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The problem of the limits of applicability of first-order perturbation theory for the calcula­
tion of the cross sections for electron scattering on excited atoms is considered. Criteria 
for the validity of the Born approximation for elastic and inelastic collisions of electrons 
and excited atoms are formulated on the basis of the requirement that the second-order 
amplitude of perturbation theory be small. 

THE exact calculation of the cross section for 
elastic and inelastic collisions between electrons 
and excited atoms is connected with considerable 
difficulties. Therefore the majority of the calcu­
lations of recent years, even for collisions with 
hydrogen atoms, [1- 6] have been carried out in 
Born approximation. However, an open question 
remains: what are the energies beyond which the 
quantitative results of the Born approximation can 
be trusted? For elastic scattering on the ground 
state and for excitation of the lowest levels the 
criterion for the applicability of the Born approxi­
mation is taken from a comparison with experi­
ment. It is commonly assumed[7,SJ that Born ap­
proximation is good for such processes at energies 
larger than 100 eV. 

For transitions between excited states a com­
parison of the calculations with experiment can 
only be made indirectly, since direct measure­
ments are not available. It is natural to assume 
that for transitions with transition energies ~E 
the first order perturbation theory is valid if 
E »~E. [s] Unfortunately, it is not clear what 
"much larger" means in the present case. The 
point is that for n, n' » ~ = In-n' I, where n and 
n' are the principal quantum numbers of the initial 
and final states, the quantity L:lE ~ n - 3 Ll• Ry is 
small, and there are in general several possibili­
ties: E » n-3 Ry, ~E » n-2 Ry, E » n-1 Ry, etc. 
On the other hand, ~E = 0 for elastic scattering, 
and the inequality E » L:lE becomes meaningless. 

In the present paper we attempt to formulate 
criteria for the applicability of the Born approxi­
mation to elastic and inelastic collisions of elec­
trons and excited atoms. It is assumed that the 
Born approximation is valid if the second-order 

amplitude of perturbation theory is small in com­
parison with the first. This condition is easily ob­
tained from the usual requirement that the first­
order corrections to the wave function be small 
compared with the zeroth order functions. Indeed, 
multiplying both sides of the inequality 1/Jm « 1/J<o> 
by the interaction potential and the wave function 
of the final state of the noninteracting system and 
integrating over the coordinates of the particles, 
we find the condition I f<2> I « I f<1> 1. Since in Born 
approximation the forward scattering amplitude is 
maximal for elastic and inelastic scattering and the 
cross sections are mainly determined by the behav­
ior of the amplitude at small angles, we compare 
the forward scattering amplitudes calculated in 
first and second order of perturbation theory. 

An explicit calculation of the first Born ampli­
tude for arbitrary transitions and momentum trans­
fers is possible for hydrogen, using parabolic co­
ordinates. The scattering amplitude has a compli­
cated form so that an estimate of the second order 
of perturbation theory is not realistic. For the 
forward scattering amplitude the situation is much 
simpler, so that criteria for the applicability of 
;he Born approximation can be formulated in ex­
plicit form. The estimates are made for hydrogen­
like levels. This does not affect the generality of 
our results, since the excited states of different 
atoms are analogous to the states of the hydrogen 
atom. 

Usually one is interested in transitions n----- n'; 
we therefore do not give criteria for the applica­
bility of the Born approximation for the amplitudes 
of the separate transitions n, z----- n', l', but for the 
amplitudes averaged over the orbital angular mo­
menta. 
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1. ELASTIC SCATTERlNG 

In Born approximation the amplitude for elastic 
scattering of electrons on atoms in the n-th ex­
cited state is, neglecting the recoil of the nu­
cleus, [tO] 

. it 
q = 2ksm- (1) 

2 ' 

where k is the wave number of the electron, J. is 
the scattering angle, Ze is the charge of the atom, 
and F n ( q ) is the atomic form factor, 

Fn(q) = ~ e-i(k-ko)r'ljln~m(r)'\jlncm(r)dr, (2) 

where ko and k are the wave vectors of the elec­
tron before and after the collision. For a hydro­
gen-like atom Z = 1, and the integration in (2) goes 
over the coordinates of the valence electron. The 
total cross section for elastic scattering averaged 
over all l, m has the form 

(3) 

When the approximation (1) is valid, the cross 
section is determined by the behavior of the am­
plitude at small angles. In the region of small 
angles the amplitude has the following form: 

(l) q·q· fn (E,tt) ~ -~-' (nlmlx;xilnlm). (4) 
q2ao 

Here a0 is the Bohr radius, and dummy indices 
are to be summed over. 

For not too small energies k2 a simple esti­
mate of the cross section shows that (3) is deter­
mined by the averaged square of (4) multiplied by 
the interval of solid angles where this last expres­
sion is valid. The order of magnitude of these 
angles is determined by the condition that the ex­
ponent of the exponential in (2) be close to unity. 
Since distances of order rn ~ aon2 give the main 
contribution to the integrals determining the form 
factor, we have the inequality kJaon2 ,;:; 1 for the 
angles. We thus find in order of magnitude 

cr~ll E "" n. 1 ~I <nlmlr2lnlm).l 2
• (5) 

( ) (ka0) 2n 4 n2 3ao 
l,m 

This estimate of the total cross section a shows 
that the latter increases with increasing principal 
quantum number according to the law ~n4 and de­
creases in proportion to the inverse first power of 
the energy. The exact calculation of the form fac­
tors is cumbersome for arbitrary values of n, l, 
m and all values of momentum transfer. 

For small energies (k2 - 0) Eq. (5) does not 
hold. Returning to the original expression (3), we 
find easily that the scattering is isotropic and the 
cross section increases proportional to n8• This 
increase is implausible and indicates that the Born 
approximation is not applicable at small energies. 

We note further that the amplitude (1) is real in 
the physical region of scattering angles. This is 
not in agreement with the optical theorem, accord­
ing to which the imaginary part of the forward 
elastic scattering amplitude is proportional to the 
total cross section. The imaginary part of the 
elastic scattering amplitude appears in second 
order and is for J. = 0 proportional to the total 
cross section calculated in first order. 

We use this circumstance to estimate the for­
ward elastic scattering amplitude in second-order 
perturbation theory. Let us ~enote the scattering 
amplitude in this order by fA2 > ( E, J. ) ; according 
to what has been said above, 

(2) k (!) 
lm/n (E,O) = 4:rt CJn,tot(E). 

The total cross section is the sum of the elastic 
and inelastic cross sections averaged according 
to (3). The quantity on the left-hand side of (6) 
should therefore be averaged in this way. 

The estimate of the elastic scattering cross 
section is simplified if we replace the averaging 

(6) 

of the cross section over l and m by the average 
of the amplitude (1). This replacement in the crude 
estimate (5) leads to an error not exceeding 10% 
for n » 1: 

This is connected with the fact that the matrix ele­
ments of the type ( nlm I rk I nlm) ( k > 0 ) depend 
mainly on the principal quantum number n and 
more weakly on l for n » 1. 

A certain justification for this kind of summa­
tion can be seen in the fact that the Born approxi­
mation is determined by the Fourier transform of 
the static potential of the atom. The latter is de­
termined by the quantum numbers n, l, and m. It 
is natural to assume that the elastic scattering 
cross section for scattering on an atom with given 
n is obtained by averaging the potential over the 
orbital quantum numbers. 

The average of the form factor (2) for hydrogen 
over l and m was first introduced by FockC11J in 
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the momentum representation of the wave functions main features of the elastic cross section in Born 
1/Jnlm: approximation: 

Here Tn(x) =cos (n arccos x) is a Tschebyshev 
polynomial, Pn(x) is a Legendre polynomial, and 
x = (4 -n2q2a~)/(4+n2q2a~). 

For n » 1 we can use the asymptotic forms 
<lxl~1) 

Tn' (x) ~ n ( v1-x) ... ... sin 2n ---
j/2(1-x) · 2 

n ( 1/ 1- x ) P,'(x) ~ l1 2n ~ ---
j/2(<1-x) 2 ' 

(8) 

here J 1 ( x) is the Bessel function. As a result we 
have for the differential elastic scattering cross 
section 

(9) 

Introducing the new variable t2 = 2n2(1-x), we ob­
tain for the total elastic scattering cross section 

This expression reproduces correctly the Born 
approximation of the elastic cross section as a 
function of n and E. 

(10) 

The inelastic scattering cross section has been 
estimated in Born approximation in [10]: 

(I) '8:rt Ry- 1 ~nnv ) 
On in(E) = ---rn2 ln\-- ; 

' 3E e2 

here r~ stands for the following quantity: 

- 1 
rn2 =-~ <nlmlr2 inlm); n2 

l,m 

(11) 

(12) 

f3n is a dimensionless constant which is in general 
very difficult to estimate. 

When the Born approximation is valid, the in­
elastic scattering cross section (11) is larger than 
the elastic scattering cross section (10), owing to 
the presence of the logarithmic term. Therefore 
we do not require an accurate estimate of the elas­
tic scattering cross section in (6). We use the 
simplest approximation which takes account of the 

where Yn is a constant analogous to f3n· When 
4n4E » Ry/yn, the cross section (13) behaves 
similarly to (10). This similarity is preserved 
for E- 0. Using (11) and (13) we have for the 
total cross section 

(13) 

(1) E. 8n'Ry- ( ~nnv) 4n(rn2)2 
On, tot ( ) = 3E- rn2ln ---;2 + 9ao2 [1 +4n'EVn'/Ry]. 

(14) 
The knowledge of the imaginary part of the for­

ward elastic scattering amplitude in second order 
perturbation theory allows us to use the dispersion 
relation1> 

1 "" -<Z> E' 0) dE' -(2) __ \ Im In ( , 
In (E,O)- 1 E' E . 

:rt ~ - -ze 
(15) 

Using (6), (14), and (15), and calculating the inte­
gral with logarithmic accuracy, we obtain 

~~2)(E,0)= 2i}'2m Ryrn2ln( f3nnv) 
3n }'E e2 

}'2m(rn2)2(i}'E + 1/2n-2}'Ryfv,) 
+ . 

9a02n(1 + 4n"Eyn/Ry) 

(16) 

The averaged forward elastic scattering ampli­
tude in first-order perturbation theory has the form 

J~> (E, 0) = rn2/3a0• (17) 

We assume that the Born approximation is valid if 
the following inequality is fulfilled: 

I/~1)(E, 0) 1;>11~) (E, 0) I. 
which yields, using (17) and (16), 

4e2 ~nnv 
-ln--~1. nv e2 

(18) 

In deriving (18) we have neglected the contribu­
tion to (16) from the elastic scattering, which under 

1 )[n order to avoid misunderstanding we note that here and 
later on for the inelastic scattering we use a dispersion rela­
tion for the scattering amplitude in second-order perturbation 
theory. The analytic properties of this amplitude are estab­
lished in an elementary way from the general expression for 
the second Born approximation. The problem of the existence 
of a dispersion relation for the exact amplitudes is not consid­
ered. Although the Born approximation is wrong for small en­
ergies, the construction of the second-order amplitude from its 
imaginary part obtained by the unitarity relation (6), in which 
the cross section is determined in first approximation, is cor­
rect for all energies. 
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the condition (18) is small compared with the con­
tribution from the inelastic processes. This justi­
fies the simplified form (13), since the final answer 
is insensitive to it. 

The condition for the applicability of the Born 
approximation for elastic scattering depends weakly 
on the principal quantum number n. In our esti­
mates we have not taken exchange effects into ac­
count. This is permitted if (18) is satisfied, since 
the exchange amplitude is, according to [ 12] 

fnex ~ k~2Fn(q); 

under the same conditions we have for the direct 
scattering amplitude 

/ndir~ q-2(1-Fn(q)). 

For forward scattering the direct amplitude is 
larger than the exchange amplitude if E » Ry I n4, 

which is always the case when (18) is satisfied. 

2. INELASTIC SCATTERING 

The inelastic scattering amplitude in Born ap­
proximation has the form [10 ] 

2 2 
f~1~,(E, fl) = ____!!!!!____ (n'l'm' I exp{- i (ki- ki) r} I nlm). 

li2q2 (19) 

For small angle scattering the momentum transfer 
q is small compared to 1/ an; we may therefore 
expand the exponent in (19) in a series, and keeping 
only the first nonvanishing term we obtain ( Bethe 
approximation ) 

<1> 2i (n'l'm' I xI nlm) (20) 
fnn'(E, it)~ . 

qao 

For forward scattering q = D.Enn' /tiv, and we find 
from (20) 

(f) 2iliv (n'l'm' I xI nlm) (Z1) 
fnn'(E, 0) = /'l.E , 

nn'ao 

this holds for D.Enn'au /tiv « 1, where an is the 
radius of the n-th orbit (n, n' » .6. = In-n' I). 

Since we are not interested in the detailed de­
scription of the cross section for the different 
transitions n,l,m-n',l',m', we averagethe 
quantity (n'l'm' I x lnlm) in (21) over all l, m and 
l',m': 

1 ~ 
Xnn' = (-2 ~ I <n'l'm' lxl nlm)l 2) . 

n l,.m,l'm' 

(22) 

This averaging procedure allows us to obtain a 
simple formula which characterizes (21) as func­
tion of n, n' and .6. = In-n' I . To this end we use 
the definition of the dipole oscillator strength av­
eraged over l, m and summed over l', m': [13] 

- 2m I Wnn' I - 3.92nn'3 

lfnn'l = li lxnn'l2 = jn2- n'2j3• (23) 

From this we obtain for Xnn' 

~ _ ( li2 llnn'l )''' ~ n 2ao 
Xnw- \2m jl'l.Enw I ~ 2112 , (24) 

where .6. = In-n' I « n, n'. 
In order to estimate the inelastic forward scat­

tering amplitude in second-order perturbation 
theory we use the unitarity relation: 

(2) 1 " i f •(1} (i) 
Imfnn'(E, 0) =- LJ k,. J dQ fn'r (q)fnr (q). 

4:rt 
r 

(25) 

The main contribution to the integral on the right­
hand side of (25) comes from the region of small 
angles. The sum in (25) contains amplitudes of 
elastic and inelastic processes. The calculations 
in first-order perturbation theory show that in the 
region of small angles the inelastic scattering am­
plitude is larger than the elastic amplitude; [10] 

this property holds the better, the larger the value 
of the principal quantum number n ( .6. « n, n'). 

Keeping in (25) only the inelastic contributions, 
we write the latter in the form [cf. (20)] 

(2) 1 ""' • 1 dQ 
lmfnn'(E, 0) = --2 ..;j krXn'rXnr J . 

:rtao r qn'r qnr 
(26) 

Here qab= (k~-2kakbcosJ.+kb) 112 , where ka 
and kb are connected by the relation 

For large values of the quantum numbers n, n' 
» 1 the inequality E » D.Enn' is already satisfied 
for small (of order 1 e V) energies of the elec­
trons. In this region we may assume kn r:::: kn'· On 
account of what has been said above, (26) takes the 
form 

(2) 1 ""' * i dQ 
lmfnn'(E,0)=--2,.:JkrXwrXnrJ k 2-2k k it+k2 

:rtao n n r COS r 
T 

(27) 

Let us use the dispersion relation for fA1{ 1 (E, 0 ): 

1 oo Im R~, (E', 0) dE' /<2> (E 0)-- \ 
nn' • - :rt J E' - E - ie 

I!!..Enn' 

Calculating the integral in (28) with logarithmic 
accuracy in the region E » D.Enn' we obtain 

(28) 

~~~'(E, O) = 2ifi ~ X~'=nrln I kn + k,. I + O ( l'l.E). 
ao2 -vzm yE kn - k, E I 

r 
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The argument of the logarithm is independent of 
the quantum numbers l, m. We average the sum 
in (29) in analogy to (22): 2> 

-<2> (E O) _ 2ili 2 4E 
/nn' , -. Xnn'ln-, 

ao2 1/2mE ln 
(30) 

where 

ln4~ =,b,.x~,,.xnrlnl(kn+kr)/(kn-kr)l _ (31) 
Jn • 

rXn 'r Xnr 

The constant Jn is defined in analogy to the quan­
tity I, which characterizes the "effective braking" 
of the electrons by the atoms;C10J the quantity 
x~n' is by definition equal to 

( 1 )''• X~n!= 2 ~ l<n'l'm'lx2 lnlm)l 2 

n l,m,l',m' 

(32) 

As in the case of elastic scattering, the condition 
for the applicability of perturbation theory follows 
from the inequality 

ll~~·{E,O) I~ IJ~:0,(E,O) 1-
Using (21) an_d (30), we obtain from (33) 

2 
E Xnn' I ~Enn' I 

·-=-:-::--~----. 
In ( 4E/ J n) 2aoX"nn' 

(33) 

(34) 

To determine the character of the dependence of 
this condition on the quantum numbers n and n' 
we must calculate the quantity (32). 

The matrix element x~n' can be estimated in 
the following form: 

1 2 4 
-;,2· ~ lxnzm,n'l'm'l 2 = --2 ~.[I (l'[[C<2>lll) 12 

I I, , 45n ,m, ,m 
l,l' 

+ 514(2!+ 1)6u·ll<n'l'lr2 lnl)l 2• (35) 

Here we have used the notation of [9]: the quantity 
(l' II c<2> Ill) is the reduced matrix element of the 
function 

(2) --
Cm (17, !p) = l/4:rt/5 Y2m(1t, !p), 

00 

<n'l' I r 2 1 nl) = ~ Rn,z•r2 Rn,z r2 dr, 
0 

where Ruz(r) is the radial wave function of the 
hydrogen atom. 

2 )The quantities <n'l'm'lxlnlm> and <n'l'm'lx2 lnZm> cannot 
be simultaneously different from zero, since they satisfy dif­
ferent selection rules in l and m. We compare the amplitudes 
(21) and (30) in which an average over all l and m is taken 
and where the quantities x nn' and x~n' are simultaneously 
finite. Without such an average, one must compare (21) and 
(29), where in the later expression one cannot use a represen­
tation of the type (30). 

The first term in (35) can be expressed through 
the quadrupole oscillator strength fgJ, since 

3 

!~:0. = 3w0~n•3 2~2 ~ I (l'!IC<2>lll) l 2 l<n'l'lrZinl)l 2• (36) 
c l,l' 

The calculation of the quadrupole oscillator 
strength is presented in the Appendix. The result 
is for n, n' » 1: 

(7) 7.15·10-5 
fnn' = (37) 

n5n" ( n-2 - n' ')'I, . 

For n, n' » ~ = In-n' I, formula (37) has the form 

(2) 1.42 ·1 o-s 
fnn' = A1f3n 

(38) 

The second term in (35) is determined by a 
matrix element of the type (n'll r 2 1 nl). This can 
be calculated using the results of [iOJ. If n, n' » ~ 
we have 

(39) 

Using (36), (38), and (39), we can obtain the follow­
ing expression for (35): 

1 ~ 2. 4ao4n8 [ 16 5 J 
--;;;: ~ 'lxnzm, n'/lm•l 2 = 45 ~~'Ia + ~·r2 (i + ~) . 

l,m,l,m 

(40) 

For the case of practical importance ~ ~ 1, we 
obtain, using (40), 

2 1 4 2 4 Xnn';::::::::: , ao n. (41) 

Let us use for I ~Enn' I the expression 

I~Enwl = Ry I ~2 - n~'~, (42) 

where Ry is the ionization potential of the hydro­
gen atom. We now substitute (24), (41), and (42) in 
(34) with ~ ~ 1: 

4E Ry 
E/ln-::-~-. 

Jn n 
(43) 

The inequality (43) is the final condition for the 
applicability of the Born approximation as a func­
tion of the principal quantum number n for n, n' 
» ~ ~ 1. The quantity Jn remains undetermined, 
but in estimates one can regard it as equal to the 
ionization potential of the n-th level, since the log­
arithm is rather insensitive to such an approxima­
tion. 

If (43) is satisfied, then the conditions already 
used, 

~Enn'an / fiv ~ 1, E ~ ~Enn'· 

are fulfilled. The inverse for large n is not true 
in general. As in the case of elastic scattering, 
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we may convince ourselves that the neglect of ex­
change effects is permitted under the condition 
(43), for the direct forward scattering amplitude 
is much larger than the exchange forward scatter­
ing amplitude if ( A.Enn' IE )2 « 1, which is a much 
weaker condition than (43). 

In conclusion we note that, for inelastic transi­
tions in collisions of electrons with atoms in the 
ground state, the approximation for the scattering 
amplitude (20) leads generally to a larger value 
than the more accurate expression (19). Since we 
have used such an approximation for the estimate 
in second order perturbation theory, it may turn 
out that the condition for the applicability of the 
Born approximation is somewhat weaker than 
condition (43). 

APPENDIX 

CALCULATION OF THE QUADRUPOLE OSCIL­
LATOR STRENGTH 

To calculate the quadrupole oscillator strength 
we use an approach analogous to the one used for 
the calculation of the dipole oscillator strength 
(cf., for example, C14J). We consider the classical 
problem of the quadrupole radiation of an electron 
in an attractive Coulomb field. The intensity of 
the radiation is determined by the sum of the 
square moduli of the Fourier components of the 
quadrupole moment. Since the orbit of the elec­
tron is a plane curve (we shall regard it as lying 
in the x, y plane) the components (xy )w, (x2 )w, 

and (y2 )w of the quadrupole tensor will be differ­
ent from zero, where 

1 00 

a., = 2n -~ a(t) eiwt dt. 

We use the following relations: 

i (iy + yx) w 
(xy).,= , 

,{1) 

2i 
(x2 )w =- (xi)w, 

{I) 

(A.1) 

(A.2) 

(A.3) 

According to [15] , we use for x, y, and t the para­
metric representation (- oo < ~ < oo) 

where 

x = a(e- ch ~), y = a-y~2- 1 sh ~. 

V 2EM2 
e= 1+--, 

me4 

(A.4) 

mvo2 
E = - 2-, M = mpv0, 

v 0 is the initial velocity, and p is the impact pa­
rameter. Calculating (A.1), (A.2), and (A.3) with 
the help of (A.4), we obtain ( y = we2/ mv5 ) : 

a2 1e2 - 1 (1)" . 
(xy)w = H;y (lye), (A.5) 

,{1) 

a2 ( 1 ) nO)I . (x2)w=-(Y2)w=-- £-- 11iv (l'\'e). 
w e 

(A.6) 

For the intensity of the radiation, integrated 
over all impact parameters p (or, what is the 
same, over all eccentricities E) we obtain from 
(A.5) and (A.6) 

dfw 

dw 

4n2e14,w4 

5c5m6v12 
f { (1)1/ . l J e(e2 -1)de - [H;1' (l'\'e) 2 

1 

e2 - 1 (1)' } + --[H;v (iye)J2 . ez (A. 7) 

Let us consider (A. 7) in the limit y » 1. This 
corresponds to the condition for quasiclassical 
motion in the Coulomb field e2;tiv » 1 with tiw 
~ E. Using the asymptotic form of the Hankel 
functions for y » 1, 

(1) 2ix ( '\' ) H;y (iye) ~- nt'S K';, 3 x3 , x = )'e2 -1, 

{1)1 2x2 ( y \ ( H;v (ive) ~ -_-K';, -xa )' A.8) 
rtl'3 3 

and taking into account that for y » 1 the integrals 
in (A. 7) are determined by the small values of the 
parameter x, we find 

+ 2~5 
K';, ( ,~ xa )K';, ( "3 xa) 

+x6K,~,(~ xa)+x6K,;,( ~xa)}. (A.9) 

The integrals appearing in (A.9) are given in [16]. 

Keeping the first nonvanishing term for y » 1, 
we obtain 

dlw _ w'h e8 ( m )'h 
--b - ' dw c5 m3 v2 e2 

(A.10) 

where 3_ 

b = 3216 nr (2/a) = 10.56. 
513r(1/a) · 

The cross section for quadrupole recombination 
u~2Jc ( v) is determined from (A.10) by the relation 
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1 ( dlv\ llv 
(2) =---a rec ( v) hv . dv ) t'l.n' 

where div( v) = 27T diw( v ). 

ht:..v 4:n2me4 
-:s:;;: = h2n3 ' (A.ll) 

The cross section for quadrupole photo ioniza­
tion u~2h ( v) is connected with u~2Jc ( v ) by the 
principle of detailed balance: 

(A.12) 

Let us extend this expression to a bound-bound 
state transition: 

The quadrupole oscillator strength is connected 
with the probability for the transition n - n' per 
unit time through the relation 

2 

W (2) _ 2ffinn'e2 l/(2) I 
nn'- nn' · 

mc3 
(A.13) 

On the other hand, the quadrupole absorption cross 
section 0'-~2~, averaged over the frequencies and 
summed over the interval of final states, is con­
nected with f~, by the equation 

-(2) t'l.n' (' (2) _ :rte2 (2l t'l.n' 
O'nn' =- J O'nn' dv- --Inn'------;-. 

t'l.v me . uv 
(A.14) 

Using (A.10) to (A.14), we obtain 

(2) 
fnn' = (12) '" · 32r (2/a) a2 

(A.15) 

7.15·10-5 

where a= e2/tic = 7.3 x 10-3• 
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