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The energy spectrum of an electron in a one-dimensional system of randomly distributed po
tential centers is investigated under the assumption of a Poisson distance distribution and 
smallness of the product of the potential and mean distance between the centers. 

WE investigate in this paper the energy spectrum 
of an electron in a one-dimensional system of ran
domly distributed potential centers. The potential 
energy of the electron in such a system is 

U(x)=a~<'l(x-xk). 
k 

We assume a Poisson distribution of the distan
ces between centers. The case a < 0 was consid
ered by Frish and Lloyd[1J, who determined the 
density of the number of levels by numerical 
methods, and who also obtained formulas for sev
eral limiting cases. However, for no region of the 
pa~meters characterizing the potential 
(a, l = xk- xk- 1) was an analytic expression ob
tained for the level density in the entire energy 
region. Bychkov and DykhnJ 2J discussed the case 
aT» 1, a< 0. The structure of the impurity band 
for lair» 1, a> 0 was considered by I. Lifshitzl3J. 
Zaslavski'i' and Pokrovskil[4J investigated the case 
a1 « 1, a > 0, k2 « all, where k2 = E is the elec
tron energy. We shall assume that /a/1 « 1, but 
will impose no limitations whatever on the energy. 

Let us clarify the physical difference between 
the cases I a/1 » 1 and / a/1 « 1. When I a/1 » 1 the 
two neighboring 6-functions, separated by a dis
tance on the order of 1, form an effective potential 
well with rigid walls. In our case, however, no 
level can arise between two neighboring 6-func
tions separated by a distance on the order of Y. 
Indeed, with respect to the uncertainty we have for 
the very first level k ~ 111, and the coefficient of 
reflection from the 6-function is of the order of 
I alk/ « 1. Consequently, an important role is 
played in this case by multiple scattering. 

The characteristic energy for I a/T « 1 is al1, 
in the vicinity of which the density of the number 
of levels is maximal. The energy 1/fl, which is 
characteristic when /a/1 » 1, does not play any 
role at all in our case. 

We consider first the case a> 0 (repulsive po
tential). Zaslavski'i' and Pokrovski'i'[4J have shown 
that the number of levels with energy smaller than 
E is expressed in terms of the auxiliary function 
V(z): 

N(E)= k1imz2V(z). ( 1) 
Z-+00 

The function V(z) satisfies the equation 

1 d 1 y dz [(z2 + 1) V(z)] = V(z)- V(z- e), V = kl, 
a 

e=-
k 

(2) 

and the normalization condition 
00 

~ V(z)dz = 1. 

Our notation is the same as in[4J. Equation (2) 
is solved by a method analogous to that used here. 

We can separate three main energy regions: 
- -113 1. E > E0 =all, (E- E0)1E0 » (al) . Here 

V(z) has the following form: 

1 )'1- EoiE 
V(z)=- . 

2n z2 + 1-E0IE 

We see therefore that the "average potential" ap
proximation is valid, and 

N(R) = "VE- Eo I 2n. (3) 

2. /E- E0/IE 0 « 1. In this region the solution 
of (2) can be obtained by expanding V(z - E) in 
powers of E and retaining terms of order E 2 • Re
taining in the solution the part that is bounded at 
-oo, we have 

z 

l/ (z) = B exp [<D (z)] ~ exp{-<D (z')] dz', (4) 

where 

2 ( z3 \ <D(z)= - zo2z--, 
ye2 . 3 J' 

Eo 
zo2 =--1 

E 
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(in the case when E0/E < 1, the quantity z0 is im
aginary). 

The coefficient B is determined from the norm
alization. Calculating the normalization integral, 
we obtain 

1\"(E) = k v vr:T { r d~ exp [-2- ( zo26- -~ )Jr1 
• (5) 

8n ; 1'6 ye2 12 -

When (E 0 - E)/E 0 » (aT)1/J and (E0 - E)/E 0 « 1 
(zij » (yE2) 2/J, z0 « 1), we get for N(E) from (5) 

1 --- { 8 (Eo-E)'h' 
N(E)=-l'E0 -Eexp -- . 

2n 3 aEo 

When (E0 - E)/E0 » (al) 113 , Eq. (5) yields 

(6) 

N(E)= 6'1• (aEo)''•[1- l'2:n:/3(Eo-E)] (7) 
2'" l'n r (1M r (1/s) ( aEo)''· . 

3. (E0 - E)/E0 » (al) 113• Without repeating the 
calculations of[4J, we note only the main steps. In 
the regions I z ± z01 « 'YE/z0, the function V(z- E) 
can be expanded in powers of E. In the region 
lz ± z01 » Vy 2/z0 we can use the WKB method. 
Joining together the solutions obtained in the 
regions VyE2/z0 » lz ± z01 » YE/z0 and normalizing 
V(z) to unity, we obtain, using (1), 

1 -- {. 2 vEo N (E)=- l'Eo- E exp ---= arclg --c-;-- 1 
2:n: . kl E 

1 r [ 1 J dt } ---= J u(t)-- , 
fal t l't- E/E0 

E/Eo 

where u(t) is determined by the equation tu(t) = 1 
- exp[-u(t)]. 

(8) 

When E « E0, Eq. (8) goes over into the results 
of Zaslavskil and Pokrovski'i'[4J. 

Let us write out the explicit form of the function 
V(z). In the region I z + z01 « yE/ z0, the function 
V(z) can be represented in the form 

% 

V (z) =A exp[<ll (z)] ~ exp [-<ll (z')] dz', 

where 

4zo { l/1 r dt ) 
A= -exp - y---= J u(t) f" 

yez at 1 l't-E/Eo 
EEo 

In the region z0 > z > -z0, lz ± z01 » VyE2/z0, we 
have 

__ _ zo/fve 

V(z)=V~exp{V~ ~ u(x2 + E_)ax15. 
nye2 al _ Eo 

-zo!>ve 

Finally, in the region lz- z01 « YE/z0 

V (z) = exp {<ll (z)} [ V :~:2 e-~zo'i3Y•' +A f exp { -<D (z')} dz' J. 
z, 

Regions 1, 2, and 3 overlap, and the correspond
ing formulas go over into one another at the inter
sections of these regions. 

Let us consider the case a < 0. Now the electron 
energy can be negative. Frish and Lloyd[1] obtain 
an equation for the distribution function V(z) of the 
quantity z = 1/!' /I kii/J, where 1/J is the wave function. 
For E > 0 the equation for V(z) coincides with (2) 
if we replace E by - E, and takes for E < 0 the form 

1 d 
--[V (z) (z2 - 1)] = V (z)- V (z+ e), 
y dz 

where now y = 1/lkl7 and E = la/kl. In formula (1) 
for the number of levels, k should be replaced by 
lkl. 

In analogy with the preceding, we find that in the 
region (E- E0)/IE01 » <lall113 formula (3) remains 
valid as before. In the region IE- E0 I/IE01 « 1, 
formula (5) is valid if z~ is taken to mean the quan
tity 1- YE. In the region (E0 - E)/E0 » <lall> 173 we 
have 

E/Eo 

N(E)=~l'Eo--Eexp{ 1 ~ u(t) . dt },(9) 
2n "flail~ l"E/Eo-t 

where u(t) has the same meaning as before. 
For large negative Ewe obtain from (9) 

N (E) ,..., 1"-E cxp {-2 1"-E ln (!!_)} . 
lal E0 

(10) 

We have used the fact that at large values oft the 
function u(t) ~-Int. The latter result corresponds 
physically to a situation wherein a large number 
of o-functions is gathered within a length of the 
order of I El- 112, forming a deep potential well in 
which the lower energy level is equal to E. 

In conclusion, we are deeply grateful to V. L. 
Pokrovski'i' for guidance of this work. 
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