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An analytical solution of the nonlinear problem of current stability in a non-isothermal plasma 
located in an external electric field is obtained within the framework of a theory in which pair 
collisions and particle scattering by ion-sound noise are taken into account. The shape of the 
quasistationary noise spectrum is found, and it is shown that if electron scattering by ion sound 
is taken into account an anomalously high resistance appears and restricts the electron current 
and prevents the appearance of runaway electrons. Equations are derived for the time varia
tion of the mean electron and ion kinetic energies in the plasma. It follows from these equa
tions that the presence of ion absorption leads to intense heating of the plasma ion component, 
at a rate proportional to the external electric field strength. 

1. INTRODUCTION 

IT is well known[t, 2] that a nonisothermal plasma 
situated in an external electric field becomes un
stable if the mean directed velocity of the electrons 
exceeds the phase velocity of the ion-sound waves. 
By now an anomalously high resistance of a plasma 
to electric current was observed experimentally 
by a number of workers [3- 5], who are inclined to 
believe that this result is the consequence of an 
instability that arises in the plasma. 

Since such results cannot be explained within the 
framework of the linear theory, it becomes neces
sary to construct a nonlinear theory for a current
carrying plasma. The present paper is devoted to 
an analytic solution of the nonlinear problem of 
instabilities of ion sound in a plasma situated in an 
external electric field. We take account here of the 
interaction between the electrons and the ion-sound 
noise, as well as pair collisions 1>. 

A similar problem, but with pair collisions 
neglected, was considered in[7 ,a]. Field and Fried[7J 
reported the results of a numerical calculation of 
the initial stage of the process, which is the most 
difficult for an analytic solution. However, when 
writing down the initial equations, they made a 
number of assumptions whose validity calls for 
additional justification. First, they assumed that 
in a direction perpendicular to the external field 
the distribution function was Maxwellian, and fur
thermore with constant temperature; second, they 
assumed that in the nonlinear theory the spectral 

1lA similar problem is studied in a one-dimensional model 
in [ •]. 

density of the noise W(k) has a sharp maximum at 
a wave number k for which the increment of the 
linear theory is maximal; finally, they took abso
lutely no account of the damping of the waves by 
the ions, a very important factor and one particu
larly essential for the determination of the station
ary noise spectrum. 

A paper by Korablev and Rudakov[8 J is devoted 
to an analytic investigation of the second quasista
tionary stage of the process. However, just as 
Field and Fried [7 J , Korablev and Rudakov[8 J com
pletely neglected pair collisions, and hence the 
collisional wave damping. Because of this, their 
results pertain, strictly speaking, only to the case 
when the ratio of the external field E to the so
called critical field Ec is infinitely large, and thus 
cannot explain the dependence of the number of 
runaway electrons on the magnitude of the electric 
field EY In our paper, to the contrary, we take 
into account also pair collisions, and consequently 
the finite ratio E/Ec. The latter, in turn, makes it 
possible to analyze more rigorously the conditions 
for the convergence of the employed method of 
successive approximations, and to indicate on this 
basis the value of the electric field below which the 
number of runaway electrons is negligibly small. 
We shall see that this value exceeds by many times 
the critical field Ec obtained within the framework 
of plasma-stability theory. 

2) A definition of the critical field Ec is given below (see 
formula ( 44)). 
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2. FORMULATION OF THE PROBLEM AND 
FUNDAMENTAL EQUATIONS 

Let us consider a spatially-homogeneous fully 
ionized non-isothermal plasma with Te » Ti, 
situated in an external electric field E. Let fe(v, t) 
and fi(v, t) be the distribution functions of the elec
tron~ and ions, respectively, normalized to unity. 
To avoid misunderstandings, we point out immed
iately that henceforth (with the exception of a few 
particular examples) , we shall not assume that the 
functions fe and fi are Maxwellian, although for 
convenience we shall use the concepts of tempera
tures defined in the following manner: 

m- -
T - mvr z - - (v z - (v ) 2) e- e- 3 e e , 

( 1) 

where the bar with the index e or i denotes averag
ing over the corresponding distribution function, 
and m and M are the masses of the electron and 
the ion. However, for simplicity we shall assume 
that the ion distribution function fi(v, t) is isotropic. 

We denote further by W(k, t) (k is the wave vec
tor) the spectral density of the energy of the ion
sound waves in a plasma normalized to an average 
energy density ct(t) such that 

ct(t)= ~W(k,t)dk. (2) 

Then in the lowest order in the nonlinearity, and 
under the assumption that the intensity of the ion
sound noise W greatly exceeds their thermodynamic 
equilibrium value, the system of equations for the 
functions fe(v, t) and W(k, t) can be written in the 
form[s] 

ofe eE ofe o ofe 
---- = -::---Dii-- + Sl(/e), 
ot m ov ovi OVj 

i,j=1,2,3 (e>O); (3) 

oW I ot = (vs- v) W, V = Vi + V cou (4) 

The first term in the right side of (3), which is 
proportional to 

( 5) 

takes into account the scattering of particles by 
the ion-sound noise, and the second takes into ac
count the electron-ion and electron-electron 

collisions3'. In Eq. ( 4) the first term, which is 
proportional to 

M o 1 ( kv) 
Vs = :rt -ks3 - J dv/e(v)6 \s-- , 

m os k 
( 6) 

describes the excitation of ion sound by electrons, 
while the last two terms 

1 ( mTe )'j, Sm2 
Vi= 2:rt2ks"f;(s), V col!=--= -- --VT, 

2 f":rt MTi s2 
(7) 

take into account the Landau damping by the ions 
and the damping of the sound by the ion-ion colli
sions[to]. In formulas (3)-(7) we use the following 
notation: n-electron density, s = s(k) = w(k)/k
phase velocity, and sm-maximum phase velocity 
of the ion-sound waves (equal in the case of a 
Maxwellian distribution to sm = (Te/Ml 112 , and 
vT = v(vTe), where v(v) = 47re4nL/m2v3 is the fre
quency of the electron-ion collisions (L-Coulomb 
logarithm) . 

We change over in (3)-(6) to the spherical co
ordinates v = { v, e, cp}, k = {k, 0', cp'}, with z axis 
directed opposite to the vector E. Then, by virtue 
of the axial symmetry of the problem, the functions 
fe(v) and W(k) can be regarded as dependent only on 
the variables v, ~ = cos e and k, x = cos e'; and Eq. 
(3) takes the form 

+ y1-£~D. ~fe]+!_fl"1-~D ofe+1-£2 D ofe] 
v 's 8£ 8£ L v v£ ov vz ~£ i)l= 

(8) 

where the coefficients are 

(9) 

3 >we note that if the number of neutral atoms is sufficiently 
small, so that their contribution to the effective collision fre
quency is relatively small, then we can, without changing at all 
the computation scheme developed below, take account also of 
inelastic collisions which, while not playing a decisive role in 
the momentum conservation law, can make a rather appreciable 
contribution to the energy balance equation (see (41) and (42)). 
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with 

rr s2
) ]''• s X = T) I 1 1 - - ( 1 - 62} + -- 6. L, ~ v 

On the other hand, formula (6) for the increment 
'Y s(k, x) becomes 

An analysis of Eqs. (8)-(10) shows that the en
tire evolution of the instability can be broken up 
into two stages. Immediately after the field is 
turned on, the average electron velocity begins to 
grow, and as soon as it exceeds a magnitude of the 
order of several times vTi• ion-sound waves are 
generated, with an intensity that increases first 
almost exponentially. With increasing noise inten
sity W, the role of scattering of electrons by waves 
begins to grow continuously, leading to a decrease 
in the increment 'Y s and to a shift of its maximum 
value towards larger values of k; on the other hand, 
waves with small values of k begin to attenuate. 
The anisotropic part of the distribution function 
also changes quite rapidly during this stage. This 
is followed by a second quasistationary stage, dur
ing which the noise intensity Wand the average 
electron velocity v e• which have already reached 
saturation, change relatively slowly, increasing 
only with increasing electron and ion temperatures. 

The first stage, as already noted, is the most 
difficult for an analytic solution and apparently can 
be investigated in detail only by means of compu
ters. We therefore confine ourselves here to a 
study of only the second quasistationary stage of 
the process. We note beforehand that inasmuch as 
Dvv ~ s 2v-2DH and Dv~ ~ sv- 1DH, and the ratio 
s/vTe :S m/m « 1, the most rapid process for the 
bulk of the particles, i.e., in the velocity region 
v ~ VTe• which proceeds with a characteristic time 
on the order of v~h ~ v\-eiD~~(vTe), is the momen
tum relaxation process; on the other hand, the en
ergy relaxation process is much slower (by ap
proximately M/m times). Therefore, in analogy 
with the procedure used in plasma stability theory, 
it is natural to attempt to seek a quasistationary 
solution of Eq. (8) under the assumption that the 
isotropic part of the distribution function f~0>(v, t) 
is large compared with its anisotropic part 
r<t>(v, ~' t) and neglect in the equation for the latter e 

the derivative af< tl ;at compared with the diffusion 
e w 

terms which are of the order of v effafe '/a~ . In ad-
dition, we assume also that the characteristic time 
of variation of the spectral density W is much 
larger than the reciprocal increment -y~1 and ac
cordingly, we can neglect in (4) the derivative 
aw;at compared with 'YsW. Under these assump
tions, the solution of the system of nonlinear equa
tions (3) and (4) can be obtained. 

Thus, putting in (8) fe(v, ~) = f~0 >(v) + f~1 >(v, ~) { 
recognizing that f<o>(v) » f<1l(v, ~) and does not 

e e h d . depend on the variable ~, and neglecting t e enva-
tive af~t>; at, we get 

8j.<1l [u(v)+2Dvdvv(v)y~] 8fe<0> 

~-=- [1 + 2D6s/v2v(v)] Tv' 

u(v)=~. (11) 
mv(v) 

In the derivation of these equations we took ac
count of the fact that inasmuch as electron-electron 
collisions do not change the total momentum of the 
electron gas, and the frequency of the electron-ion 
collisions increases with decreasing velocity like 
v-3, we can neglect, without noticeable error, the 
influence of the electron-electron collisions on the 
anisotropic part of the distrihution function in the 
velocity region vTi « v :S VTe• and assume that 

a 1 - 62 at.<t> 
St(f.}= St(f.<0>)+ar--z-v(v) 8f" (13) 

Thus, the quasistationary state will be described 
by the system (11) and (12), which should be solved 
simultaneously with the equation 

[y.(k, x) -y(k)]W(k, x) =0. (14) 

Inasmuch as s/vTe « 1, we can neglect the small 
quantities of order s/v in expressions (9) and (10) 
for the coefficients Dij and the increment 'Y s• and 
put 
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M 
'Ys(k,x)= -2n2 -ks3 

m 

After substitution of Bf~>j a~ from (11) and integra
tion over the velocities, (16) takes the form 

M 
Vs(k,x) =- 2n2 -ks3j.<0>(0) {s- Q(x)}, 

m 
3u(vTe) 3eE 

UT=------=· ·, 
4nvTe3fe<0> (0) 4nvTe3fe<0> (0) mvT 

( 17) 

constant v0 is the requirement that the following 
equality take place for all values of the variable ~ 
satisfying the condition ~ 2 < 1- x5: 

(21) 

However, since W(k, x) = 0 when x :::::: x0, it follows 
from ( 15) that when ~ 2 > 1 - x5 the coefficients 
Dv~(v, 0 and DH(v, 0 vanish identically, and con
sequently 

Thus, formulas (21) and (21') determine the 
function q(;) for all -1 :::::: ~ :::::: 1, and consequently 
also the total increment r(k, x) for all values of x. 
It remains to determine the constants v0 and x0, 

and to find the explicit form of the function W(k, x). 
The constant v0 is determined from the vanishing 
of the total increment r(k, X) When X > Xo- Recog
nizing that, in accord with (21), we get Q(x) = v0 

(18) when x > x0 , we obtain 

and consequently no longer depends explicitly on 
the concrete form of the distribution function. This 
dependence enters only via the velocity uT which, 
if f~0 >(v) is close to Maxwellian, is equal to 
uT = :N7T/2eE/mvT, i.e., it depends only on the 
electron temperature Te = mv?:re· 

3. QUASISTATIONARY SPECTRUM OF ION-SOUND 
NOISE 

We consider first the equation (14) 

W(k, x)f(k, x) = 0, 

where r(k, x) denotes the total increment 

f(k,x)=y.<0>(k) [_Q_~x)_1 ]-v(k), 

M 
y 8(0) = 2n2-ks4fe<0l(0), 

m 

(19) 

(20) 

and Q(x) denotes the integral (18) which enters in 
formula ( 17). We assume that the noise intensity 
W(k, x) differs from zero only inside a cone with 
aperture angle fJ' = e0, i.e., only for X > Xo = COS eO, 
and that it is identically equal to zero when x :::::: x0, 

i.e., outside this cone. This assumption, obviously, 
does not contradict the initial equation (4) only if 
the increment r(k, x) vanishes identically for 
x ::::: x0 and is negative when x < x0. But since the 
functions y(k) and y~0 >(k) do not depend on x, this 
can take place only if the function Q(x) is likewise 
independent of x in the region x > x0. On the other 
hand, it is easy to show that the necessary and 
sufficient condition for the integral Q(x) not to de
pend on x when x > x0 and for it to equal a certain 

y;0> (k)[vo/s- 1]- y(k) = 0. (22) 

However, since it follows from (15) and (18) that v0 

does not depend on the wave number k, the equality 
(22) can hold only for one value k = k0 (and conse
quently one value s = s 0 = s(k0)), namely one for 
which the increment r(k, x), regarded here as a 
function of k (or s), has a maximum value, which 
according to (22) is equal to zero. From this it 
follows, in turn, that Eq. (19) can have nontrivial 
solutions only if 

6(k--ko) (23) 
W(k,x) = k2 Wo(x), 

where k0 is the root of the equation 

ar(k, 1) = -~ {v <o\k) [~ _ 1] _ y(k)} = o. (24) 
ak ak • s 

With this, according to (22), the constant v0 will 
be equal to 

v0 =s0 [1+y(ko)/y,<0>(ko)]>so, so=s(ko). (25) 

To find x0 and the function W0(x) we use Eq. (21) 
which, taking (23) into account, can be represented 
in the form 

y2-~=A ~ Wo(x)x dx (.!_-A.), y2 ~ Xo2, (26) 
UT • yy2-x2 y2 .· 

Xo 

where 

so 4n M koso3 1 A.=-<1, A=------. 
Vo A m VTe UTVT nT e 

We see therefore that since the right side of this 
equality vanishes when y = x0, it is necessary to 
put x5 = v0/uT in order to make (26) consistent. 

Substituting (21) and (21') in (18), we obtain the 
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expression for the total increment r(k, x): 

(O) [ Vo J f(k,x)=vs (k) -s -1 -y(k) 

X 
-~ - 1 for I xI ~ xo 
!xi 

+ v!O) (k)~· X 2 [ X l'1- Xo2 
s - - 1 + -arc cos~----.,-= 

I x I n x02 l' 1 - x2 
(27) * 

Taking into account the definitions of s 0, v0, and x0, 

we can readily verify that, in accordance with the 
assumptions made, the increment r(k, x) vanishes 
when k = k0 and x ::::: x 0, and is negative for all other 
values of the variables k and x. 

Solving the integral equation (26) (see the ap
pendix) , we get 

I <p(x) for 

Wo(x) =(to 
0 

for 

X~Xo 

(x02=~), 
' Uy 

X ~Xn 

(28) 

where 

A m eEn 1 

3 x + l'x2- x02} 
-- AXo4 ln . 

4 Xo 

(29) 

Thus, the quasistationary noise spectrum is de
termined by formulas (23) and (28), from which it 
follows that it contains only waves with one value 
k = k0, determined only by the parameters of the 
plasma and not depending explicitly on the electric 
field E. With this, the directions of wave propaga
tion are bounded by a cone with aperture angle 
e0 = cos-t.v'v0/uT .4> Since UT is proportional toE, 
the angle e0 decreases with decreasing field E and 
vanishes when UT = v0. This value corresponds 
precisely to the stability limit, since, as follows 
from the expression for the increment r(k, x), 
instability can take place only when the velocity UT 
exceeds v0. We note, finally, that since A< 1 

*arctg =o tan -•. 

4)It is interesting to note that this angle is smaller than 
follows from the linear theory, according to which it should be 
equal to cos-'(vo/uT). 

(see (25)), the function W0(x) is always bounded5>. 
The total noise energy density is 

1 

(g = 2n ~ W 0 (x)dx = 2n(tol(A-,xo), 
-1 

1 

l(A-, x 0 ) = ~ cp(x)dx. 
Xo 

(30) 

From this it follows, in particular, that (g depends 
very little on the collision frequency and increases 
in direct proportion to the field intensity E. In the 
case of greatest interest, when x5 « 1, the last 
term in expression (29) for q;(x) can be neglected, 
and we get for the integral 

1 { 1 9 
I ( A, xo) = --:-A-:-3 (-,-1 -),-:-) 1 + (1 - A) In 1 _ /, - 2- ( 1 - A) 

+ 5(1- ).)2- ~(1- 1,)3 }+ O(x02). (31) 

To conclude this section, let us analyze Eqs. 
(24) and (25), which determine the parameters s 0, 

v0, and A. We confine ourselves here for simplicity 
to the case when the velocity distribution of the 
electrons and the ions are nearly Maxwellian, so 
that sm = v'TefM, and the collision frequency is 
not very large, so that the following inequality is 
satisfied6>: 

Vr I wo < (mT; I MTe) 'f,, Wo2 = 4ne2n I m. 

Substituting expressions (7) for yi(k) andy coll(k) in 
(24), and taking (25) into account, we find that when 
the collision frequency VT varies in the interval 

wo ( mT;- ~' ~ Vr ?> wo( m )"' ( ~ ) 3[In 4 M ('!!_)a]'/, 
MTe! .Jlf .. ,Te m T; (32) 

the principal role is assumed by collision damping, 
and 

So ;::::::; ( !!___ Y'[ ~ ( M~e )'h]'ls' 
M 1 wo mT; 

(33) 

i.e., the phase velocity decreases slowly with de
creasing collision frequency. The constant A is in 
this case independent of the plasma parameters 
and is equal to 

S)If we neglect completely the damping by the ions and put 

vT = 0 and y(k) = 0, then A= 1, x0 = 0, and we obtain for W0(x) 
the same expression as in [8]. At the same time, however, we 
obtain for the total noise energy a divergent expression, which 
indicates that such a neglect is not valid. 

6>In the case of large values of vT, when the inverse in
equality is satisfied, we have for the velocity s 0 = 2(T eiM)'hjS'h, 
and A= [1 + (MT elmTi)'hvT/w0r• << 1. It must be remembered, 
however, that the theory developed here is valid only so long 
as y 8 << w. We note also that if the function f~0 >(v) differs from 
Maxwellian, then the quantity T ein the formulas (32)-(37) ob
tained below must be replaced by Ms:n. 
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(34) 

With further decrease of the collision frequency, 
the main role is assumed by the Landau damping Yi 
and when 

( m )'!'( T. )3 [ M ( T \ 3J'h 
Wo\M r:. ln4-;; r:J ~vr;;:::O (35) 

the phase velocity s 0 is equal to 

'"" ( T; ) 'h[ M ( Te )3]'12 so'"" -- ln4- 1 - • 
M. . m, T; 

(36) 

The constant A increases in this case somewhat and 
becomes a function of the temperature ration: 

[ M ( T )3]-J 
'A ~ 1 - ln 4 --;;:;: ;; . (37) 

4. DISTRIBUTION FUNCTION AND EQUATIONS 
FOR THE TEMPERATURES 

We now proceed to study the electron distribu
tion function. We consider first expression (11) for 
Bf~n I 8~. Taking ( 18), (21), (21'), and (28) into ac
count, this expression can be rewritten in the form 

l 1- s2 
af (!) at (0) --- u (v) for s2 ;;::: 1- Xo2 

e Vo e Vo 
--=-----X 

as 1- s2 av . u(v)/ur- 1 
l1 + forls2 ~1- xo2 

1 + '1'0'1- £2 ) 

(38) 

where 
y 

4 'A\' x<p(x)dx 
'i'(Y)=--J ' 

3n yz yyz- x2 
Xo 

(39) 

and cp(x) is defined by (29). The integral in (39) can 
be calculated, but the expression obtained for 1/J(y) 
thereby is quite cumbersome and will not be pre
sented here. We note only that 1/J(y) ~ 32Ay/97T when 
AY « 1 and 1/J(y) ~ 4/3(1- Ay) 312 when AY ~ 1. 

Using (38), we can determine the mean electron 
velocity vze = (ve · E)/E, and consequently the cur
rent density j = env ze flowing through the plasma. 
Assuming for simplicity that the ratio x5 = v0/uT 
« 1, and neglecting quantities ~ x5 compared with 
unity, we get 

Vze = BVo, e=a~+ 3/z(1-a), (40) 

where {3 = 47rv~f~0 >( 0) (in the case of a Maxwellian 
distribution {3 = 16/?r), and a stands for the integral 

7>1n these calculations we assume for simplicity that the 
plasma is sufficiently strongly non-isothermal, so that 

m/M » (Te/T)'exp(- Te/T), i.e., Te > 16Ti. 

NON-ISOTHERMAL PLASMA 
f 

a=~ ydy 

Xo 
l'1-y2 [1+'iJ(y)] 

1215 

which, as shown by analysis, is a monotonic func
tion of the parameter A, varying from 1 at A = 0 to 
~ 0.3 at A= 1. 

It follows from (40) that inasmuch as the critical 
velocity v0 does not depend on the field intensity E, 
and the parameter E is determined only by the form 
of the function f<o> ( v) (more accurately, by its 

e -
moments), then the average electron velocity v ze• 
and consequently also the current density j, like
wise does not depend on the field E. In other words, 
the resistance of the plasma in the quasistationary 
mode is anomalously large and increases in direct 
proportion to the intensity of the external electric 
field. 

We now turn to Eq. (12) for the function f< 0>(v, t). 
e 

A rigorous analysis of this equation, which in gen-
eral is nonlinear, is quite complicated, and we 
cannot dwell on it here8>. We confine ourselves 
only to a derivation of equations for the time varia
tion of the electron and ion temperatures, and to a 
brief analysis of this equation. We indicate at the 
same time the conditions under which the function 
f~0 >(v, t) can be regarded as close to Maxwellian. 

The sought equations can be obtained by multi
plying (12) by mv2/3 and integrating over the 
velocities. Recognizing, however, that the energy 
and momentum conservation laws are satisfied in 
the scattering of the electrons by the waves[9], it 
is simpler to start directly from the system (3) 
and (4). We multiply (3) by mv2/3 and then by mv/3, 
after which we integrate over the velocities. Sub
tracting then the second equation multiplied by 2v ze 
from the first equation, and taking ( 4), ( 5) , and ( 6) 
into account, we get 

dTe 2 ~ [£] 2"J'Zm 6Te 
--=- eEvze-v(ko)-- -_-vr[Te-T;]---. 

dt 3 n 3l'nM 6t 
(41) 

In the derivation of this equation we took account 
of the fact that d8/ dt « y [£ and neglected the small 
corrections of the order of v zeluT « 1 compared 
with unity. 

The physical meaning of the different terms in 
( 41) is obvious: the first takes into account the 
ohmic heating of the electrons, the second the 
cooling due to the excitation of ion sound absorbed 
by the ions, and the third the exchange of energy 
between the electrons and the ions upon collision. 

8 lThe nonlinearity of this equation is due to the dependence 
of its coefficients D .. and on the moments and to the need for 

1) 

taking into account the electron-electron collisions. 
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Finally, the fourth term oTe/ot describes losses 
occurring as a result of inelastic collisions or 
some other processes (for example, bremsstrah
lung). 

The equation for the ion temperature T i can be 
obtained simply from the energy conservation law, 
and takes the form 

dTi 2 ~ 2V2m 6Ti 
--= -y(ko)- + -=-vdTe- Ti]- --. (42) 

dt 3 n 3l'nM 6t 

The term y(k0) ~/n can be transformed to a 
simpler form which does not contain y(k0). Indeed, 
taking in account relations (29) and (30) for ft, and 
also (25), we can easily verify that 

v (ko) [g / n = eEso( 1 - /..)I (J.) ;::::: eEso, ( 43) 

where, as follows from (31), (34), and (37), the fac
tor (1- i\.)I(i\.) does not depend on E and remains 
quite close to unity for all values of the plasma 
parameters. Since, however, according to (40), the 
velocity Vze ;:;:, 3s0, the first term in (41) always 
prevails over the second, and when 6Tv/6t = 0 it 
leads to continuous heating of the electron gas. It 
is interesting to note also that it follows from (42) 
and ( 43) that the ion c0mponent of the plasma is 
heated almost just as effectively as the electron 
component. It must be kept in mind here that Ti 
has the meaning of the ion temperature only under 
condition (32), for in the opposite case of suffi
ciently small vT, when condition (35) is satisfied, 
only a small fraction of the ions with v > s0 is es
sentially heated, and their number, as shown by 
rough estimates, is ~ ns0v1:\ exp [- s5/2v~nl· Sl 

In conclusion it should be pointed out that since 
the characteristic time of variation of the electron 
temperature is of the order of m?re/eEvze' and 
the time of Maxwellization as a result of electron
electron collisions is ~ vf:, it follows obviously 
that the function f<Ol(v) will be close to Maxwellian 

e 
provided 

E~~E mvreVT 
~ Ec= . 

4vo c e 
(44) 

Since the ratio VTe/v0 ;:;:, VM/m, the magnitude of 
the external field can greatly exceed the critical 
value Ec when, according to the theory of a stable 

9 )It must be emphasized, however, that in the region of the 
parameters in which ion-ion collisions are insignificant a de
tailed analysis of the character of ion h'eating calls for solving 

also an equation for the function fi( v), since the processes of 
scattering of ions by the waves can lead to the anisotropy of 
the ion absorption. 

plasma, all the electrons should go over into the 
continuous-acceleration mode[1t, 12 ]. 10l 

Finally, if some additional energy loss (oTe,/ot 
;r. 0) increasing with rising temperature exists, then 
Eqs. (41) and (42) have stationary solutions for 
which the function f~ol (v), although not Maxwellian, 
does decrease quite rapidly (exponentially) with 
increasing velocity v. 

5. LIMITS OF APPLICABILITY AND GENERAL 
CONCLUSIONS 

We now discuss the limits of applicability of the 
results. The fundamental hypothesis on which our 
solution method is based is the assumption that the 
anisotropic part of the distribution function f~1l(v, 0 
is small compared with its isotropic part f< 0l(v). 
Since, as follows from (38), f~1 l has a maxi~um at 
~ = ± 1, the assumption will obviously be justified if 

- - --- + vo ln---~1. (45) 1 l Vo ( v ) 3 J ( i) ln j.<0J ) 4ur 
2 4 Vre ' iJv Vo 

Accordingly, it should be remembered that Eq. ( 12) 
for f~0 l(v, t) is valid only in the region of velocities 
satisfying the inequality (45). On the other hand, 
expression (28) for the spectral density W(k, x), 
and the equations for the moments (40)-(42), have 
in some sense a wider range of applicability. In
deed, in the derivation of (28) we used expression 
(11) for of~1lja~ only to calculate the zeroth mo
ment, i.e., the norm of the function f~0 l ( v), in the 
derivation of (40)-(42) we used it only to calculate 
the third moment v~. Therefore in order for these 
equations to be valid it is sufficient to have the 
main contribution made to these moments by parti
cles with velocity satisfying the condition (45). If 
we assume that the function f~0 l(v) is close to 
Maxwellian (which is the case, for example, under 
condition ( 44)), or else it decreases when v > vTe 
not more slowly than exp [-v2/2v?reL then we can 
assume that the main contribution to these mo
ments is made by particles with v2 < 6v~ . Then, 
condition (45) for the convergence of the ~mployed 
method takes the form 

E Vo Vre 
-~ exp--. 
Ec 16vre 5vo 

( 46) 

Since, according to (33)-(37), the value of v0 for 
a strongly nonisothermal plasma exceeds the 
thermal velocity of the ions vTi by only a few 
times, this criterion depends very strongly on the 
degree of non-isothermy of the plasma Te/Ti and 

10)For a strong non-isothermal plasma, the ratio vT /v0 may 
greatly exceed y'M/m (see (36)). e 
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on the mass ratio m/M. Thus, for example, if con
dition (35) is satisfied this condition gives for a 
hydrogen plasma with Te/Ti = 25 a value E « 25Ec, 
whereas when Te/Ti = 103 it becomes E « 1018Ec, 
i.e., it imposes practically no limitations on the 
field E 11l. It must be emphasized, however, that if 
there are no additional losses, i.e., oTe,/ot = 0, or 
if condition (44) is violated, then the function f~0 >(v) 
can decrease for large v » vTe much more slowly 
than Maxwellian, and thus the criterion (36) may 
turn out to be weaker than ( 45). To estimate the 
limits of applicability in this case it is necessary, 
of course, to use the latter. We note, finally, that it 
follows from condition ( 45) that total neglect of the 
collision frequency corresponds obvi9usly to the 
case of an infinitely strong field, when the iteration 
method used by us is not applicable. The problem 
then becomes essentia,lly nonstationary and calls 
for a special investigation. 

The second assumption used by us was that the 
change of the anisotropic part of the distribution 
function f~t>(v, L t) is slow, and that Bf~1>jat can be 
neglected compared with DH v- 2 af~n; a~. Taking (38) 

· into account, we can easily verify that this is justi
fied if 

(47) 

Since, according to (40), vze « vTe• this condition 
is certainly satisfied if condition (46) is satisfied. 

Neglect of the derivative aw I at in Eq. (4) is 
permissible, obviously, if 8 ln Wjat « y~O) or, what 
is the same, if 12> 

E2 m ( s0 )4 m ( T; \2[ M ( Te )a]2 --~-- ::::::::- --) ln4- 1 - .(48) 
nTe M Sm ' · M \ T,. ' m ' T; -

We note that the criteria (47) and (48) are meaning
ful only if af~o>; at "' o. 

Finally, it should be indicated that the quasista
tionary mode investigated by us is realizable, 
strictly speaking, only when the external field E is 
turned on adiabatically. If it is turned on instan
taneously, then it is necessary to assume that dur
ing the rise time of the noise(~ (M/m)w01) the 
electrons do not have time to acquire a velocity 
~ VTe· This imposes an additional limitation on the 
field: 

W/nTe < 4n(m/M)2. (49) 

ll)The inequality (44) goes over with this into E « 70Ec· 

l2)We note that when the condition (48) is satisfied the total 

noise energy is ~ << nTe. 

It is possible, however, that this criterion is ex
aggerated and can be slightly relaxed. 

As regards the allowance for effects of higher 
order in the nonlinearity, particularly nonlinear 
damping (or s-s scattering), these apparently play 
no important role whatever, for by virtue of rela
tion (23) the decrement of the nonlinear damping 
is identically equal to zero in this approximation[9J. 

In conclusion, let us summarize briefly our re
sult. Immediately after the field is turned off, the 
electrons begin to accelerate until their average 
velocity exceeds the value v0 at which excitation of 
ion' sound is possible. The noise energy then in
creases rapidly and reaches its quasistationary 
value, determined by formulas (22) and (28)-(30). 
Simultaneously, as a result of an increase in the 
scattering of the electrons by the ion-sound noise, 
the electron-collision effective frequency. increases 
rapidly, and this limits the average velocity and 
consequently the current flowing through the plasma. 
The plasma resistance then increases strongly and 
turns out to be directly proportional to the applied 
field (see (40)). This is followed by a quasistation
ary stage, in which both the electron and ion tem
peratures rise (see (41) and (42)). It i's important 
to emphasize here that if conditions (45)-(49) are 
satisfied, then the number of runaway electrons is 
negligibly small even for fields E that exceed Ec, 
and the runaway electrons have no influence on the 
character of the plasma 13>. On the other hand, if the 
process lasts sufficiently long, or if the conditions 
(45)-(49) are violated as a result of the increase 
in the temperature, then the number of runaway 
electrons can increase strongly, and to analyze the 
problem it is necessary to take into account already 
the interaction between the electrons and the high
frequency Langmuir oscillations. 

Finally, it must be noted that the results ob
tained here will apparently become valid also in the 
presence of a magnetic field H parallel to E and 
satisfying the condition H2 « 47rnmc2• Then the 
presence of noise should lead to anomalous diffu
sion that increases with increasing field E. 

APPENDIX 

We present a solution of the integral equation 
(26). An analysis of this equation shows that the 
derivatives of the function W0(x) become infinite at 

13)A rough estimate of the flux of runaway electrons contains 
too much leeway, and would be meaningless here. A more or 
less rigorous solution of this problem calls for a spedal analy
sis of Eqs. (3) and (4). 
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x = x 0. Therefore, in order to make the sought 
function regular at this point, we change over in 
(26) to new variables t and ?; , with a new unknown 
function U(t), with the aid of the relations 

(A.1) 

Then Eq. (26) takes the form 

~ u (t 1;,) tdt 
1;,(1+1;,2)=.)- ' [(1+t21;,2)'h-A,x0 (1+1;,2)].(A.2) 

0 l'1- t2 

Recognizing that U( 0) = 0 by virtue of continuity, 
and consequently U(t) is an odd function of the ar
gument, we shall seek a solution of Eq. (A.2) in 
the form of a series 

U(t) = ~ u~~.t2k+1 • (A.3) 
k=O 

Substituting (A. 3) in (A. 2) and equating coefficients 
at equal powers of t, we obtain 

1 
Uo=----

b1(1-A.xo) 

ui = 1 + AXo StUo- atUo ' 
bz(1- A.xo) 1- A.xo 1- A.x0 

where 

bh 1 
s~~.=--=1+--, 

bk+1 2k + 1 

bk = ~ t2hdt = l'~ r(k+ 1/z) 
0 l'1- t 2 2 k! 

r(z) is the gamma function and 
r(n- 1/z) 

'ao = 1, Un = ( -1) n-l , n ;;;;;,: 1 
2ynnl 

are the expansion coefficients of the function 
(1 + t 2) 112 in a Taylor series 

00 

(1+t2)'h= ~ ant2n. 
n=O 

Since the quantities bk, O'n' sk, Xo, and A. are 
known, relations (A.4) enable us to find all the co
efficients Uk and consequently the function U(t). 
However, in order to avoid summation of the series 
(A.3), we can proceed in somewhat form and, using 
relations (A.4), obtain for U(t) a differential equa
tion. Indeed, since 

00 00 

k=O k=2 

00 k 

X ~t2"+1 {s~~.Uk-iAXo- L:'anUk-n 7 
k=1 · n=l ·' 

t3 l..xo 
= Uot+ + t2 

bz(1- /..xo) 1- A.xo 

00 Ax 00 t2h+3 
X ~ U 11.t2k+1 + 0 ~ U 11.--- -

k=O 1 - AXo h.=n 2k + 3 

we get the equality 

t 3 AX 
U(t)= U0t+ + 0 t2U(t) 

bz(1- A.xo) 1- A.xo 

A.xo 1 U(t) --
+ .l tU(t)dt- [11+t2 -1]. 

1 - A.xo 0 1 - A.xo 
(A. 5) 

Differentiating it with respect to t, we get the fol
lowing differential equation for U(t): 

Thus 

dU/dt-cp(t)U=F(t), U(O) =0; 

t [3A.x0 l'1 + t2 - 1] 
cp(t)= ' 

(1 + t 2)[1- A.x0 y1 + t 2] 

1/bt + 3t2/bz 
F(t) = 

}'1 + t 2 [1 - A.x0 y1 + t2] 

t t 

U (t) = SF (t1 ) dt' exp ~ <p (t") dt". 
0 t' 

Recognizing now that 

I 

(A.6) 

(A.7) 

4 161 1 1 (1-A.x0 ) 2 

b1 =-,bz=-,.l cp(t)dt =ln -
n 3n 0 l' 1 + t2 [ 1 - A.x0 y 1 + t2)2 

and calculating the integral in (A. 7), we get 

4 
U(t) = 

n l' 1 + t2 [ 1 - A.xo y 1 + t2)2 

X [t( 1 + ; tz) - A,x0t(1 + t2)'h 

(A.8) 

Returning finally in (A.8) to the old variables, in 
accord with (A.1), we obtain expression (29) for 
W 0(x). 
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