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The energy spectrum of an electron in a one-dimensional system of randomly distributed po-
tential centers is investigated under the assumption of a Poisson distance distribution and
smallness of the product of the potential and mean distance between the centers.

WE investigate in this paper the energy spectrum
of an electron in a one-dimensional system of ran-
domly distributed potential centers. The potential
energy of the electron in such a system is

Uz)y=a Zé(x—zk).
R

We assume a Poisson distribution of the distan-
ces between centers. The case a < 0 was consid-
ered by Frish and Lloyd[” , who determined the
density of the number of levels by numerical
methods, and who also obtained formulas for sev-
eral limiting cases. However, for no region of the
parameters characterizing the potential
(a,1 = X| ~ Xk- 1) was an analytic expression ob-
tained for the level density in the entire energy
region. Bychkov and DykhneLZ] discussed the case
al > 1, a < 0. The structure of the impurity band
for |alT> 1, a > 0 was considered by I. Lifshitz-31.
Zaslavskil and Pokrovskii'4) investigated the case
al < 1,a>0, k? <«< a/7, where k% = E is the elec-
tron energy. We shall assume that |a|7 < 1, but
will impose no limitations whatever on the energy.

Let us clarify the physical difference between
the cases |a|l > 1 and |a|7 < 1. When |a|T > 1 the
two neighboring 6-functions, separated by a dis-
tance on the order of 7, form an effective potential
well with rigid walls. In our case, however, no
level can arise between two neighboring 6-func-
tions separated by a distance on the order of 7.
Indeed, with respect to the uncertainty we have for
the very first level k ~ 1/7, and the coefficient of
reflection from the 6-function is of the order of
|a/k| << 1. Consequently, an important role is
played in this case by multiple scattering.

The characteristic energy for |a|l < 1 is a/7,
in the vicinity of which the density of the number
of levels is maximal. The energy 1/1°, which is
characteristic when |a|7 > 1, does not play any
role at all in our case.

We consider first the case a > 0 (repulsive po-
tential). Zaslavskil and Pokrovskii4) have shown
that the number of levels with energy smaller than
E is expressed in terms of the auxiliary function
V(z):

N(E)= klim z2V (z). (1)

zZ-»00

The function V(z) satisfies the equation
1 d

1
——[(@+N)VE]=V(E)—V(E—e), Y=
y dz

__a
A
(2)

and the normalization condition

{viya =1
Our notation is the same as in'4). Equation (2)
is solved by a method analogous to that used here.
We can separate three main energy regions:
1. E> E,=a/T, (E— Ep)/E, » (al)!/3. Here
V(z) has the following form:

1 Y1—Eo/E

YO = o e T—EwE

We see therefore that the ‘‘average potential’’ ap-
proximation is valid, and

N(E) = VE — Eo / 2x. (3)
2. |E — E)|/E, < 1. In this region the solution
of (2) can be obtained by expanding V(z — €) in
powers of € and retaining terms of order €?. Re-
taining in the solution the part that is bounded at
—o_ we have

z

V(z)= Bexp [(D(z)]S exp[—® (z')]d7, (4)
where
2 23 E,
(D(Z)I'YE(ZOQ_T,!, 202=f—1
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(in the case when E)/E < 1, the quantity z, is im-
aginary).

The coefficient B is determined from the norm-
alization. Calculating the normalization integral,
we obtain

N(E)= kV——;ﬁE{ 0T{%exp [% <202§_éi>j’}—‘ . (5)

When (Ey— E)/E, > (al)!” and (E, — E)/E, < 1
(z§ > (ve)?B, z, < 1), we get for N(E) from (5)
_ 1 I . 8 (E()—"'E)%\
N(E)—%VEO Eexp{ 3 an . (6)
When (E, — E)/E, > (al)!’3, Eq. (5) yields
6% , V2r/3(Eo E)
N(E)= —— Eo)'h| 4 — TR (g
)= (@50 [ o 2w
3. (E

»— B)/E, > (al) /3. Without repeating the
calculations of“f, we note only the main steps. In
the regions |z + z)| < ye/z,, the function V(z — €)
can be expanded in powers of €. In the region

|z + z)| > Vy%/z, we can use the WKB method.
Joining together the solutions obtained in the
regions Vye?/z, > |z + zy| > ye/z, and normalizing
V(z) to unity, we obtain, using (1),

N(E)———]/Lg—lzexp{——~arctg i 1
1 ¢ dt
_v?lE/SE[ o] =k i

where u(t) is determined by the equation tu(t) = 1
—expl~u(t)].

When E «< E;, Eq. (8) goes over into the results
of Zaslavskii and Pokrovskiil4].

Let us write out the explicit form of the function
V(z). In the region |z + z)| < y€/z,, the function
V(z) can be represented in the form

V(z) = Aexp|[®(z)] S exp[—D(z')]dz

where
at
A= ———exp{ -
w | — E/E,
In the region z, > z > =1z, |z = zy)| > Vye’/z,, we
have
_ Za/\vs
V(z)—= <x2 4+ )dz}

—zo/ Vye

Finally, in the region |z — z)| < ve/z,

V@)= exp @) |
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__22‘0. e—420°[3ve? + A ge\['{ (T)
JT.YB

}dz-’

2y

Regions 1, 2, and 3 overlap, and the correspond-
ing formulas go over into one another at the inter-
sections of these regions.

Let us consider the case a < 0. Now the electron
energy can be negative. Frish and Lloydm obtain
an equation for the distribution function V(z) of the
quantity z = ¢’/|k|d, where ¢ is the wave function.
For E > 0 the equation for V(z) coincides with (2)
if we replace € by —¢, and takes for E < 0 the form

ii[v(z) (22 V(zte),
y dz

where now y = 1/|k|7 and € = |a/k|. In formula (1)
for the number of levels, k should be replaced by
k]
In analogy with the preceding, we find that in the

region (E — E))/|E,| > (|a]7"3 formula (3) remains

valid as before. In the reglon |E = Eo|/IE,| <« 1,
formula (5) is valid if z} is taken to mean the quan—
tity 1 —ye. In the region (E,— E)/E, > (|a|l)!3 w
have

—Dl=V(z)—

E/Eo

dt
T O e

where u(t) has the same meaning as before.
For large negative E we obtain from (9)

N(E) ~ J— Foxp{ 2 —Eln(;(;»

N(E) _w«o—Lexp{

(10)

We have used the fact that at large values of t the
function u(t) ~—1n t. The latter result corresponds
physically to a situation wherein a large number
of 5-functions is gathered within a length of the
order of |E|"Y/2, forming a deep potential well in
which the lower energy level is equal to E.

In conclusion, we are deeply grateful to V. L.
Pokrovskil for guidance of this work.
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