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We consider the solution of the kinetic equation for a gas of polar molecules of the sym­
metric-top type or of diatomic polar molecules in the presence of a constant electric field. 
The heat conduction and viscosity tensors are determined. The possibility of the appearance 
of viscous stresses in a gas with a temperature gradient is pointed out. 

1. INTRODUCTION 

RECENTLY a number of experimental works have 
appeared devoted to the effect of an electric field 
on the transport coefficients of polar gases. [t-al 
The observed effect supplements the well known 
phenomenon of the change of transport coefficients 
in a magnetic field (the Senftleben effect). 

The maximum value of the electric field is 
limited by the possibility of sparkover. At tem­
peratures for which the problem can be considered 
classical, it is always true that 

dE/T<1. (1.1) 
By virtue of this, the polarization in kinetic phe­
nomena in a polar gas plays no role and the effect 
can be connected only with the precession of the 
rotational moment in an electric field. In a para­
magnetic gas, precession is caused by the action 
of a magnetic field on the molecule spin, which is 
rigidly connected with the rotating molecule in 
space. In a polar gas, the effect of the field on the 
molecule is described by the equations: 

M = [dE], d = [Qd], (1.2)* 

n is the angular velocity and d the dipole moment. 
The precession, averaged over the rapid rota­

tion of the molecule, leads to macroscopic results. 
In this connection molecules of the top type lead 
to qualitatively different results, for which the 
mean value of the dipole moment over the rapid 
rotation differs from zero in the absence of a field, 
and diatomic molecules in which the dipole mo­
ment is strictly perpendicular to the axis of rota­
tion and its mean value over the rapid rotation is 
equal to zero. In the first case, the problem is 
similar to the problem of a paramagnetic gas in a 
magnetic field and the effect depends universally 
on dE/ p (p is the pressure). In the second case, 

*[dE] "'d X E. 

the average value differs from zero only in the 
approximation quadratic in E, and the effect de­
pends on E2/p. We note that observation of the ef­
fect in a gas with linear molecules requires much 
greater fields than in the case of molecules of the 
top type. 

2. THE KINETIC EQUATION 

We consider the kinetic phenomena in a gas of 
molecules of a symmetric top type. The rotational 
energy of a symmetric top is 

H=~+~(~-_!_)Mc2 (2.1) 
2/A 2 Ic !A ' 

where IA, IB, Ic ( IB = IA) are the principal mo­
ments of inertia of the molecule, M is the angular 
momentum, and Me the projection of M on the C 
axis. 

We shall assume that the dipole moment is 
directed along the C axis. The motion of a dipole 
in a field is described by Eq. (1.2) where 

Q=_!_M+(_!_ _ _!__) (Md)~. 
!A Ic fA d2 

( 2.2) 

As independent variables, we choose the angular 
momentum M, the angle a between d and M, and 
the angle cp which describes the motion of the 
dipole in a plane perpendicular to M. In these 
variables, the element of canonical phase space is 

df = dudMdcosadcp, (2.3) 

the energy of rotational motion, 

H = MZ [( fA - 1 ) cos2 a + 1l , 
2/A Ic 

(2.4) 

and the dipole moment, 

{ M E-(ME)M/M2 
d = d cos a M + sin a cos <p • 

E sm 8 
. . [ME] } + Slll a Slll <p . , cos e =ME/ME, 

ME sinS 
(2.5) 
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It follows from (1.2) that dE-r: I M = dEt: I y2IT, 

CL = -iU-1dE cos a sin cp sin 8, 

. M 2dE cos2 a sina 
cp =-+ -M cosacos8--M . coscpdE- -,--8 I A Sill a Sill 

28 dE (2.6) 
X cos cp cos !~ • 

The kinetic equation is described in the follow­
ing fashion: 

Df Df Df · Df · of _ [ of J 2 7) at + u or + [dEl DM + a aa + <p ocp - 7ft CT. • 

The equilibrium distribution function is equal to 

fo = const exp {-T-1 (mu2 /2 + H- dE)}. (2.8) 

If the departures from equilibrium are small, then 

f=nfo{1+x), x~1. (2.9) 

The following homogeneous conditions must be 
imposed on the function X [4): 

~ foxdr = 0, S fox(mu2/2 + H)df = 0, 

S foxudf = 0, S foxMdf = 0. 
(2.10) 

In the approximation that is linear in X, Eq. ( 2. 7) 

takes the form 

ax · ax . ax . A 

N +[dE] elM +a 80C + cp acp ""'-nix, (2.11) 

N=u( mu2 +H-4)VlnT+~(u;un- 1 o;nu2 ) 
2T T 2T 3 

( oVoh oVa; 2 ) 
X --+ --- Oil< div Vo ox; ox" 3 , 

1 ( mu2 \ +- --HJdivV0, 
3T \ 2 I 

A 1 [of l 
nIX= -fo 7ft coll . ( 2.12) 

The condition ( 1.1) permits us to neglect the 
term dE/T in the equilibrium distribution func­
tion ( 2.3). In the zeroth approximation in dE/T, 
the function does not depend on the angle cp • 
Averaging (2.11) over this angle, we obtain 

1 O"f. A 

-N +y(a){Me]- = -/x; 
n oM 

a dE 
y(a)= Mn , 0 ='COS a, ( 2.13) 

This same function y (a) is obtained by going 
to the classical limit in the expression for the 
quantum-mechanical mean value of the dipole 
moment of a symmetric top. In the derivation of 
this equation, one must satisfy the inequality ( 1.1). 
On the other hand, the ratio of the precession fre­
quency of the momentum dE/M to the mean fre­
quency of collision 1/T, 

can be arbitrary. Equation ( 2.13) differs formally 
from the corresponding equation for a paramag­
netic gas in the magnetic field [4] only in the fact 
that in our case the value of a runs through a 
continuous range of values ( - 1 :::.: a :::.: 1 ) . 

3. SOLUTION OF THE KINETIC EQUATION 

We shall solve Eq. (2.13) by the method put 
forth in [4]. We transform to nondimensional vari­
ables which differ from the previous one by the 
respective factors .J m/2T and .J 1/2IAT, and 
write out the Eq. ( 2.13) in spherical coordinates, 
choosing E along the z axis: 

N ox ~ a E ( T )'/, -+y(a)-=-/x, y=--- d, 
n ocpM M p h 

N=~azm'Azm. A!m=V1m(u)(u2 -t-H-4), (3.1) 

A2m = Y2m(u), Aoo = 1/6(u2- H). 

The explicit form of azm is given in [4J. We seek 
the function X in the form 

(3. 2) 

Substituting ( 3. 2) and ( 3 .1), we find 

(} + y(a)~) Xlm = ~Azm- (3.3) 
U<j)M n 

A 

We represent the collision integral I in the form 

(3.4) 

where i < o> is the collision integral for Maxwell 
molecules. Then El< 1l is determined by two fac­
tors: the departure of the central interacting 
force from Maxwellian, and the nonsphericity of 
the molecule. 

It was shown in [5-7] that for a broad class of 
molecular potentials the difference between I and 
I< o> can be regarded as small. In polar atomic 
gases, if the nonsphericity is small, we can as­
sume as before that E « 1. But the properties of 
i< 11 are essentially different, inasmuch as the 
noncentral forces lead to a mixing of the external 
and internal degrees of freedom, and also to the 
appearance of correlation between the directions 
of the velocity and the momenta of the colliding 
molecules. The separation of I<o> from I is con­
venient in that the eigenfunctions l/Jn ( u) and the 
eigenvalues A.n of the operator I< o> are known. [a, sJ 
Since M is not changed by collisions with central 
forces, I< o> possesses the following set of ortho­
gonal eigenfunctions { 1/in} and eigenvalues {A.n}: 
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X (H)Yz,m,(u)Yz,m,(M). 

(0) 
An = Ar,z,; r,z, = a,,,!, fir,ofiz,o + ~r,z, ( 1 - t'lr,ot'lz,o), 

" 
Urz = ~ [ 1 + t'lro 6rz - (cos : r+l Pz ( cos : ) 

0 ' 

( e )2r+z ( e ) J - sin 2 Pz sin 2 d8 sin 8F(8), 

" 
(3.5) 

[ e \2r+z ( e )] ~rz= ~ 1- (cos 2 J Pz cos 2 d8sin8F(8), 
0 

gda<o> = F(8) sine ae, 
where L~ are the normalized Laguerre polynom­
ials. We use the notation 

- - a -oo 
K-1 = J(O) + v(cr) -+elo ' (3.6) 

&cpM 
where 

, (ll {eAo'IJln, 
fo '¢n = O 

' 

if n = (000, r2l 2m2 ) or (100, 000), 

if n =F (000, r 2l 2m 2) or (100, 000) 

Ao= ('ljlo,J<il'ljlo), '¢o=Lt'l•(u2). 

Here and below the scalar product is defined by 
the expression 

('¢,f)=~ drfo'¢*f. (3. 7) 

Then 

'A _ {e/, 0 for n = (000, r2l2m2 ) if (100, 000)• (3 .S) 
n- 'A~l for n =F (000, r2l2mz) if (100, 000) 

With accuracy up to terms of order E2, we find 
from (3.3) 

Xzm = [K- ek/J<. + e2KIJ<.itK]Azm, 

it = j(l) - j~l) 
(3.9) 

The transfer coefficients are determined by inte­
grals of the type 

Czm, I'm = (Azm,Xl'm). 

Then, substituting the formal solution of the 
kinetic equation (3.9), we get 

c = c{O) + c<'l + c<z>, 

(2' -----
Crm: I'm= e2 Re (Azm, KI,KJ,KAz•m). 

(3 .10) 

(3.11) 

The values of Azm do not depend on the direction 
of M; therefore c1~ l'm and Ct~ l'm do not 
depend on the external field. Recogliizing that for 

any f and 1/J we have 

u,k¢) = (K*f,'¢), (f,i<1>'1Jl) = (i<t>J,'IJl), (3.12) 

we get for c(2) 

(3.13) 

]t follows from the scalar nature of the integral 
I1 that 

I~Yzm(u)Lrl+'f, (u2 )L:' (H) 
(3.14) 

lm 
where Cz m z m are the Clebsch-Gordan coef-

1 1• 2 2 ll l 
ficients, Z2 takes on even values, and a 1 2 (M2, a), rpr1 
as a function of a, is even for even l -l 1 and odd 
in the opposite case. The presence in (3.14) of 
terms with odd values of the difference l - l 1 is 
the most significant difference of the polar gas 
from the paramagnetic gas. This is associated 
with the fact that the quantity a = dM/ dM is a 
pseudoscalar and an odd function of it changes 
sign upon inversion. 

Substituting (3.14) and (3.13), we find that the 
change of cz m l'm' in the field is determined by 
the following f~rmulas: 

(2) (2) 
,1,czm,l'm = Czm,.z•m(E)- Czm,l•m(O), 

A 2 ~ rp r'p' 
l..lG[m, I'm' = - e fimm' L...; Aim Az•m 

k 

n' = (r'l'm', p'OO), 

(3.15) 

Azm = ~Az;;;' L}.+'1'(u2)Lp'I•(H). 
rp 

The functions fkm 2 are monotonically increasing 
functions of the ratio E/p. We find the asymptotic 
behavior of fkm2 in the region of small and large 
fields. 

Inasmuch as fkmz is a function of the type 

00 00 

~ ~ e-x'-y' w (x, y) dx dy, 
0 0 

where x = Mvl-:-cr2, y = Ma, while w ( x, y) 
vanishes for x = 0 or y = 0, and increases at in­
finity much more slowly then exponentially, the 
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most significant regions of integration are those 
values of (x, y) close to (1.1), which corresponds 
to ( M, u) in the vicinity of the point 

( IA2 +lc2 Ic \ 
(Mo, Go)= IAZ , ~W )-

Therefore the condition of smallness of the field 
presupposes smallness (relative to unity) of the 
expression m22~r 1 2u 2/M2 at the point (Mj, Uo), 
that is, the conditlo1n 

(3.16) 

here, 

(3.1 7) 

and consequently, I b. c I at small E increases as 
( E/p )2. 

In the region of large fields, that is, for 

(3 .18) 

we have 

(3.19) 

and consequently the quantities ilc reach satura­
tion. 

It is seen from Eq. (3.15) that the change of the 
kinetic coefficients in the field is explained by the 
presence in (3.14) of terms with 12 "" 0. The de­
pendence of a1:p~; on u and M2 has no effect on 

the qualitative behavior of ilc 1 m 11' m'. Determina­

tion of the specific form of a ZZ112 requires a rpr1 

knowledge of the detailed structure of the collision 
integral. Inasmuch as there does not exist any de­
tailed evidence at the present time as to the struc­
ture of the scattering cross section of monatomic 
molecules, we limit ourselves, for the determina­
tion of the dependence of the transport phenomena 
on the electric field, to the simplest model repre­
sentations of the form of the quantities a, similar 
to what was done in the case of the magnetic 
field [4J. 

4. THERMAL CONDUCTIVITY 

The thermal conductivity tensor [4) in the elec­
tric field is equal to 

(4.1) 
Xz = 1/ 3(A 10,X!O), Xx = Xy = 1/3Re (Au, xu). 

In the qualitative description of the phenomenon, 
we shall assume that am and ajg are independ­
ent of M2 and u. In the expansion (3.14), terms 

with 11 > 1 and 12 > 2 describe the same correla­
tion between u and M in the collision integral as 
with 11 = 1, 12 = 2. Therefore it is hardly likely 
that they would be significant. 

Consequently, we can limit ourselves for I1A1m 
to terms with Z1 = 1 and Z2 = 2. Then, for 

we obtain 

1 -­
~ 4£2cr2M4 VI AI I c 

o 1 + M-zuz'f,z 

fz(£) = /!(2£), £ = dEyT / P~o1YIA. 

In the vicinity of ( 3 .16), 

w, = ~ ( I I A - 1 I )-'/, I !!:_- ( Ic )21 ' 
2 Ic !A \!A 

3 a2 

L1xz = 10 - £2w~, 
~01 

(4.2) 

(4.3) 

(4.4) 

Upon satisfaction of (3.18), that is, in the region 
of E, we get 

/f(oo) = /2 (oo), 8xx =.i1Xy = 3M1xz. (4.5) 

5. FIRST AND SECOND VISCOSITY 

The viscous-stress tensor [4) can be expressed 
in terms of the quantity (3.11) by means of the co­
efficients of (3.2): 

. __ ?TS ( &Voq &Vop) 
CTzh - ~ dffouiUhJC = 'I'J ihpq --+ -- • ( 5 .1) 

OXp OXq 

~ lm l'm' 
'I'Jihpq = 2T L.J tih (tpq ) • Czm, l'm', 

lm 
l, l' = 0, 2. ( 5. 2) 

l'm' 

In the expansion (3.14) we retain for I1Y2m(u) 
only terms with 12 = 2. The presence of the term 
a5~5 Y2m ( M ), which has a significant effect on the 
viscosity, means that there should be partial sat­
uration at fields of the order of Etherm/ E, where 
Etherm is the field for which saturation is achieved 
in the experiment on the thermal conductivity. 

A similar result should occur for a magnetic 
field. But in the case of a magnetic field, this is 
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not the case, as experiment has shown. [iO] There­
fore, one must assume that a3~3 is close to zero, 
and assume as a simple model that 

X (u)Yzm,(M), (5.3) 

m 

In these expressions, the last terms reflect the 
specific polar gas (pseudoscalar character of u). 
For the change in viscosity, we have: 

dE'(T 
S1 =--==­

P~odiA 

/1 (s) and fz ( s) are defined in ( 4.3)' 

3 = __!_ r r 4s2cr4M4'(Wc 
f (S) '(n; i 1 + M-zazsz 

dEyT 
):3=----

0 PPo1 -yr-;:' 

x exp{-Mz[t+a2 (~:-1)]}aMda, 

/4(s) = fs(2£). 

(5.4) 

6. CROSSING EFFECT IN THE PHENOMENA OF 
VISCOSITY AND THERMAL CONDUCTIVITY 

We have shown in Sec. 3 that in polar gases the 
invariance of the collision operator relative to 
time reversal makes it possible for the perturbed 
distribution function to possess terms with any 
parity relative to the velocity. This leads to the 
result that the following effect can be observed in 
principle in an electric field: by creating a tem­
perature gradient one can obtain a change of the 
viscosity tensor, and conversely. 

Let us consider this phenomenon. Let there be 
some \i'T, where the angle between \i'T and E is 

equal to (}. Then (the OX axis is in the plane of E 
and \i'T) in (2.12) 

N =I VTI {-i cos 8 1'1/s Y10(u) 
( 6.1) 

- (mu2 M2 ) +isin8'(1/ 6 [Yu(u)+Y1_ 1 (u)]} -+-. -4. 
2T '.!.IT 

Change of Uik in an electric field is described by 
the tensor 

( 6.2) 

It is obvious that all the components Uik vanish, 
except rrxz = u zx and rraa· We calculate rrxz with 
accuracy up to terms of the order of E2• Using 
(3.12), we have 

e2 - -
axz =- T IV T I {[1'1/ zof(2si) + 111/ 5f(s!)] ah3 

Uoz 

(6.3) 

Here 

Similarly, in the case of viscous flow, that is, for 
av0i/axk"" 0, heat flow arises: 

I) - 1/ 2T ( oVoz oVok) 
'O- T y -e;hz --+--

m ox" oz 

( 6.4) 

We note that b and b3 differ from zero only when 
the interaction between the molecules includes 
terms which single out the direction d (for exam­
ple, dipole-dipole interaction) . 

7. DIATOMIC LINEAR MOLECULE 

For the description of the rotational motion in 
the case of a diatomic linear molecule, we choose 
as an independent variable the three components 
of the angular momentum and the angle cp which 
characterizes the position of the molecules in a 
plane perpendicular to M. Then the kinetic equa­
tion for small departures of X from equilibrium 
follows from ( 2 .12) with a = rr I 2, that is, it takes 
the form 
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N A A 1 ( M dE cos2 8 ) 
- + cos ~pA1x + sin ~pA2x +- ----.--cos 1p 
n n I M sm8 

ax A 

x a~p = -Ix, 

~ d 1 a 
A=~ cote--[ME]-

n M aM' 
A d [ME]E a 
A2=----

n MEsin8 aM 

We seek a solution of (7.1) in series form: 
00 

X = Xo + ~ (an cos n~p + bn sin n~p) . 
n=1 

Since 

we get an, bn ~ ( dE/T )n. Therefore, we limit 
ourselves in the expansion ( 7. 2) to terms with 
n = 0, 1, that is, we assume that 

X = Xo + X1 cos cp + X2 sin cp. 

(7 .1) 

(7 .2) 

( 7 .3) 

We substitute ( 7 .3) in ( 7. 2). Multiplying the re­
sultant equation successively by 1, cos cp, and 
sin cp, and integrating from 0 to 21r, we have 

N 1 A A 1 dE cos2 8 
-+-(A!X! +A2X2)----.-x2 
n 2 2 M sm 8 

= - (looXo + lo1X1 + lo2X2), 

A1xo + I-1MX2 = -(lux!+ l12X2 + I10xo), 

A A A (7.4) 
A2Xo + J-IMXI = - (/z!X! +I 22X2 + /~oXo). 

In (7.4), 

(7 .5) 
'\)Jo = 1, '\)J1 = cos ·cp, '\)J2 = sin cp. 

with accuracy to terms of the order ( dE/T )2, we 
find 

Substituting (7.6) in the first equation of (7.5), and 
noting that the terms 

jo1'1.,1, jo2X2, M-1IAd2oXo, M-IJA"zjloXo 
A 

are small in comparison with I00 x0, we obtain 

1 axo A 3 d2IE2 

-N + y[M, e] aM=- looxo, y = -2 --(eM). 
n nM4 

(7. 7) 

This equation can also be obtained by going to the 
classical limit in the expression for the quantum­
mechanical mean value of M, computed in an ap­
proximation quadratic in E. Equation ( 7. 7) is 
similar to ( 2.13) with the following important dif­
ferences. First, we now have ~ Eo/p. Second, this 
equation does not contain the independent variable 

0', whose role in (7.7) was played by the projection 
of the angular momentum on the electric field. In 
this connection, the expansion corresponding to 
(3.14) does not contain terms with odd values of 
l - l 1• Integration in the case of linear molecules 
is carried out over the phase volume: 

df = dudM/ M. 

Third, the coefficient y possesses an essential 
· singularity as M- 0, which leads (as we shall 
see below) to a nonanalytic dependence of the ef­
fect at small fields. 

Keeping these remarks in mind, one can use 
the results obtained above for the description of 
the effect of the electric field on the transport 
phenomenon in gases of polar linear (diatomic) 
molecules. 

Within the framework of the interaction model 
used in the case of the symmetric gyroscope, we 
get for the problem of thermal conductivity: 

3 a2e2 
<1xz = ---/5(5), 

10 ~01 

3 a282 [ 1 J 
<1xx = <1xy = 10~ 2 /s(5) + /6(S) , 

- -
1: = d2E2 1 ' a = _!__ v ~ aJ~; + ~ v ~a~:~' 

P~ol 1IT au 2 ~o1 2 

- r f E e-M'dM 52 cos• 8 sin3 8 d8 
/s(5)- J J 2 M [1+1:2 2 8/M6] 

0 0 " cos 

_ f f 15 e-M' dM 52 cos2 8 sin5 8 d8 

Ia (5) - { Jo 2 M 1 + 4s2 cos2 8/ M6 

(7.8) 

In the region of small fields, that is, for 

5~1, (7. 9) 

we have 

( 7 .10) 

Consequently, in this case, 

3 a2e2 11 
<1x =----t2 ln1: <1xx=<1xy=-<1xz.(7.11) 

z 35 ~01 ~ "' 6 

For large E, that is, for ~ » 1, we obtain 

3 
<1xx = <1xy =- <1xz. 

2 

( 7 .12) 

It is easy to see that Eqs. (5. 7) for the viscosity 
will be valid also in this case if f 1 ( ~ ) and f2 ( ~ ) 

are replaced by f5 ( ~ ) and f6 U ) , respectively, 
where 
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d2E2 
·s2=---, 

P~to l"IT 

and b3 and g2 are equal to zero. 
We note the following result. For small Ic/IA, 

as follows from Sec. 3, the change in the transfer 
coefficients is fundamentally determined by the 
quantity (Ic/IA) (dE/pf3rl ). Therefore the 
molecule can be regarded as linear only if Ic /IA 
« dE/T. 

8. DISCUSSION OF THE RESULTS 

The electric and magnetic effects in gases have 
a common physical origin: the precession of the 
angular momentum around the field. The mathe­
matical expression for this is the term on the left 
side of the kinetic equation ( 2.13) 

M.at 1 aM = vat I a,<p, 
where cp is the angle of rotation around the field, 
and y does not depend on cp. Two conclusions 
follow from this: First, there is a characteristic 
parameter which completely determines the phe­
nomenon: ~ = Ea /p, a is equal to 1 or 2; second, 
thanks to the fact that both operators included in 
(2.13) possess clearly expressed symmetry prop­
erties, the symmetry properties of the system 
play a significant role. These properties are dif­
ferent for a gas in an electric and in a magnetic 
field. We recall that a molecule in a magnetic 
field is characterized by velocity ( u), angular 
momentum ( M ), and projection of the magnetic 
moment on the an~rular momentum of the molecule 
( s) [4]. Relative to rotation and reflection in space, 
u is a vector, M a pseudovector and s a scalar. In 
an electric field, the corresponding quantities are 
u, M, and the pseudoscalar u-the projection of 
the dipole moment on the angular momentum. 

Certain components of the transport tensor are 
insensitive to this difference and behave in the 
same manner regardless of the type of molecule 
and field, changing monotonically and reaching 
saturation at high fields. But for other components, 
this connection is decisive and, just as in a mag­
netic field [41 , the scalar character of s determines 
an effect which is odd in H, and the pseudoscalar 
character of u makes possible the existence of 
the crossing effect. In this connection it should be 
pointed out that Beenakker and Knaap [12 ] suggested 
the existence of the crossing effect in a magnetic 
field at a definite interaction between the mole­
cules. It is necessary to emphasize that sym­
metry considerations forbid this effect in a mag­
netic field no matter how the interaction between 
the molecules is chosen. 

Borman and the Nikolaevs also investigated 
transport phenomena in a polar diatomic gas. [131 
It should be noted that the variational method used 
by them leads to unlikely results both in the re­
gion of high and of low fields. 

In conclusion, we note the difficulty in principle 
which arises in considering the behavior of a 
diatomic polar gas in an electric field if the coef­
ficients with l 1 = r 1 = 0, l 2 ~ 0 are different from 
zero. In this case, contradictions arise in the 
problem of first viscosity with the requirement 

M = ~ M/oxdf. 

We find it difficult to say whether this contra­
diction is connected with the fact that in the given 
case the electric field produces a macroscopic 
rotation of the gas or with the approximate char­
acter of the initial kinetic equation. 

The authors express their gratitude to L. L. 
Gorelik and Yu. M. Kagan for interest in the re­
search. 
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