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The interaction of coherent radiation with a system of two-level atoms is considered. A 
general expression for the time dependence of the average number of photons is derived. 
The coefficients in this expression [formula (12)] are determined by a system of differen
tial equations [formula (10)]. The cases of one and two atoms are considered in detail and 
exact solutions of the equations are obtained. Approximate solutions of the equations for 
a system with an arbitrary number of atoms are also considered. 

THE appearance of such sources of electromag
netic radiation as lasers has opened up new possi
bilities for experiments aiming at the observation 
of the finer effects of optical coherence. Recently, 
a number of theoretical papers (cf., for example, 
[t]) on the problem of the interaction of radiation 
with a resonant medium have appeared. In these 
papers, the emission and absorption of a definite 
fixed number of photons were considered. No type 
of phase relations and hence, no coherence effects 
of the photon current can be considered in such an 
approach. These problems have been discussed 
in [ 2] on the basis of a quasiclassical theory, and 
the results agree in some limiting cases with the 
results obtained from quantum -electrodynamical 
considerations. 

The mathematical apparatus of quantum elec
trodynamics which is built up in the occupation 
number representation, i.e., in a representation 
where the number of photons is diagonal, does not 
permit one to obtain information on the phase of 
the photons. The statistical properties of the pho
ton current have been discussed in recent papers 
of Glauber, Sudarshan, and several other authors. 

In the present paper we consider the interaction 
of completely coherent radiation with two-level 
atoms in the single-mode approximation (the re
laxation of the atoms is neglected). The method 
of calculation used here is analogous to the one 
applied by Arutyunyan. [3] The complete Hamil
tonian for the system of atoms and the photon field 
in the single-mode approximation has the form 

!two 
Il=-2-lz+nwc+c +n(c~*l++c+~l-) (1) 

here we have assumed that the transition matrix 
elements are the same for all atoms. The quantity 
w0 is the transition frequency in the atom; 

where the summation goes over the number of 
atoms: 

( 2:n: )'/, 
~· = -, (Me), 

fi (I) 1- ' 

w is the frequency, e the polarization vector, c 
and c + are the photon annihilation and creation 
operators, respectively, M is the matrix element 
for the transition of an isolated atom from a lower 
level to a higher level with simultaneous absorp
tion of a photon, M* is the matrix element for the 
inverse transition with emission of a photon, and 
V is the volume within which the processes take 
place. 

The initial state of the photon current will be 
described in a representation where the annihila
tion operator c is diagonal: 

cjz) = zjz), 

hence 

<zjc+ = z*<z!. 

Expanding the function I z) in the number of 
photons, 

11==0 

we find for the coefficients An: [4] 

Let us now assume that at the initial moment 

(2) 

(2') 

(3) 

(4) 

(t = 0) the first N2 atoms are excited while N1 

= N- N2 atoms are in the ground state. Then the 
wave function of the N atoms at the time t = 0 
can be written in the form 
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(5) 

where h == N2/2, h == N1/2; or, expanding in a 
Clebsch-Gordan series in analogy to the theorem 
for the addition of angular momenta, we obtain 

j,+j, 

<D(U) = ~ Ci<D(j,jz-it), 
i=lj,-j,l 

C·=[ (2i+1)(2h)!(2h)! ]'/, (6) 
J U1 + h + i + 1)! (h + h- j)! . 

The complete initial wave function for the system 
of N atoms and the coherent photon field therefore 
has the form 

jt+Jz oo 

tf(O)=<D(O)Iz>= ~ C/D(i,h-h)~Anln>. (7) 
n=O 

Let us write the wave function at time t in the 
form 

j,+j, j-(j,-j,) n+j+j,-j, 

tf(t)= ,2; ci{ ~An ~ B~;i(t)lm><D(j,n-m 
i=ii~-j2] n=O m=O 

n+j+j,-j, 

~ B~;i 
71=j-(j2-j 1-f) m=n-[j-(j2-j 1)] 

(8) 

where the limits of the summation over m are de
termined by 

- j ~ n -- m + h -it ~ j. (9) 

Substituting the function (8) in the Schrodinger 
equation with the full Hamiltonian (1), we obtain 
the following system of differential equations for 
the coefficients Bfuj ( t) [with an accuracy up to an 
inessential phase factor 

expl -i(n+ h- h) w0t] (~ J j3•)m;z]: 

n·· j 
dBm' (x) n' 

dx =-meBm' (x)+[(m+1)(i+n-m+i2-h)· 

· (j- n + m- h + h + 1)]'i•B;;1}i(x) 

+ [m(j- n + m- h +it) (j + n- m 

+ h- h + 1)]'i•B~~~ (x) 

with the initial conditions 

B~; j (0) = (f3*/ f3)miZ6m, n, 

where we have introduced the notation 

x = t I ~ I, € = ( Wo - (•}) I I ~ I· 

(10) 

(11) 

The average number of photons at time t, de
fined by 

ii(t) = \'l'(t) lc+cj'l'(t)>, 

has the form 
00 

ii(t) = ~ JAnJ 2 Pn(t), (12) 
n==O 

where 

n+j+j,-j, 

~ mJB;:;i(t)jZfor n~j-(h-it) 

j,+j, 

Pn(t)=~ Cl 
j=lj,-j,l 

m={l 

n+J+j,-j, 
(12') 

~ m Is:;;; j (t} lz for n > i- Uz- ii) 
m=n-[j-(j,-j1)] 

is the average number of photons at time t if there 
were n photons at the initial time; I An 12 is the 
distribution of the number of photons at the initial 
time, which for complete coherence, starting from 
formula (4), has the form of a Poisson distribution: 

(13) 

where ii == I z 12 is the average number of photons 
in the incident beam. 

Let us now consider a few of the simplest cases, 
in which the system of equations (10) with the ini
tial conditions (11) permits an exact solution. For 
the case of a single atom which is in an excited 
state at the initial moment, the formula for the 
average number of photons at time t has the fol
lowing form if the incident photon beam is com
pletely coherent: 

_ ( _ ~ e-n ( ii) n 1 Q n+! ( 
n t) = n + LJ --- (n -t-1) --- ~in2--t 14) n! Q2 ,z 2 , 

n=-0 n+l · 

An analogous formula is obtained if the atom is 
initially in the ground state: 

-( ) - ~ e-n(ii)n 1 Qn 
n t = n- L....J n--~in2-t 

n=O n! Q"2'2 .. 2 , 

where 

(15) 

(16) 

and T == 1/21 f3 I is the time for a spontaneous tran
sition. At resonance, where w0 == w and hence Qn 
== ..fll/T, formulas (14) and (15) take the form 

_ _ 
00 e-"(ii) 11 -- t 

n(t) = n + L; sin2 Vn +1--
n=o n! 2<' 
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"" e-n(n;)n - t 
n(t) = n- ~ sin2 l'n -. 

' n! 2T 
n=O 

(17) 

The first formula has been obtained by a differ
ent method in a recent paper of Cummings. [S] 

For the case of two atoms, one of which is in 
the ground state while the other is an excited state, 
we obtain the following expression for the average 
number of photons at resonance, where w0 = w: 

00 e-n (n} n t 
n(t)=n+~ 2 2 1 sin2l'2(2n+1)-. (18) 

n=O ( n+ )n! 2T 

We shall not quote the general formula outside 
the resonance because of its complexity. In going 
over to perturbation theory it is easy to see the 
connection between (17) and (16). 

Let us now consider the approximate solution of 
the system of equations (10) with the initial condi
tions (11) for a system with an arbitrary number 
of atoms. Formulas (12) and (12') for the average 
number of photons can be rewritten in the form 

00 jt+i2 

n(t)= ~ 1Anl 2 ~ C}pni(t), (19) 
n=O 

where 

m 

where the limits of the summation over m are de
termined by (9). 

Let us rewrite (10) in matrix form: 

where 

J]rt, j = -el + gn, j + jn, i, 

lm, k = mom, k, tn, i = (gn, i) +, 

(g11 • i)m, k = [m(j- n + m- h + jt) (j + n- m 

+ i2- i1 + 1}] '"om-1, .~. 

It is easy to see that the formal solution of (21) 
with the initial conditions (11) has the form 

. (f.l*)n/2 . 
B':;;J (x) = '"i (e-ixHn'J)mn· 

(21) 

(22) 

Hence 

Pni(x} = (Ln, i(x) )nn· (25) 

Direct differentiation of the operator Ln,j ( x) with 
respect to x and use of the commutation relations 

[l, gn. i] = g·'· i, [l, r· i] = -r· i, 
[gn,i, jrt•i] =3ZZ-[4(n+iz-h) -1]· 

·l- (j + n + h- h) (j- n- iz + h + 1) 

lead to a differential equation for the operator 
Ln,j(x): 
i£2Ln, j . 
-- = -6(Ln,i)2 + {-c:2 +2 [4(n + jz- jJ} -1]} Ln,J 
dx2 

+ 2(j + n + jz- ji) (j- n- jz + j1 + 1)- c:Hn,j 
(26) 

In ord~r to obtain a closed equation for the func
tion Ph(x) from the formula (25), we. rewrite (26) 
for the diagonal matrix element ( Ln,J ( x ))nn• ne
glecting the nondiagonal elements of the matrix 
Ln,j: 

[ (Ln, i)2] nn = [ (Ln, i) nnF. 

Finally we obtain the following equation: 

3 . 2 
Pni"(t) =- 2I~ITaPnJ(t) 

{ 2n ~ 1 } 
+ - ( wo- w )2+ I~ I T:i + I~ I T2 - 21 ~ I T2 . 

·p i(t) +-1- (,·+ n+~ \ 
n 2I~IT2\ 2/ 

X ( j - n - ~ + 1 ) + n ( wo - w) 2 

' 2 ' 
(27) 

with the initial conditions 

Pnj (0) = n, Pnj' (0} = 0 (28) 

[the initial conditions are obtained from (11) and 
(20), using (10)]. 

The quantity T in (27) is the characteristic 
time 

and .6. is the initial excess population: 

Substituting this solution in (20), we obtain the func- It is convenient to introduce instead of p~ (t) the 
tion new function 

(23) 
m 

which is the diagonal term ( Ln,j >nn of the Heisen
berg matrix 

. . Ifnjl . Hnj L"·J(::c) = e'x e-'x . (24) 

(29) 

Then formula (19) for the average number of pho
tons at time t has the form 

00 j,+j· 

n(t)=n+ ~ 1Anl 2 ~ C}fni(t), (30) 
n=O i=l j,-j,l 
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where the function f~ (t) satisfies the differential 
equation 

f ., ( 3 . 2 
nJ t) =- 2J~I 1jnJ(t) 

+~- (w0 - w) 2 +~- - -1-( n +~)}. 
1.' ' I ~ 1•2 I ~ 1•2 2 

(31) 

with the initial conditions 

fni (0) = 0, f,,i' {0) = 0, (32) 

where 

<P> = j U + 1). 

Equation (16) coincides exactly with the equa
tion for the two cases h == 0, j == h and h == 0, 
j == j 2 obtained in [i]. It also agrees completely 
with the equation obtained by Arutyunyan for n == 0. 

Equation (16) permits the following solution: 
jni(t) 

t = •YT~I- I dx ' ' 
~ [x(x-x!)(x2 -x)]!, 

(33) 

where xi and x2 are the roots of the quadratic 
equation 

Let us consider two c.ases in detail. 
1. .6. > 0 and hence .6.(n + Y2 - W4) + (j2 ) > 0. 

In this case Eq. (34) has roots of different signs 
and the solution (33) can therefore be written in 
the form 

1/ !:. ( . [-(x2----,-'--Xi)f_ni(_t) l'h, [ X2 J'h) 2-r V F arcsm . 
x2- x1 .r2(fn1 (t)- xl) . X2- .rf 

{ t for 0 ~ t ~ T /2 
= T~t for T/2~t~T, (35) 

where the function F is the incomplete elliptic in
tegral of the first kind, x2 and xi are the positive 
and negative roots of the quadratic equation (34), 
respectively, and T is the period of the function 
f~ (t): 

V /). ( :rt v X2 ) T=4-r F , -·-- . 
X2- Xj 2 Xz- X1 

(36) 

The function F ( w/ 2, x) is the complete elliptic in
tegral of the first ki~d. Since x2 :o:=: f~ ( t ) > 0 > xi, 
it follows that max fh(t) == x2. 

2 . .6. < 0. 
a) If .6. ( n + % + LV 4 ) - ( P) < 0 ( .6. = I .6. I ) , then 

(34) has again roots with different signs, and hence 
this case is similar to the first case; 

b) if .6.(n +% + W4)- (j2) > 0 (.6. = l-6.1 ), then 
(34) has two negative roots xi < x2 < 0, and there
fore the solution (33) has the form 

V /). ( 1/ fni(t) 
2-r --. . p arc sin V --.-.-, 

-.I. I . .Lz 

V~ J { - t for 0 ~ t ~ T /2 
x 1 • = - T + for T/2 ~ t ~ T~ 

(37) 

where the period of the function f~ ( t) is equal to 

T= '~· v~F( ~. v-!!_). (38) 
-X! 2 X1 

Since 0 > f~(t) :o:=: x 2 >xi, we have min f~(t) == x2• 

It is easy to see that formulas (35) and (37) for 
a single atom agree with formulas (14) and (15) 
for large intensities ( ii » 1). 

In conclusion I express my gratitude to Prof. 
M. L. Ter-MikatHyan and V. M .. Arutyunyan for 
valuable advice and a discussion of the results. 
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