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A larger (than the geometric) symmetry group of the hydrogen molecular ion is found. In 
terms of this symmetry, the von Neumann-Wigner theorem is found to be applicable to the 
hydrogen molecular ion. The results are extended to the case of an arbitrary system with 
separable variables. 

LET the Hamiltonian H of a certain quantum
mechanical system be invariant with respect to the 
group of transformations G. Then the eigenvalues 
of the operator H (energy levels, or terms) may be 
classified according to the irreducible representa
tions of the group G. In most cases the transforma
tions of the group G are geometrical, i.e. , reduce to 
rotations and reflections of ordinary space. How
ever, there exist quantum mechanical systems 
which require for the description of all of its prop
erties more than purely geometrical transforma
tions G. The hydrogen atom is an example of such 
a system. The purely geometrical symmetry group 
G is the group 0 3. However, this group is not capa
ble of explaining the multiplicity of the degeneracy 
of the hydrogen atom energy levels. It was shown 
by Fock[t] that the complete symmetry group G of 
the hydrogen atom, which explains all its proper
ties (including the multiplicity of the degenerate 
energy levels), is isomorphic to the group of rota
tions in the four dimensional space 0 4. In this ex
ample the symmetry group G contains along with 
the purely geometrical transformations G trans
formations of a more general type. 

In this paper we want to bring another example 
of a physical system where the complete symmetry 
group does not reduce to purely geometrical trans
formations. We consider the molecular hydrogen 
ion (and also the more general problem of the mo
tion of an electron in the field of two different 
Coulomb centers with charges Z1 and Z2). The 
geometrical symmetry group of this problem is the 
group 0 2, which contains rotations about the axis of 
the molecule and reflections in the planes passing 
through the molecular axis. In the case of the 
molecular hydrogen ion ( Z 1 = Z2 = 1) one has an 
additional element of symmetry-reflection in a 

plane lying in the middle between the two nuclei. 
What then distinguishes the molecular hydrogen 
ion from other two-atomic molecules and requires 
us to search for a higher (than geometrical) sym
metry group for this system? It turns out that the 
molecular hydrogen ion H; and the problem on the 
motion of an electron is the field of two different 
Coulomb centers do not obey (if one takes this H; 
symmetry to mean the geometrical symmetry) the 
von Neumann-Wigner theorem [2] which forbids the 
crossing of terms with the same symmetry. In the 
case of the two-atomic molecule, a special case of 
which is the molecular hydrogen ion H;, this 
theorem forbids the crossing of electronic terms 
with the same values of the quantum number A (the 
absolute value of the projection of the orbital angu
lar momentum of the electron on the molecular 
axis) and the same symmetry with respect to re
flection in the plane situated between the nuclei. 

Let us recall (see Bethe[3J) the main results 
relevant to the molecular hydrogen ion. As is well 
known the problem of determining the electronic 
terms for the molecular hydrogen ion allows a com
plete separation of variables in the elliptic coordin
ate system ~ , TJ, qJ: 

(1) 

where r 1 and r 2 are the distances from the nuclei, 
and R is the distance between the nuclei. The angle 
q; is measured around the molecular axis. If one 
looks for a stationary solution of the Schrodinger 
equation in the form 

ljl = F(£)G(YJ)ei»>'P, (2) 

then for each of the factors F(~) and G(TJ) one ob
tains an equation of the Sturm-Liouville type: 
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(to the molecular hydrogen ion corresponds the 
case Z1 = Z2 = 1), where 

(3) 

( 4) 

( 5) 

Here E is the energy (excluding the Coulomb repul
sion of the nuclei), and A is a separation constant. 
It is convenient to characterize each of the factors 
F(O and G(17) by the number of nodes (zeroes). 
Since each of these two equations contains m 2 and 
the common separation constant A, the eigenvalues 
of the energy and the eigenfunctions have the form 

E,,nlml (R) = E(n1, nz, m2; H), (6) 

1f,,,,m = Fn,n,lml (s)Cn,n,lml ('YJ)eimcp. (7) 

In order to make clear which of the electronic 
terms ( 6) cross, it is sufficient to h.now what these 
terms go into in two limiting cases: for R = 0 and 
R = 00 • As the distance R between the nuclei is 
varied the number of nodes n1 and n2 cannot 
change. 0 f3l When R = 0 our system goes over into 
a unified hydrogen atom with energy levels (ex
pressed in terms of elliptic quantum numbers n 1, 

n2, m) described by the formula[ 3J 

E(n1, liz, m2; 0) = -2(n1+nz+lml+1)-2• (8) 

At R = oo, we have infinitely separated atom and ion 
of hydrogen. The energy in this limiting case has 
the form[ 3J 

E (n 1, n2, m2; oo) = --1/2 (n1 + nz' +I m I+ 1) - 2, (9) 

where 

, { nz/2, if n2 is even 
n2 = 

(n2- 1)/2, if n2 is odd 

(10) 

1 lin view of the continuous dependence on R, the number 
of nodes can change only as a result of confluence of two 
nodes; this, however is impossible because the solution of a 
second-order equation cannot have a multiple zero. 

Knowing the energy levels in these two limiting 
cases it is easily shown which of the terms of the 
same symmetry certainly cross. These are, for 
example, the terms E 300 (R) and E 040 (R). Examples 
for crossing of terms in the same symmetry in the 
case of the motion of an electron in the field of two 
different Coulomb centers may be found in the work 
of Gershte!n and Krivchenkov. f4l 

Let us show now that the here-demonstrated 
violation of the von Neumann-Wigner theorem is 
only apparent and due to the fact that the geometri
cal symmetry group does not exhaust the entire 
symmetry which our system possesses. In the 
work of Gershte!n and Krivchenkovf 4J (and also in 
the work of Smirnovf 5l) the inapplicability of the 
von Neumann-Wigner theorem to the molecular 
hydrogen ion was connected with the separability of 
variables in this problem. It is therefore natural 
to ascertain the symmetries possessed by systems 
that allow a complete separation of variables. If 
the variables separate in the Schrodinger equation, 
then they also separate in the Hamilton-Jacobi 
equation which arises in the corresponding classi
cal system. 

Let the classical Hamilton-Jacobi equation of 
some mechanical system allow complete separation 
of variables, i.e., let the action have the form 

f 

So= L S;(q;), (11) 
i=i 

where f is the number of degrees of freedom of the 
system under consideration. In that case as is well 
knownf6l, we can use a canonical transformation to 
go over to new variables, where the role of gener
alized momenta is played by the action variables 

(12) 

and the generalized coordinates are the so-called 
angle variables 

W; = IJSo / DI;. ( 13) 

If the Hamiltonian function is expressed in terms 
of these new variables then it will contain only the 
action variables Ii: 

If= Il(h l2, ... , It). (14) 

Thus the angle variables are cyclic. It is ob
vious that the Hamiltonian function (14) is invariant 
with respect to a shift of the origin from which the 
angles wi are measured by an arbitrary quantity ai. 
A change of the origin from which the angles wi 
are measured is equivalent to a rotation in certain 
planes. In order to find these planes let us perform 



1262 S. P. ALLILUEV and A. V. MATVEENKO 

one more canonical transformation to the variables 
Pi and Q( 

Q; = f2/i sin wi. ( 15) 

In terms of the variables Pi and Qi, the Hamiltonian 
has the form 

]f=fl 1 T 1 2 2 ... f f . ( 16) ( p2 I Q2 P~+Q2 P2+Q2) 

~ ' 2 ' ' 2 

It is now obvious that our Hamiltonian is invariant 
with respect to rotations by arbitrary angles a i in 
the Pi and Qi planes (it is important to emphasize 
that these rotations are canonical transformations). 
Since rotations in different planes are entirely in
dependent, the symmetry group of our mechanical 
system has the form 

( 17) 

where S02 is the group of pure rotations (without 
reflections) in a plane. 

Thus the symmetry group of the mechanical 
system for which the Hamilton-Jacobi equation can 
be completely separated has the form of a direct 
product of two-dimensional rotation groups, one 
S02 group for each degree of freedom. It is not 
hard to see that the resultant symmetry does not 
reduce to geometrical, since the rotation S02 takes 
place not in configuration space (as is the case for 
the conventional geometrical symmetry) but in 
phase space. 

In the previous considerations it was presup
posed that the mechanical system under discussion 
does not contain some geometrical axis of symme
try. Let us consider now the mechanical problem 
of the motion of a charge in the field of two Cou
lomb centers. In that case the system possesses a 
geometrical symmetry under rotations (and reflec
tions) with respect to an axis passing through the 
nuclei, and consequently the coordinate q3 = cp is 
cyclic. In that case relations (12) and (13) will be 
valid only for the values of indices i = I, 2. For the 
case i = 3 the relation ( 12) must be replaced by 

h =P"'= Lz. ( 18) 

In place of Eq. (16) we shall obtain 

H=H( ptz+Qtz Pzz+Ql Lz). (16') 
2 , 2 ' z 

The symmetry group now has the form 

SOz ® SOz ® Oz, (19) 

where the two groups S02 correspond to the varia
bles ~ and TJ, and the group 0 2 corresponds to the 
angle q;. 

It is now necessary to modify these results for 

the quantum mechanical case. It seems natural 
that in the case of the molecular hydrogen ion the 
symmetry group will coincide with the symmetry 
group of the corresponding classical problem, i.e., 
with Eq. (19). Further, since the quantum numbers 
n 1, n2, and A == lml do not change as the distance R 
between the nuclei is varied, it would be natural to 
consider them as indices of an irreducible repre
sentation of the group (19). In that case there is no 
difficulty with the von Neumann-Wigner theorem 
since two different terms differ in at least one of 
the quantum numbers n 1, n2, and A and thus possess 
a different symmetry from the point of view of the 
group ( 19) . Let us show that this is indeed the case. 

First of all we introduce the operators 

which are defined by the relations 
' 1V2'¢n 1n:.:m == n2'¢nj11.m, 

(20) 

where 1/ln1n2m are the eigenfunctions of the mole
cular hydrogen ion (7). The so-introduced opera
tors N 1 and N2 are closely connected to the classi
cal action variables ( 12). Indeed, the quantization 
condition in the quasi-classical approximation has 
the form (ti = I) 

h = ::rt ~ p,.dqk = n,. + y,., n,. = 0, 1, 2, ... , k = 1, 2; 

(21) 
here Ik is determined by Eq. (12) and 'Yk are cer
tain numbers (usually equal to 1/2); Eq. (21) differs 
from the quantities defined by Eq. (20) only by the 
additive constant 'Yk· 

The close connection between the quantities (12) 
and (20) is also emphasized by the fact that the 
quantities ( 12) are adiabatic invariants in classical 
mechanics, whereas in quantum mechanics the 
quantum numbers of states are adiabatic invari
ants, i.e., in our case, the quantum numbers n 1, 

n2, and m. 
The concrete form of the operators (20) depends 

on the form of the eigenfunctions 1Pn1n2m, i.e., in 
the final analysis on the representation chosen by 
us. Passing from one representation to another is 
equivalent in quantum mechanics to a canonical 
transformation in classical mechanics. We are, 
apparently, interested in the representation which 
is equivalent to the classical variables: action
angle-Eq. (12), and (13). 

It would seem that the desired representation 
may be achieved by the following procedure. Let 
us suppose that the wave functions are periodic 
functions of the angle variabl~s w 1, w 2, ¢with 
period 21r, and the operators Nk have the form 
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~ . a 
Nh= -L- k= 1,2; 

.aw"' 
(22) 

Then the eigenfunctions of our problem would be 
given in this representation by 

'¢ro,n,m = (2n)-'i2 exp (intWt + inzW2 + im¢). (23) 

However in that case we would not be able to ex
clude negative values for the quantum numbers n 1 

and n2, which by definition are non-negative. 
This difficulty can be overcome by using instead 

of the representation (22) a certain modification of 
the representation which was first introduced by 
Fock[7] in connection with the problem of the os
cillator, and was subsequently studied in detail by 
Bargmann [BJ. In our modified Fock representation 
(which for brevity sake we shall call simply the 
Fock representation) the wave functions are entire 
analytical functions of two complex variables z1 

and z2, and periodic functions of the real angle ¢ 
with period 271'. The scalar product of two wave 
functions in this representation is defined as fol
lows 

1 +oo 2lt 

(u,v)=~~ ~ ~ ~ ~{u(z!,z2,¢)}*. 
-00 0 

·v(z~, z2, ¢)exp(-/zd 2-Jzz/ 2)d2ztd2zzd¢, 

d2z = d(Ro z)d(Imz). (24) 
A A A 

The operators N1, N2, and N¢ have the form 

A a A a A a 
Nt=Z!-, Nz=Zz-, N¢ =-i--. (25) 

az1 OZz a¢ 

The normalized eigenfunctions in our problem have 
the form 

n~, nz = 0, 1, 2, ... ; m = 0, +1, ±2, .... (26) 

The Hamiltonian may be expressed in the form 

li = E( Z1 _!___ z2 _()__ - _!__2 - • R) oz1 ' i}z2 ' iJ¢2 ' ' (27) 

where the function E(N 1, N2, L2 ; R) is given by Eq. z 
( 6). It should be emphasized that writing the 
Hamiltonian in the form (27) is somewhat symbolic. 
However, even from this symbolic form it follows 
that the Hamiltonian does not change its form un
der the transformation 

Zh-+Z~teia•, k=1,2, 

¢-+¢+a, 

¢-+-¢, (28) 

i.e., under independent rotations in the plane of the 
complex variables z1 and z 2 and under rotations and 
reflections with respect to the angle ¢. 

Thus the symmetry group of our quantum mech
anical problem has the form 

(29) 

i.e., it coincides with the symmetry group (19) of 
the corresponding classical problem. The opera
tors N1, N2, and N¢ are, as is easily seen, the 
infinitesimal operators of the group (29). In addi
tion, there is connected with the group (29) the 
operator &, whose action on the wave function re
duces to the replacement of the angle ¢ by -¢: 

(30) 

As a result of the relations (20) and (30), the ir
reducible representations of the group (29) are one
dimensional for A = /ml = 0 and two-dimensional 
for A = /m/ > 0. Thus the quantum numbers n 1, n2, 

and A are indeed the indices of an irreducible 
representation of the group (29) or, in other 
words, the symmetry indices of the group (29), as 
was already proposed by us above. 

Let us try to answer the following question: how 
can we concretely realize the Fock representation 
Eqs. (24) -(27)? The kernel of the corresponding 
unitary transformation has the form 

n, n2 im¢ 
"' Zt Zz e • 

KR(Zt,Zz,¢; ~,'YJ,(jl} = LJ (2 I !)'/ '¢n,n,m(~, 'YJ, rp; R). 
' nnt. nz ' n,n2m 

(31) 

With the help of this kernel one may obtain the 1/J 

function in the Fock representation (24) -(27), if it 
is known in the original x-representation: 

1jJ(zt,Zz, ¢)= ~ ~ ~ KR(z~,z2,¢; ;,YJ,rp). 

· '¢ (£, YJ, rp; R) d·q,. '~· <P· (32) 

It is clear that the kernel (31) does not have a sim
ple analytical form. Nevertheless what is important 
to us is that such a kernel exists. 

Let us formulate our results. We have estab
lished the symmetry group of the molecular hydro
gen ion (and also for the problem of the motion of 
an electron in a field of two different centers). 
This group turns out to be wider than the original 
geometrical group. In terms of this larger symme
try group the von Neumann-Wigner theorem turns 
out to be applicable also to the molecular hydrogen 
ion. The results obtained for the molecular hydro
gen ion can be generalized without difficulties to 
the case of an arbitrary quantum mechanical sys
tem, which allows a complete separability of var
iables. 

In conclusion the authors express their deep 
gratitude to S. S. Gershte'in for interest in this work 
and valuable remarks. 
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