of 
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the crystal ( q numbers the frequencies in in
creasing order), b qv and bqv are phonon crea
tion and annihilation operators corresponding to 
the normal vibration q, v ( v gives the degeneracy 
of the frequency). For the case s > Y2, and in 
accordance with [5, 6• R] we write 3fsp in the form 

3fsp = :SAa~n(l)xa(l)s~sn, Aa~n(l) ~ wtfa, (3) 

where Aaf3TJ ( l ) is the spin-phonon interaction 
constant, x (l ) is the displacement of the Z-th 
atom from its equilibrium position, and a is the 
lattice constant (repeated Greek subscripts indi
cate summation). 

The operator (3) pertains to the adiabatic 
mechanism of sfin-lattice relaxation introduced 
by Van Vleck. [l The coefficients Aaf3TJ ( 1) 
rapidly diminish with increasing IZ -lsI, where 
l s is the coordinate of the unpaired electron, so 
that in practice one needs to take into account in 
the sum over l only those terms for which 
ll -lsI < 2. In addition, the coefficients in (3) 
satisfy the condition [5] 

:S 4a~n(l) = 0, 

which reflects the situation that the spin-lattice 
interaction depends only on the difference of the 
displacements of neighboring atoms. 

(4) 

Writing the general quantum-mechanical ex
pression for the transition probability and averag
ing it over the equilibrium density matrix of the 
lattice at temperature T (this operation is signi
fied by ( )T ), we find [2) 

Wa ... a• = <als~snlcr')(a'ls~.s'l•la> ~Aa~n(l)Aa·~·w(l') 
l,l' 

00 

X ~ <xa(l, t)Xa•(l') )T exp(iwtt)dt, 

Xa (l, t) = exp (i3f pt) Xa (l) exp (- i3f pt). 

Expressing, as usual, the operators xa ( 1) in 
terms of b ~v' bqv• we obtain CsJ 

Wa...a• = ~ :S <als~snla'><a'ls~·s'l'la>Aa~'l(l)Aa·~·Tl'(l') 
2 l, l', q, v 

00 

Xwq-1 [m(l)m(l')]-'/, ~ exp(iwtt)[Bqva(l)B:va•(l') 

where the Bqva (l ) are the eigenvectors of the 
dynamic density matrix. 

Generally speaking, the measured spin-lattice 
relaxation time is connected with the quantity 

Waa' =% ( Wa-a' + Wa'-a) by the relation 
1/2T1 ~ Waa'· We shall assume that fiwt «kT 
(however, the temperature is sufficiently low, 
kT « nwmax• where wmax is the maximum fre
quency of the quasi-continuous phonon spectrum, 
so that combination processes can be neglected). 
Then Wa-a' ( wt) = Wa'-a ( Wt). With this taken 
into account, we have from (5) 

Waa• = nkT ~· Wt-2b(wq- Wt) 

q,v 

xl ~ Ao:~n(Z)<alsas'lla'>B;va(l)[m(l)]-'1• r. (6) 
I 

Calculation of the sums in ( 6) requires know
ledge of the proper frequencies and eigenvectors 
of the dynamic density matrix of the crystal. We 
remark that, because of the presence in ( 6) of the 
o function and the condition wt « Wmax, always 
satisfied in EPR experiments, it is necessary 
for us to calculate wq and Bqva ( l ) for those 
values of q which correspond to frequencies 
wq « Wmax· 

Kagan and Iosilevski1 [7) have shown that the 
frequency spectrum of the defect crystal contains, 
besides the frequencies w0 ( k, j) of the spectrum 
of the regular crystal ( k is the wave vector, j 
the frequency branch), also triply degenerate 
"detached" frequencies, which alternate with the 
former on the frequency scale. The lattice vibra
tions at these frequencies, as can be shown, give 
a non-vanishing contribution to ( 6) as Wt-- 0. 
We denote by ~w~ the difference between w5q and 
the square of the frequency detached from it, and 
we let ow~q = w5q+l - w~q· It can be shown that 
for an overwhelming number of frequencies the 
ratio ~w~/ow~q for w0q « Wmax is proportional 
to woqlwmax· Using this fact, as well as there
sults of Kagan and Iosilevskil [7], it can be shown 
that when wq « Wmax and l is not too large 
( wtR ( l )/ Cj « 1, where R ( l) is the distance of 
the Z-th lattice site from the defect and Cj is the 
speed of sound in branch j), the vectors Bqva (l) 
for the detached frequencies have the form (the 
frequency from which wq was separated is de
noted as Woq') 

Bqva(l) = LNG~wl) r { 6av [ 1- b(wq2)S(wi) 

X ""' ea (k, j) ev (k,,i) exp (ikR ( l)] } 
LJ ' v = 1, 2, 3, 
k . Woq•2 - wo2 (k, j) 
'J 

(7) 
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where 

1 [ e- y ( <w02) )] b(w2)=-- ---y 1--- , 
1- y 1- y wz 

g0 ( w 2 ) is the spectral density of the regular 
crystal, N is the number of atoms in the crystal, 
and e ( k, j ) is the polarization of the regular 
lattice vibration with frequency w0 ( k, j). The 
prime on the summation symbol means that the 
frequency Woq' from which wq was separated is 
left out. In deriving (7) it was assumed that the 
magnitudes of w~ ( k, j) are distributed equidis
tantly in small portions of the squared frequency 
scale and that the degeneracy of almost all of them 
is the same and equal to e. 

We transform the sum over k, j in (7) and 
shall calculate it up to terms of the order 
wqlwmax: 

'\,l' e._ (k, j) ev (k, j) eikR(Z) = "Q' Zq" 

...:::.J 2 2 (k ') ...:::.J 2 2 
k,j Woq' - Wo , J q" Woq'- Woq" 

where 
"Q ea. (k, j) ev (k, j) eikR(Z) 

Zq = ...:::.J , W0 (k, j) = Woq• 

k W~q'- W2o (k, j) 
'] 

( 8) 

Using the assumption of equidistance on the fre
quency scale, we majorize the second sum in (8): 

~ I Zq" 2-6- q~·-i 1 N Wq 
-----1--::;:::::: -- -· ~ --~ ln q1 
(!) 2 (!) 2 '-"': {j l- q" 2 • 

!q"-q'!<q< Oq• - Oq" Woq q"=l (!)max Wmax 

The first sum in ( 8) contains no singular points 
and can be replaced by an integral ( q1 » 1) in 
the usual way: 

--+ "Q ~,{:,ea. (k, j) ev (k, j) eikR(l) dk· 
f{2:rt)31'f wq2-wo2(k,j) ' 

I 

( 9) 

here V is the volume of the crystal and the inte
gration over dk is carried out over the first 
Brillouin zone. The sign ~ means that the inte
gral is taken in the sense of the principal (equal
frequency) value; an evaluation of its magnitude 
yields ( N/winaxH a/R(l )). It is seen from this 

that the second sum in ( 8) may be neglected for 
sufficiently small values of the parameter 
wqlwmax; for this the following two conditions 
must apply jointly: ( wq I wmax) ln q1 « 1 and 
q1 » 1. Actually, the conditions for the transfor
mation of the sum over k, j in (8) are less 
stringent, since the majorization in (9) is too 
strong, Finally, we note that in the approximation 
we are using w2 should be omitted in the de
nominator in (13). After this, the integral can be 
extended over the entire range of values of k. 

Thus, in (7) we can write 

"''ea. (k, j) ev (k, j) eikR(l) 

...:::.Jk . W~q' - W02 (k, j) 
,] 

~ V \ea. (k, j) ev {k, j) eikR(l) 

~ - (2Jll 2] J W2o (k, j) dk. 
] . 

(11) 

Using (11), we put (7) into the form 

Bqva(l) = [ 3NG~wq2 ) r { 6av [ 1- b(wq2)S(wq2) 

( 12) 

We return to Eq. (6). Considering only the de
tached frequencies, we obtain 

"Q 1 ~ Aa~n(l) 1 ]2 
Waa• = :rtkT Li I L:. [m(l)]'f, (als~snlcr) Bva*(wtll) 

v l 

"'Q {j ( Woq - Wt) 
X Li 2 : 

q Woq 
(13) 

Substituting (12) for B~a ( Wt ll) and keeping in 
mind that Wt « Wmax• we find after simple trans
formations 

X ~ I <a I s~sn I a') (Yv~n- Av~n (0)) 12, 
V=! 

X ~A a~ 11 (l) eikRiZ) dk, 
I 

F( w2, y) = y2_[ (1 - y + y<wo2 )(wo-2 ) )2 

+ :rt2y2(wo2)2g02( w2) ]-1. 

(14a) 

(14b) 

As can be seen from these equations, the influence 
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of the defect atom on the probability of a single
phonon transition is determined only by the change 
in the force constants and is independent of the 
mass of the defect. 

It is not difficult to change the form of Eqs. (14) 
in such a manner that they can be applied also to 
the calculation of the probability of the ''x-pro
cess," which consists of the simultaneous reor
ientation of the spins of an electron and of one of 
its nearest nuclei. The operator for the interac
tion of the spin of an unpaired electron with the 
spin I of a nucleus situated at the site 1I has, for 
the direct process, the form 

It is obvious that for the calculation of Wai,a'I' 
in (14) it suffices to replace (a I sas{3 I a') by 
(ui I sai[31 u'I') and set Aa{3T) = Aa{3T) (l s) 
= -Aaj3T)(li), Aaj3T)(l) = 0 for l ¢ ls, ZI. 

There is a case when the magnitude of Wuu' 
calculated by means of (14) is zero. That is, if 
the paramagnetic center relaxes by virtue of its 
coupling with pairs of neighboring atoms located 
on opposite sides of it, then in the case of Van 
Vleck relaxation (s-process) it can easily be 
shown that AatJTI (l s) = 0. If we set l s = 0 in (14), 
then as a result of (4) we have Yaj3T) = 0 and 
Wuu'= 0. Thus, the fact that the paramagnetic 
center of a simple lattice is itself a defect does 
not affect the s-processes of spin-lattice relaxa
tion. 

If we consider the x-process and set l s = 0, 
then the evaluation of the magnitude of Wuu' can 
be carried out by the formula 

Waa'~ (wt2 / Wma:s)(T/ 8)F(ffit2,v)'l (w02)(w0- 2) -11 2, (15) 

where w1 ~ Aa[3T) ( 0 )/a. This formula is obtained 
from (14) by means of the frequently applied Van 
Vleck model, according to which in complex 
lattices it is possible to set R (l) «a for all 
atoms l with which the paramagnetic defect inter
acts. 

We return now to the case l s ¢ 0 and R (l s) 
» a (but WtR (l s )/ Cj « 1). Using the De bye model, 
it is easy to find from (14) in this case 

TV,w ~ ~_!_F(wt2,y) (-a-)~. 
Wmax e R(l.) 

(16) 

In (16) a factor depending on the orientation of the 
paramagnetic center relative to the crystal axes 
and the defect has been omitted. For a sufficiently 
symmetric center this factor can be assumed to 
be unity. For the case when the paramagnetic 
center interacts only with one neighboring atom 

l 1, the factor omitted in (16) is 

I [~(l.)- R(l1)][R(ls) + R(lt)] 12 • 

IR(l.)-R(lt) IIR(Z.)+R(lt) I 

The quantity F in (16) is y2 ('}' - 1/( 1 
- <w3> (wij2)>r2. 

From a comparison of (16) with (1) it is seen 
that even for not very small transition frequencies 
the presence of defects must be taken into ac
count in calculations of relaxation transition prob
abilities (thus, for Wt R:: 2 x 1010 Hz, which corre
sponds to a magnetic field H0 ~ 1000 G, even for 
paramagnetic centers situated at a distance of 
30a from the defect, Eq. (16) can give a value of 
Wuu' that is no smaller than the contribution to 
this quantity from ( 1), determined for the regular 
lattice). From this it is seen that for values of 
Wt that are not too large, a situation can be re
alized in which the spin-lattice relaxation is al
most completely determined by the effect of de
fects. Let us consider the kinetics of this process. 

In accordance with (16), we write for the proba
bility of a relaxation transition under the influence 
of a defect located at a distance R from the para
magnetic center 

(17) 

It is obvious that Eq. (17) is invalid for small 
values of R; however, as we shall see, this region 
is insignificant for small concentrations of defects, 
and it is only such a case that we can indeed con
sider without taking into account interactions be
tween the defects. 

We shall assume that the defects are distribu
ted throughout the crystal in random fashion. Then 
each paramagnetic center n has its own random 
distribution of neighboring defects l, leading to a 
relaxation law for the component Mz, for example, 
of the form 

Mzn(t)- Mzo ~ 
Fn(t) = - = exp(- t L.J W(Rnz)], (18) 

Mzn(O)-Mzo 1 

where Mzo is the equilibrium value of Mz; the 
sum is taken over all defects of the sample, Rnz 
=I R (l) - R ( n) I; we assume that the effects of 
the defects are additive. On the average, one ob
serves a relaxation law F ( t) which is the average 
of Fn(t) over all n. Averaging (18) in the manner 
proposed by Burshte!n and Kopyshev, [S] we find 
for the case of low concentrations of defects 

F(t) = exp{ 4n(;; I R3e-tw(R) f}~kR) dR}, (19) 
Ro 

where Nd is the number of defects in the sample, 
and R0 is the minimum distance between a defect 
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and the paramagnetic center; in our case R0 = a. 
For R < a the exponent under the integral is very 
small; hence R0 can be set at zero, and it need 
not be taken into account that when R < a, Eq. ( 17) 
is known to be invalid. The integration of (19) 

gives 

As is seen from this expression, the relaxation 
law is not obtained in form e-at, although it is 
close to it. It is interesting to note that graphically, 
Eq. (20) resembles the superposition of two expo
nentials, the relaxation times for which are es
sentially different; curves of this kind at low tem
peratures are frequently discussed in experi
mental papers, [toJ and the second exponential is 
usually attributed to cross-relaxation processes. 
In all such cases it should be kept in mind that re
laxation due to defects leads to a similar result. 

We note, finally, that the dependence of the 
relaxation process on the defect concentration f 
follows from (20). We remarked above that the 
fact that the paramagnetic center is itself a defect 
atom does not affect the s-process. However, the 
fact that neighboring paramagnetic centers are 
themselves defects does affect the relaxation of a 
given center. Thus, as long as the concentration 
of paramagnetic centers exceeds the concentration 
of other defects, that is precisely what should be 
understood by Nd/N in (20). Experimentally, the 
presence of a dependence of T 1 on the concentra
tion of paramametic centers at low temperatures 
is well known. 4] 

Thus, the defect model we have treated has 
allowed us to obtain the correct order of magni
tude for the relaxation transition probability Wau' 
at low temperatures and to explain the independ
ence of Waa' on the transition frequency for the 

true (i.e., experimentally observed) temperature 
dependence, as well as to make possible an in
vestigation of the concentration dependence of 
Waa'. With the exception of the temperature de
pendence of T 1 in the low-temperature region, all 
the (experimentally observed) effects enumerated 
above cannot be understood on the basis of the 
regular lattice model and the spin-lattice interac
tion mechanisms known in the literature; they can, 
however, be explained by taking the non-idealities 
of the lattice into account. 
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