SOVIET PHYSICS JETP

VOLUME 24, NUMBER 6

JUNE, 1967

KINETIC INSTABILITY OF A PLASMA LOCATED IN A STRONG HIGH FREQUENCY FIELD

V. P. SILIN

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor June 22, 1966

J. Exptl. Theoret. Phys. (U.S.S.R.) 51, 1842-1851 (December, 1966)

It is demonstrated that, owing to the Cerenkov effect, instability with respect to buildup of
potential oscillations is possible in a plasma situated in a high frequency electric field. Such
a kinetic instability, in contrast to the hydrodynamic instability previously discussed(!],
should also be possible in a plasma in which the electron Langmuir frequency is smaller than

the external field frequency.

l. It was shown in a study of the stability of the
plasma in a strong high-frequency field E(t)

= E sin w,t!!! that instability against buildup of
oscillations of the potential field sets in at external-
field frequencies w, close to the electron Langmuir
frequency wy,e = v47Te2Ne/m and at lower frequen-
cies. This instability is not connected with the
Cerenkov effect, and is hydrodynamic in this sense.
On the other hand, it was shownm that the plasma
is stable against buildup of potential oscillations
under conditions of very high external-field fre-
quencies, when the plasma is transparent. In this
communication we show that a transparent noniso-
thermal plasma situated in a strong high frequency
field is unstable if the frequency of the external
field is not too high. The resultant instability is
due to the Cerenkov effect on the plasma particles
and is kinetic in this sense. To determine the sta-
bility of a nonisothermal plasma we can use the
dispersion equation for potential oscillations, ob-
tained in{!]

1
e (0 + iy, k)

+o00
2 Ix(a)

n=-—oo

14

1
.[1_ 1 +6e.(nwo + ® + iy, k) 1 (1.1

With the aid of this equation it is possible to inves-
tigate the oscillations whose frequency is small
compared with the external-field frequency
(seel3]), Here J;, is a Bessel function,

a=eE- k/mw%, the indices i and e correspond to
ions and electrons, and, finally, the function
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represents the well known expression describing the
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contribution made by particles of species a to the
longitudinal dielectric constant. The particle distri-
bution functions f; will be assumed to be isotropic
functions of the momentum.
In the instability considered below the increment

v is small compared with the frequency w. There-
fore we shall assume such a situation to hold in the
analysis that follows. For the damping of the waves
to be small it is necessary to assume that the phase
velocity (w/k) of the oscillations is large compared
with the thermal velocity of the ions. Then the left
side of Eq. (1.1) can be approximately represented
in the form:

0)4

ot

o? 4+ 2ioy | 4mPe?
o (JuLi2 l k2
The right side of (1.1) assumes a specially simple
form for short waves, much shorter than the elec-
tronic radius of Debye screening. In this case d¢€gq
is small compared with unity. Therefore the right
side of Eq. (1.1) can be written in the form
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This expression is always small compared with
unity. Therefore for the frequency of such short-
wave oscillations we obtain immediately

0 = oL {1+0( (1.5)

kzrpcz/}
where w; ;. = \/47Te1?Ni/mi is the Langmuir frequency
of the ions. The Cerenkov effect on the ions leads
to dissipation of the oscillation energy. The corre-
sponding contribution to the increment for a Max-
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wellian distribution of the ions is negative and of
the form

U OLi
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where s; = w/vai, and rp; = VK Ti/47re1?Ni is the
Debye radius of the ions.

A positive contribution to the increment leading
to the instability can be due to the electrons. In
order to assess such a possibility, we must con-
sider the imaginary part of the formula (1.4). This
can be readily done in general form if the phase
velocity of the oscillations is small compared with
the thermal velocity of the electrons. In this case
we can expand (1.4) in powers of w. The zeroth
term of such an expansion makes no contribution to
the imaginary part if, as has been assumed, the
distribution of the electrons is an even function of
the momentum. As a result we get for the imaginary
part of expression (1.4)

(1.6)
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For instability to set in it is necessary that this
expression be negative for positive w. This calls
for a negative second derivative, with respect to
the velocity, of the electron distribution function_fe
integrated over the momenta perpendicular to the
wave vector k. This condition is satisfied for a
large number of distributions. We shall consider
separately, using two plasma-electron momentum
distributions as examples, the regions in which the
Cerenkov effect leads to buildup of oscillations, and
will obtain expressions for the corresponding os-
cillation increments.

2. In order to understand better the properties
of the discussed instability, let us consider the case
of an electron distribution
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Such a distribution function yields for the dielectric
constant an expression

(2.1)
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Substituting (2.2) in the right side of (1.1), we

can sum the series (seem). We then obtain
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where

v = (ikvo + iy + © + wore) [ oo,
p = (ikvo + iy + © — ore) / @o.

In the case of interest to us, that of plasma oscilla-
tion frequencies that are small compared with the
frequency of the external field, we can expand the
right side of (2.3) in powers of w +iy. As a result
we obtain®
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where p = (ikvy + w1,e)/wy. We have left out y from
the term that is linear in the oscillation frequency,
since this entire term is relatively small.

Further, if the frequency of the external field
greatly exceeds the Langmuir frequency of the
electrons, then, expanding (2.4) in powers of
(w,e/wg), we obtain

1 (oLez[ ® d] d ¢ e—2wt
— = {1 —i——|—\dtJo(2asint
! + 681' 2 (002 ' Wo dy dy § 0( ) 2y — 4
L - -1
=2wLe‘[1_i2i‘|i m{ d ln_Ji(f_)_} ,
0o wodyldy dlna  J_iy(a)
y =’kU0/0.)o. (2.5)

For very short waves, when kv, > w,, formula (2.5)
assumes the following simple form:
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The imaginary part of the right side becomes nega-
tive when

a > V2kv, [ wo. (2.7

In other words, the instability becomes possible
under conditions when the velocity of the oscilla-
tions of the electron in the external electric field
exceeds \/EVO. Taking formula (1.6) into account,
we obtain from (2.6) the following expression for
the oscillation increment:

DThe following integral representation of the right-hand
side of (2.4) is also convenient:
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By virtue of the smallness of the right side of (2.6),
the oscillation frequency is given by expression
(1.5). According to (2.8), the instability sets in
when the wavelength is not too small.
1
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The last inequality is compatible with the condition
for the applicability of formula (2.6) if
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In other words, this is possible when the average
energy of the disordered motion of the electron
greatly exceeds the ionic energy, corresponding to
the case of a non-isothermal plasma. In the ‘‘long-
wave’’ limit, when |kvy + iwpel < w,, we can write
formula (2.4) in the following simple form

L+ 1 . _ oLl (a)
dei (0 iy, k)

+ 2i(1)]€U00)L92

k2vg® 4 0L we*

0o'o?(a) 2 ¢ 2(90 242 : 1
TEoE T o T ;;S dt £ (2n2—£) Jo(2assint) |.

(2.11)
It follows therefore, that in such a limit the insta-
bility is possible only in the region of small values
of Jy(a). Thus, for example, in the vicinity of the
point Jy(a,) = 0 we can write for the frequency and
the increment of the oscillations the following
formulas:

oLl (ar)

w? = o> {1—!—3/{2 r'Di k2U02+(0,e (a—a,)z}, (2.12)
—_ :n—_w” '_1 .2—] 2 2@
yv=-V2 (,{rm);xp[ R R
(6= 000
——— " _(a—a,)2¢, 2.13
S S A (2:13)
where
27‘
¢, == dt2(202 — 2)Jo(2a, sin t). (2.14)
14
0

When a; = 2.4 we have C; = 1.86. For large values
of a,., we get the asymptotic relation C, = 773/8ar.
Also at large values of ay, we can write the follow-
ing formula, which determines the limits of the
region near a, in which the electronic part of the
increment (2.13) is negative:
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It is obvious that formula (2.15) holds true only
when the velocity of the electron oscillations
vy = eE/mw, greatly exceeds v;.

According to formula (2.13), instability occurs
when the following inequalities are satisfied

]} > rpi.

(2.16)

Simultaneously, according to the condition for
the applicability of (2.11), it is also necessary to
satisfy the inequality A > vy/w,. At the same time,
by virtue of the fact that a,. is not small, the wave-
length of the growing oscillations is small com-
pared with the amplitude of the oscillations of the
electron in the external electric field. This is the
condition determining the electric field intensity at
which instability with increment (2.13) sets in. We
note, finally, that we can confine ourselves to the
term linear in w in the right side of (2.4) only when
w < kv or kvy < wi,e. Therefore, just as in the
case (2.10), we must have mv} > « T;. In the case
of short waves, we obtain the instability condition
in the region of large values of a. On the other
hand, the limit of the instability region for large
values of a also lies in the region of small values
of kvy/w,. The corresponding asymptotic expres-
sions for the right sides of the dispersion relations
(2.4) and (2.5) can be obtained relatively simply.
For simplicity, we shall write here only the dis-
persion relation (2.5) in the limit of large a and
small y = kvy/w,. Namely:
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0Ll 82 e~FY 4 e~y .
o @ (i—ewmi [1+ Fi(y)sin2a], (2.17)
1 1 6 2ny 4y
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Figure 1 shows the limits of the region in which
the right side of (2.5) has a negative imaginary
part. The ordinates represent kvy/aw,, and the
abscissas the values of a. It is precisely within
the shaded region that the Cerenkov effect on the
electrons leads to buildup of oscillations. The
asymptotic formula (2.18) shows the correct varia-
tion at the lower limit of this region, beyond the
extreme right side of the figure. The upper limit
(also on the right) is obtained from (2.7).

3. Let us consider now the condition for the oc-
currence of instability in the case when the electron
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FIG. 1

distribution can be regarded as Maxwellian with a
temperature Tg. Then

k:r,)ez[l o ]+( kw ”
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where rpg = Vk T /41re2Ne is the electronic Debye
radius, Ve = VK Te/m is the thermal velocity of
the electrons, and

beo (0, k) =

(3.1)

x
Ji(z) = ze P2 S dt et’l2,
Substituting (3.1) in the right side of (1.1) we obtain
the following dispersion equation:
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We turn first to the case of long waves kvpe
< wg, but at the same time we do not assume the
frequency of the external field to be close to wy,e.
We can then write near the zeroes of the function
dJy the following expression for the instability incre-
ment
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We obtain accordingly for the frequency
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From this it follows that for instability to occur it
is necessary to satisfy the inequality
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It is much easier to satisfy this inequality for a
plasma with an electron temperature much higher
than the ion temperature. In particular, this is seen
especially clearly if w%Ti < szeTe' One must not
forget, however, that in the considered limit of
long waves the instability occurs only under condi-
tions when the wavelength is smaller than the am-
plitude of the oscillations of the electron in the
external field. This means that the velocity of such
electron oscillations should greatly exceed its
thermal velocity.

An analysis of the dispersion equation (3.2) be-
comes especially simple in the limit of short waves,
shorter than the Debye radius of the electrons. In
this case the dispersion equation (3.2) can be writ-
ten in the form
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The integral in the right side of this equation can be
readily integrated if wy << kvpe. We then obtain
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In the limit when the intensity of the external elec-
tric field vanishes, formula (3.8) gives the usual
expression for the decrement of the ion-sound os-
cillations. In the opposite limit of strong fields,
when aw, » kvpg, We obtain from (3.8)

BN (3.9
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where vg = eE/muw) is the velocity of the electron
oscillations. The second positive term of the right
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side of this formula, due to the Cerenkov effect on electronic Debye radius. The left edge of the boun-
the electrons, leads to growth of the oscillations if dary of such a region corresponds to small values
1 s s i, of kve/w,. The latter is possible only when the
> rDi{zln l: l —(ELL—} . frequency of the external field greatly exceeds the
k ‘ ore’ electronic Langmuir frequency. To determine
According to (3.8), the condition for the instability = where the limits of the buildup region shifts when
turns out to be weaker. Indeed, the electronic part the frequency of the external field is reduced, it is
of the increment becomes positive when necessary to carry out an additional analysis of
formula (3.2). We will note that greatest interest

is attached to the left part of such a boundary, for
This means that at frequencies of the external field which, according to Fig. 2, kvpe/w, is of the order

kv E

kUTe

awy = |kvg| 22 1.8 kure. (3.10)

lower than of unity.
eF i B4y \'h Let us write down in place of Eq. (3.8) the corre-
= 0.55 / l = (.55, ( - ) , (3.11) sponding approximation obtained by assuming that
Mur, NeuT, . . . .
w/kvre is small. Indeed, assuming that wo/vae is
the Cerenkov effect on the electrons leads to a not small compared with unity, we get
buildup of the oscillation. The corresponding condi- — .
tion for the wavelengths of the growing oscillations | .. _ TOL o < __ e )
is of the form 8 (hrp)? 2kFor®
1 Tle2m; 1\% V nooLd  kvredi(a)
=T {ln[—r—m—] ENCRE VS o Teme 1)
Inasmuch as we have assumed above that krpe > 1, L (@) —F( o Wy } (3.13)
to satisfy the inequality (3.12) it is necessary that U /2(a) oLl ke )
the temperature of the electrons greatly exceed
. where
the temperature of the ions.
Figure 2 shows the limits of the region in which P, Yo5)— 2(z2 4 1/ax)e
the imaginary part of the right side of (3.6) is ' z )
negative (the ordinates are the values of kvpo/k - vy, [‘/zx + 22 — 2737 \ dl e“] + qzbe—2e
and the abscissas the values a = eE-k/mw}). Just 0
as in Fig. 1, the Cerenkov effect on the electrons z 9.3 Z
lead to buildup oscillations inside the region out- X{ 222 —1 — 23“’<2 [~2—- 52— “} § rlle”']
lined by the solid curve. o
Inasmuch, on one hand, that the ion damping is 1 — 922 , g3 (1 — 222)
relatively small for wavelengths which are much X [3 -+ T S ‘”el’] e >
larger than the Debye radius of the ions, and on the Y
other hand, according to Fig. 2, the buildup of os- z 923 & P, mE Y
cillations under conditions when formula (3.6) is X < [’2— + 2= CT\‘ ‘”"’p] T egz.'> e (3.14)
valid is possible only for values of a that are not :
small, in order for the instability to set in it is The table lists the values of this function. In Fig. 2
necessary that the amplitude of the electron oscilla- the dashed curve is the boundary of the region of
tions be much larger than the ionic Debye radius. positive electron increment, determined with the
The region of buildup on electrons, outlined by aid of the equation
the solid curve in Fig. 2, corresponds to the case J(a) F(i o (3.15)

of wavelengths which are much shorter than the J2(a) Vord ' kupe/
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for the case of an external-field frequency which is
double the Langmuir frequency of the plasma elec-
trons. The dash-dot curve corresponds to the case
Wy = 3W7 e
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Thus, according to Fig. 2, we see that the region
of the instability breaks up into individual sub-
regions with decreasing frequency of the external
field. In addition, the left part of the boundary of
the region of possible instability shifts towards
longer wavelengths and lower velocities of the
electron oscillations in the external field. The
latter corresponds to an increase, according to the
table, in the values of the wavelengths for which
the function F is positive. At negative values of this
function, expression (3.13) is always negative and
the oscillations do not build up).
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