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It is demonstrated that, owing to the Cerenkov effect, instability with respect to buildup of 
potential oscillations is possible in a plasma situated in a high frequency electric field. Such 
a kinetic instability, in contrast to the hydrodynamic instability previously discussed[1J, 
should also be possible in a plasma in which the electron Langmuir frequency is smaller than 
the external field frequency. 

1. It was shown in a study of the stability of the 
plasma in a strong high-frequency field E(t) 
= E sin w0t[i] that instability against buildup of 
oscillations of the potential field sets in at external­
field frequencies w 0 close to the electron Langmuir 
frequency wLe = ./47Te2Ne/m and at lower frequen­
cies. This instability is not connected with the 
Cerenkov effect, and is hydrodynamic in this sense. 
On the other hand, it was shown[2J that the plasma 
is stable against buildup of potential oscillations 
under conditions of very high external-field fre­
quencies, when the plasma is transparent. In this 
communication we show that a transparent noniso­
thermal plasma situated in a strong high frequency 
field is unstable if the frequency of the external 
field is not too high. The resultant instability is 
due to the Cerenkov effect on the plasma particles 
and is kinetic in this sense. To determine the sta­
bility of a nonisothermal plasma we can use the 
dispersion equation for potential oscillations, ob­
tained in[i] 

1 + 1 
oe;(w + iy, k) 
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= ~ ln2 (a) I 1 - 1 +6ee(nwo+ w + iy, k) J (l.l) 
n--oo 

With the aid of this equation it is possible to inves­
tigate the oscillations whose frequency is small 
compared with the external-field frequency 
(see[1, 3]). Here Jn is a Bessel function, 
a= eE · k/mw5, the indices i and e correspond to 
ions and electrons, and, finally, the function 

4nea2 1 of'" 1 
8ea(w + iy, k) = -- J dpk- (1.2) 

k2 up w + iy - kv 

represents the well known expression describing the 

contribution made by particles of species a to the 
longitudinal dielectric constant. The particle distri­
bution functions fa will be assumed to be isotropic 
functions of the momentum. 

In the instability considered below the increment 
y is small compared with the frequency w. There­
fore we shall assume such a situation to hold in the 
analysis that follows. For the damping of the waves 
to be small it is necessary to assume that the phase 
velocity (w /k) of the oscillations is large compared 
with the thermal velocity of the ions. Then the left 
side of Eq. (1.1) can be approximately represented 
in the form: 

The right side of ( 1.1) assumes a specially simple 
form for short waves, much shorter than the elec­
tronic radius of Debye screening. In this case OEe 
is small compared with unity. Therefore the right 
side of Eq. ( 1.1) can be written in the form 

n=-oo 

(1.4) 

This expression is always small compared with 
unity. Therefore for the frequency of such short­
wave oscillations we obtain immediately 

(1.5) 

where wLi = ./47reiNi/mi is the Langmuir frequency 
of the ions. The Cerenkov effect on the ions leads 
to dissipation of the oscillation energy. The corre­
sponding contribution to the increment for a Max-
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wellian distribution of the ions is negative and of 
the form 

y; = - v ~ ( k~;~3 e~p [-f s;2 l (1.6) 

where si = w/kvTi' and rDi = VKT/47reiNi is the 
Debye radius of the ions. 

A positive contribution to the increment leading 
to the instability can be due to the electrons. In 
order to assess such a possibility, we must con­
sider the imaginary part of the formula (1.4). This 
can be readily done in general form if the phase 
velocity of the oscillations is small compared with 
the thermal velocity of the electrons. In this case 
we can expand ( 1.4) in powers of w. The zeroth 

where 

v = (ikvo + iy + w + WLe) /wo, 

1-l = (ikvo + iy + w - WLe) I Wo. 

In the case of interest to us, that of plasma oscilla­
tion frequencies that are small compared with the 
frequency of the external field, we can expand the 
right side of (2.3) in powers of w + iy. As a result 
we obtain1> 

1+ 1 
be;(w + iy, k) 

WLe. {[ w dl( d !p(a) )-1} = 2-Re 1 + i-- --In-- , (2.4) 
wo · wodp .. dina Lp(a) 

term of such an expansion makes no contribution to 
where p = (ikv0 + WLe)/w 0• We have left out y from 

the imaginary part if, as has been assumed, the 
the term that is linear in the oscillation frequency, 

distribution of the electrons is an even function of . th· t· t . 1 t" 1 II smce IS en tre erm IS re a IVe y sma . 
the momentum. As a result we get for the imaginary F th "f th f f th t 1 f" ld 

f . ur er, I e requency o e ex erna Ie 
part o expresswn ( 1.4) . 

greatly exceeds the Langmmr frequency of the 

+co 
Im 2:; ln2 (a)oee(nwo+w,k) 

n=-oo 

(1. 7) 

For instability to set in it is necessary that this 
expression be negative for positive w. This calls 
for a negative second derivative, with respect to 
the velocity, of the electron distribution function fe 
integrated over the momenta perpendicular to the 
wave vector k. This condition is satisfied for a 
large number of distributions. We shall consider 
separately, using two plasma-electron momentum 
distributions as examples, the regions in which the 
Cerenkov effect leads to buildup of oscillations, and 
will obtain expressions for the corresponding os­
cillation increments. 

2. In order to understand better the properties 
of the discussed instability, let us consider the case 
of an electron distribution 

1 mvo 
j(p) =- (2.1) 

n2 (p2 +m2vo2)2 

Such a distribution function yields for the dielectric 
constant an expression 

WLe2 

Oee(w, k) =- (w + ikvo)2 (2.2) 

Substituting (2.2) in the right side of (1.1), we 
can sum the series (see[ 1J). We then obtain 

1 + 1 = ~ WLe { lv(a)Lv(a) _ J 11 (a)L11 (a) } 
be;(w +iy,k) 2 (o)o sinnv sinnr-t ' 

(2.3) 

electrons, then, expanding (2.4) in powers of 
(wLelw 0), we obtain 

1 WL 2 [ W d J d r e-2Yt 
1 +- = 2-e 1-i-- - J dtlo(2asint) 1 be; w02 Wo dy dy 0 e-2"Y -

-2 Wu2 [ 1- i~_q_ l _q_Im{-d-ln !;y(a) }-1 

- w02 w0 dy J dy · dIn a J -iy (a) ' 

y =· kvo I wo. (2.5) 

For very short waves, when kv0 » w0, formula (2.5) 
assumes the following simple form: 

1 WLe2 kvo { w 2k2vo2 - a2wo2 } 
1+--= 1+i--· . . 

oe; [k2vo2 + a2wo2J'h kvo k2vo2 + a2wo2 

(2.6) 

The imaginary part of the right side becomes nega­
tive when 

a > l"Zkvo I wo. (2. 7) 

In other words, the instability becomes possible 
under conditions when the velocity of the oscilla­
tions of the electron in the external electric field 
exceeds -12 v0• Taking formula ( 1.6) into account, 
we obtain from (2.6) the following expression for 
the oscillation increment: 

l)The following integral representation of the right-hand 
side of (2.4) is also convenient: 

WLe.[ W d J r [ ( WLe) J 2- 1 - i-- Im J dt exp - 2 y + i- t 
Wo Wo dy Wo 

0 

X lo(2asin t) { exp [- 2Jt (y + iw:J ]-1 r1
, 

kvo 
y=-. 

Wo 
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1/n WLi ( f ) '\' =- - ----exp --s;2 

8 (krn;) 3 2 

+ ~ ffiL; 2wLi [a2wo2 - 2k2vo2] 

2 [a2woz + kzvo2J'I, 
(2.8) 

By virtue of the smallness of the right side of (2.6), 
the oscillation frequency is given by expression 
( 1.5). According to (2.8), the instability sets in 
when the wavelength is not too small. 

(2.9) 

The last inequality is compatible with the condition 
for the applicability of formula (2.6) if 

(2.10) 

In other words, this is possible when the average 
energy of the disordered motion of the electron 
greatly exceeds the ionic energy, corresponding to 
the case of a non-isothermal plasma. In the "long­
wave" limit, when lkv0 + iwLel « w 0, we can write 
formula (2.4) in the following simple form 

x{ Wo4foZ(a) 1 -~~ dtt2 (2:rt2-t2)J0 (2asint)lj· 
[k2voz + WLez z :rt ~ 

(2.11) 

It follows therefore, that in such a limit the insta­
bility is possible only in the region of small values 
of J 0(a). Thus, for example, in the vicinity of the 
point J 0(ar) = 0 we can write for the frequency and 
the increment of the oscillations the following 
formulas: 

(2.12) 

(2.13) 

where 

(2.14) 

When a 1 = 2.4 we have C1 = 1.86. For large values 
of ar, we get the asymptotic relation Cr = 1r3/8ar. 
Also at large values of ar, we can write the follow­
ing formula, which determines the limits of the 
region near ar in which the electronic part of the 
increment (2 .13) is negative: 

(2.15) 

It is obvious that formula (2.15) holds true only 
when the velocity of the electron oscillations 
vE = eE/mw 0 greatly exceeds v0• 

According to formula (2.13), instability occurs 
when the following inequalities are satisfied 

}\ = _! > rn; {2ln [ v :rt wo4VT; ]}''' ~ rv;. 
k 8 WLiwLi2C,vo(krvi} 4 

(2.16) 

Simultaneously, according to the condition for 
the applicability of (2.11), it is also necessary to 
satisfy the inequality A. » v0jw 0• At the same time, 
by virtue of the fact that ar is not small, the wave­
length of the growing oscillations is small com­
pared with the amplitude of the oscillations of the 
electron in the external electric field. This is the 
condition determining the electric field intensity at 
which instability with increment (2.13) sets in. We 
note, finally, that we can confine ourselves to the 
term linear in w in the right side of (2.4) only when 
w « kv0 or kv0 « WLe· Therefore, just as in the 
case (2.10), we must have mv5 » KTi. In the case 
of short waves, we obtain the instability condition 
in the region of large values of a. On the other 
hand, the limit of the instability region for large 
values of a also lies in the region of small values 
of kv0jw 0• The corresponding asymptotic expres­
sions for the right sides of the dispersion relations 
(2.4) and (2.5) can be obtained relatively simply. 
For simplicity, we shall write here only the dis­
persion relation (2.5) in the limit of large a and 
small y = kv0/w 0• Namely: 

1 :rt WLi{sin2 (a-:rt/4) cos2 (a-n/4)} 
1 + -oe-·;-(w-,-k-) = - 2a w02 . ch2 (ny/2) - sh2 (ny/2)--. 

1 1 + 6e2ny + e4ny 

F 1 (y) = 4 e"Y(1 + e2"Y) 

(2 .17) 

(2.18) 

Figure 1 shows the limits of the region in which 
the right side of (2.5) has a negative imaginary 
part. The ordinates represent kv0/aw 0, and the 
abscissas the values of a. It is precisely within 
the shaded region that the Cerenkov effect on the 
electrons leads to buildup of oscillations. The 
asymptotic formula (2.18) shows the correct varia­
tion at the lower limit of this region, beyond the 
extreme right side of the figure. The upper limit 
(also on the right) is obtained from (2.7). 

3. Let us consider now the condition for the oc­
currence of instability in the case when the electron 
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distribution can be regarded as Maxwellian with a 
temperature Te. Then 

6ee(w,k)=~[1-J+(-w-)l, (3.1) 
k rve kvre; J 

where rne = VKTe/47re2Ne is the electronic Debye 
radius, vTe = VKTe/m is the thermal velocity of 
the electrons, and 

X 

J.-J-(x) = xe-x'/2 ~ dt e1'12• 

ioo 

Substituting (3.1) in the right side of (1.1) we obtain 
the following dispersion equation: 

1 +oo 

6c;(w + iy, k) =- .2; ln 2 (a) 
n=-oo 

We turn first to the case of long waves kvTe 
« w 0, but at the same time we do not assume the 
frequency of the external field to be close tow Le· 
We can then write near the zeroes of the function 
J 0 the following expression for the instability incre­
ment 

We obtain accordingly for the frequency 

w2=w .2f1+ ]12(ar)(a-ar)2 
Lt l 1 + (krve)-2 

:rtWLe/ Wo . l 
--. -~-1-lwL fwo(ar)LwL fw,(ar) J· 

Sill :rtWLe Wo e e 

(3.3) 

(3.4) 

From this it follows that for instability to occur it 
is necessary to satisfy the inequality 

2k2 ln2WL;~6(rvdrve)31,2 (ar) > ~o2 __ ._1_ 
<iJLek2Vre2 ( Wo2 - WLc2) 2 Vri rv;2 

(3.5) 

It is much easier to satisfy this inequality for a 
plasma with an electron temperature much higher 
than the ion temperature. In particular, this is seen 
especially clearly if w5Ti < wieTe. One must not 
forget, however, that in the considered limit of 
long waves the instability occurs only under condi­
tions when the wavelength is smaller than the am­
plitude of the oscillations of the electron in the 
external field. This means that the velocity of such 
electron oscillations should greatly exceed its 
thermal velocity. 

An analysis of the dispersion equation (3.2) be­
comes especially simple in the limit of short waves, 
shorter than the Debye radius of the electrons. In 
this case the dispersion equation (3.2) can be writ­
ten in the form 

1 r ( Wot ) ( W + iy ) =~-- J dt te-'M' ]0 2a sin~~- exp it-~-. 
( krve) 2 0 2kvre kvre 

:::::: 1 rdtte-'M'Jo (zasin~)(1+i~ ). 
(krve)Z 0 2kvre kvre 

(3.6) 

The integral in the right side of this equation can be 
readily integrated if w 0 « kvTe· We then obtain 

(3.7) 

(3.8) 

In the limit when the intensity of the external elec­
tric field vanishes, formula (3.8) gives the usual 
expression for the decrement of the ion-sound os­
cillations. In the opposite limit of strong fields, 
when aw 0 » kvTe• we obtain from (3.8) 

Vn WL; [ 1 2] WL;2WLe2 
v=-- exp--2s; +lk la'(3.9) 8 (krD;) 3 Ve 

where VE = eE/mw 0 is the velocity of the electron 
oscillations. The second positive term of the right 
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side of this formula, due to the Cerenkov effect on 
the electrons, leads to growth of the oscillations if 

According to (3.8), the condition for the instability 
turns out to be weaker. Indeed, the electronic part 
of the increment becomes positive when 

(3.10) 

This means that at frequencies of the external field 
lower than 

I eE I (E2/4:rt )''• """0.55 --- = 0.55wLe -.-- , 
mvre lVcxTe 

(3.11) 

the Cerenkov effect on the electrons leads to a 
buildup of the oscillation. The corresponding condi­
tion for the wavelengths of the growing oscillations 
is of the form 

1 _ { [ Te3 ef-mi ] }''' X=-> rDi ln . 
k Tle2m 

(3.12) 

Inasmuch as we have assumed above that krne » 1, 
to satisfy the inequality (3.12) it is necessary that 
the temperature of the electrons greatly exceed 
the temperature of the ions. 

I .\' 

I 
z 

I I 
3 3 4 fj 9 

I ----·------ ------

' I 
2.0 ' 

:i4,1 20,14 i 8,27 3.11 1.52 
2,2 : 125.6 16.04 I 5. 81 2.06 0,97 
2.4 I 92 8 8.90 

I 
3.25 1,16 0,54 

2,6 i 40.0 3,95 1.64 0,58 0,28 I 

2.8 i 14.93 1.95 0.76 0,28 0. 1:3 
3.0 :l. 50 0,66 I 0. 28 0, II 0,05 

electronic Debye radius. The left edge of the boun­
dary of such a region corresponds to small values 
of kvTe/w 0• The latter is possible only when the 
frequency of the external field greatly exceeds the 
electronic Langmuir frequency. To determine 
where the limits of the buildup region shifts when 
the frequency of the external field is reduced, it is 
necessary to carry out an additional analysis of 
formula (3.2). We will note that greatest interest 
is attached to the left part of such a boundary, for 
which, according to Fig. 2, kvTe/w 0 is of the order 
of unity. 

Let us write down in place of Eq. (3.8) the corre­
sponding approximation obtained by assuming that 
w/kvTe is small. Indeed, assuming that w0/kvTe is 
not small compared with unity, we get 

V :rt WLi2 kvrelt2 (a) 

8 (•lL/ (k2rni + 1) 2 

(3.13) 

where 

Figure 2 shows the limits of the region in which 2(z2 + 1/2x) 2e-z' F(x, y'2z) = ---~___:~~-----
the imaginary part of the right side of (3.6) is z 2 

negative (the ordinates are the values of kvTe/k · vE, [ '/z x + z2- 2z3e-z' ~ dl et'] + :rtzse-2z' 
and the abscissas the values a= eE · k/mw~). Just o 

as in Fig. 1, the Cerenkov effect on the electrons [ x ·J-3 z 

lead to buildup oscillations inside the region out- X { 2z2 - 1 - 2z:1 ( 2 ~ + z2 --::, ~ rltet' J 
lined by the solid curve. " 

Inasmuch, on one hand, that the ion damping is [ 1- 2z2 ' . ·] :rz3(1- 2z2)) 
relatively small for wavelengths which are much X z + . dtet· - ---'--. ---'-ez- • e~· 

larger than the Debye radius of the ions, and on the 0 

other hand, according to Fig. 2, the buildup of os- ( [ x 2z3 z ]2 :rtzs )-') 
cillations under conditions when formula (3.6) 1's x -;- + Z2 - ·--. \ dtet' + -.-.. · . 2 ez· • eZz· j 
valid is possible only for values of a that are not 0 

small, in order for the instability to set in it is The table lists the values of this function. In Fig. 2 
necessary that the amplitude of the electron oscilla- ' the dashed curve is the boundary of the region of 
tions be much larger than the ionic Debye radius. positive electron increment, determined with the 

The region of buildup on electrons, outlined by aid of the equation 

(3.14) 

the solid curve in Fig. 2, corresponds to the case lo2 (a) _ F ( Wo2 wo ) 
of wavelengths which are much shorter than the ---:1;2~- , WLe2 ' k~-~-~~ ' 

(3.15) 
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FIG. 2 

for the case of an external-field frequency which is 
double the Langmuir frequency of the plasma elec­
trons. The dash-dot curve corresponds to the case 
Wo = 3wLe· 

Thus, according to Fig. 2, we see that the region 
of the instability breaks up into individual sub­
regions with decreasing frequency of the external 
field. In addition, the left part of the boundary of 
the region of possible instability shifts towards 
longer wavelengths and lower velocities of the 
electron oscillations in the external field. The 
latter corresponds to an increase, according to the 
table, in the values of the wavelengths for which 
the function F is positive. At negative values of this 
function, expression (3.13) is always negative and 
the oscillations do not build up). 
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