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The unitarity condition for the 7r7r-scattering partial wave is deduced by taking into account 
that part of many-particle intermediate states which is produced and which goes over to the 
final state as a result of peripheral interaction. The contribution of this part of the many­
particle intermediate states is expressed in terms of physical partial waves. It is proposed 
to expand the amplitude in a series that converges over the whole zs plane (zs is the cosine 
of the scattering angle in the s channel) and possesses the property that its first N coeffi­
cients can be expressed in terms of the first N partial waves only. The expansion is also 
used to obtain an expression for the partial wave jump Az(s) on the left cut; this expression 
converges for all values of s. Application of this expression for the jump Az(s) on the left 
cut permits one to remove the divergences which usually appear in the bootstrap problem 
for exchange, in the crossed channel, of a particle with a spin greater than or equal to unity. 

J. In recent years a large number of papers have 
appeared, dealing with self-consistent calculations 
of masses and coupling constants (widths) of the p 

meson. It became clear from these papers that 
many-particle intermediate states play an impor­
tant role in the unitarity condition for the 7r7r-scat­
tering amplitude. Some of these intermediate states 
can be approximated by the two-particle state 1rw 

(and also 7rcp}, and the contribution of this state is 
decisive for obtaining a p-meson mass close to the 
experimental value[1•2J. However, in all of these 
papers the width of the p meson turns out to be 
double the experimental value. The persistence of 
this result evidently indicates that this disagree­
ment is not due to the rough methods used in solv­
ing the bootstrap problem with the two-particle 
unitarity condition. It would seem that the contribu­
tion to the unitarity condition of the many-particle 
intermediate states is essential. 

In this paper an attempt is made to take into ac­
count, in the unitarity condition for the pion-pion 
scattering, the contribution of many-particle states 
produced as a result of peripheral interaction of 
the initial particles, i.e., exchange of one particle 
(7r, w, cp), and going over into the final state also by 
means of peripheral interaction. One may hope that 
allowance for the additional inelasticity will give 
rise to a narrowing of the p resonance so that its 
width will be closer to its experimental value. 

It is a most favorable circumstance that the 

peripheral part of the many-particle unitarity con­
dition is again expressed in terms of two-particle 
amplitudes. It turns out to be possible to express 
it in terms of physical partial waves, and it can be 
hoped that a good approximation is given by a few 
low partial waves. In this manner we again obtain 
a closed problem for a few low partial waves. 

The main idea used in this paper was proposed 
by Ter-Martirosyan already in 1960[3•4]. It con­
sists in representing the double spectral function 
in the form of two terms, each of which corresponds 
to a two-particle intermediate state in one of the 
channels and is determined by the Mandelstam 
equation[ 5J. The double spectral functions corre­
sponding to" two-particle intermediate states in the 
tor u channels correspond in the s channel to 
many-particle intermediate states produced as a 
result of peripheral interactions and going over to 
the final state via peripheral interactions. Thus, 
the unitarity condition derived in this paper for 
1r1r scattering with the peripheral part of the many­
particle states taken into account represents in es­
sence the equation obtained by Ter-Martirosyan[aJ 
projected into partial waves. 

The Mandelstam equation expresses the spectral 
function corresponding to the two-particle inter­
mediate states in the t or u channels in terms of 
the absorptive part of the s channel for unphysical 
momentum transfers. 

It is shown in this paper that the absorptive part 
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(as well as the entire amplitude) can be represen­
ted in terms of a double series, which converges 
in the entire Zs plane, up to the cut (zs is the co­
sine of the scattering angle in the s channel); the 
series is such that its first N terms contain only 
the first N partial waves. It is true that we cannot 
specify the number of terms N which is sufficient 
for a good approximation of the absorptive part in 
the unphysical region, because such an estimate 
requires the knowledge of the maximum of the 
modulus of the absorptive part on the cut, of which 
nothing is known. One may hope, however, that this 
number is not large. 

The proposed representation of the absorptive 
part in terms of a double series makes it also 
possible to obtain an expression, which converges 
for all s, for the jump of the partial amplitudes on 
the left cut. The jump over the left cut is expressed 
in terms of physical partial waves, and if we con­
fine ourselves to a finite number of partial waves, 
as will certainly be necessary in any practical cal­
culation, then such a cut-off series will, just like 
the exact jump of the partial wave, also be bounded 
at infinity by a constant. Therefore the use of the 
proposed expression for the jump of the partial 
wave over the left cut makes it possible to elimin­
ate the divergence that arises in the bootstrap 
problem when exchange of a particle with spin 
larger or equal to unity occurs in the cross chan­
nels. 

2. In this section we obtain for the amplitude a 
series expansion that converges in the entire 
z-plane. An analogous expansion was proposed, 
investigated, and applied to the problem of self­
consistent calculation of the p meson by several 
authors. [S-B] The coefficients of the expansion, 
proposed in those papers, are expressed in terms 
of derivatives of the amplitude with respect to z, 
which is inconvenient, since the unitarity condition 
and the bootstrap equations are formulated more 
naturally in terms of partial waves. Therefore in 
practical calculations [B J it is necessary to make an 
incorrect transition from the derivatives of the 
amplitude to partial waves, which in fact makes the 
expansion improper. In particular, as the number 
of omitted terms in the expansion is increased, the 
accuracy becomes poorer. raJ 

The coefficients of the expansion proposed here 
are expressed in terms of partial waves, with the 
first N coefficients containing only the first N par­
tial waves. 

The 7T"7r-scattering amplitude in the state with 
isospin I can be expressed in terms of an expansion 
in partial waves 

A 1 (s, t) = ~ (2l + 1)Az1 (s)P~(zs), 

-y; . I 
A/ (s) = -- e'6t sinb/, 

2qs 
( 1) 

where the summation is over values of l having the 
same parity as I. This expansion converges within 
a Mandelstam ellipse with semi-axis z0(s) = 1 
+ t0/2q~. Making use of the integral representation 
for the Legendre polynomials 

1 ,\', v1dv 
P1 z =--';Y ( ) 2ni {1 - 2zv + v2]'/, ' 

+ 
(2\ 

where the integral is taken over a closed contour 
going in the positive direction (counterclockwise) 
around the branch points of the denominator, the 
expansion (Eq. (1)) can be rewritten in the form 

1 ,\', dv ~ 
AI(s t)=--';Y L.i (2Z+1)A/(s)v1 

' 2ni [1 - 2zv + v2]'i• + l 

(3) 

The function gl(s, v), is an analytic function of v 
with two cuts: from v0 = z0 + (z5- 1) 112 to oo and 
from -v0 to -oo. Let us map the v-plane onto the 
interior of a unit circle by means of the conformal 
mapping: 

x=vo/v-'V(v0 /v) 2 -1, v=2voX/(1+x2). (4) 

The edge of the cut in the v-plane is mapped thereby 
onto the unit circumference. Then the function 
g1[s, v(x)], being analytic inside the circle, can be 
expanded in a series in powers of x, which conver­
ges up to the contour 

(5) 

n 

(the parity of n equals the parity of n. 
The coefficients B~(s) can be easily expressed 

in terms of A~(s) and v0(s): 

[( 2v0x )I 
g1[s,v(x)]=~(2l+1)A/(s) 1 +x2 =(2vo) 1x1• 

l 

. ~ ( -Z) x2kl = ~ xn ~ (-1)n-l (2l + 1)f(1/2(n + Z)) 
k=O k - -: 1 f(l)f(l/2 (n-l)+1) 

X ( 2vo) 1 A z1 ( s) . ( 6) 

It follows hence that 

B I (s) = ~ ( -1)<n-l)/2 (2l + 1) r(1/2(n + l)) (2v )lA I ( ) 

n l f(Z)f(1/z(n-Z)+ 1) o l s. 

(7\ 
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The summation in Eqs. (6) and (7) is over all 
nonnegative nand l having the same parity as I. 
Let us note that the summation in Eq. (7) stops at 
l = n, owing to the factor r(l/2(n- l\ + 1) that ap­
pears in the denominator. 

The convergence of the series (5) on the contour 
is determined by the character of the singularity 
on it. Singularities corresponding to individual 
many-particle thresholds are weak and do not pre­
vent the series from converging. Therefore the 
convergence of the series will be determined by 
the behavior of "the function at the point x = ± i 
(v = 00), which is related to the behavior of AI(s, t) 
at ltl - 00 • If the function gi(s, v) is bounded at 
infinity by a power of v, then the series (5) can be 
somewhat modified in order that it converge on the 
contour. Let jg(s, v) I < clvlm. Then we shall ex­
pand in a series in x not the function g(s, v), but the 
function (1 + x 2)mg(s, v) which is bounded at the 
point x = ± i. We shall obtain a series that conver­
ges on the contour: 

where 

1 "'­gi[s, v(x)] = _(_i_+_x-~)-"' L..J,Bnixn, 
n 

Bni(s)=~ (- 1)<n-!)/2 (2l+1)f(1/2(n+l)-m) 
f(l-m)f( 1/ 2(n-l)+ 1) 

(8) 

(9) 

Here, as in Eqs. (6) and (7), n and l have the same 
parity as I. 

If we substitute the expansion (5) in (3) we ob­
tain for AI(s, t) a series that converges in the 
entire z-plane up to the cut: 

AI s, t =.; Bni(s)-1- ~ [x(v)Jndv 
( ) L..J 2ni {1 - 2zv + v2]'!. 

n 

(10) 
n 

Let us consider the functions used for the expan­
sion 

F 1 %, [x(v)]n dv 
n (z, zo) = -2-. ';Y [1 2 ' 2)'1 ( 11) 

1t~ - zv -,- v ' 

For n = 0 we have simply F 0(z, z0) = P 0(z) = 1. For 
n ;r 0 the function Fn(z, z0) is an analytic function 
of z, with two cuts: from z0 to oo and from - z0 to 
-oo. Explicitly, the function Fn(z, z0) is expressible 
in terms of elliptic integrals (since two square 
roots of quadratic polynomials appear in the inte­
grand of Eq. (11)). 

In the limit as z0 - oo we have 

Fn(Z, Zo)-+ vo-nPn(z), 

and 

Bn 1 (s)-+ v0n(2n + i)Ani(s}, 

so that the series (10) goes over into conventional 
expansion in partial waves, Eq. (1), which in this 
case converges in the entire z-plane. 

A comparison of the expansion (10) with the ex­
pansion in partial waves, Eq. (1), shows that the 
first N terms of one expansion differ from the first 
N terms of the other only by the addition of exponen­
tially decreasing tail of partial waves with l > N. 
In the physical region -1 ~ z ~ 1 this tail is small. 
As an example let us consider one resonant P-wave 
in the region of the p meson. This wave corre­
sponds to the term B~(s) F 1(z, z0) in the expansion 
(10) and to 3A~(s)P1(z) in the expansion in partial 
waves. The term B~(s)F 1(z, z0) contains, in addition 
to 3Af(s)P1(z), an F-wave admixture, amounting to 
4% of the P-wave, an H-wave admixture amounting 
to 0.3% of the P-wave, etc. In the physical region 
the admixture of higher partial waves is small. 
However, as we go into the region of larger z, the 
contribution from the tail of higher partial waves 
increases and becomes comparable with the contri­
bution from the first N partial waves, amounting to 
an effective cut-off, so that for z - oo all functions 
are bounded by a constant. 

The expansion (10) can be rewritten in the form: 
N 

A I (s, t) = lim ~ Bni (s)F n (z, zo) 
N-+oo n 

N 

= lim~ (2l + 1)A1I(s)PzN(z, z0), (12) 
N-+oo l 

where PzN(z, z0) is obtained if vZ is expanded in 
the integral representation, Eq. (2), in a power 
series in x and the first N terms are retained 

,1 ~ dv (N-!)/2 f(l + k) 

PIN= 2ni [1-2zv+v2]'!. ~ (- 1)k f(l)f(lc+1) 
+ k=O 

(13) 

3. Let us pass now to the calculation of the con­
tribution to the unitarity condition for the 7r7r-scat­
tering partial amplitude of that part of the many­
particle states which is produced and goes over 
into the final state as a result of the peripheral 
interaction. The unitary graphs corresponding to 
this process are shown in Fig. la and lb. In order 
to distinguish the double spectral functions corre­
sponding to graphs la and lb from the functions 
corresponding to graph lc, we shall call the double 
spectral functions corresponding to the graph lc 
two-particle spectral functions of the s-channel 
and denote them by Pst<s, t, u) and Psu<s, t, u). 
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t 

P~, 
b 

The spectral functions corresponding to the graphs 
1a and 1b will be called peripheral spectral func­
tions of the s-channel and denoted by Pts(s, t, u) 
and Pus(s, t, u). 

It is easily seen that if we consider the exchange 
of the particles 1r, K, K, w, and <p, then as a conse­
quence of conservation laws there are no graphs 
which have simultaneously two-particle intermed­
iate states in two channels. Therefore, if we 
neglect contributions from graphs having only 
many-particle intermediate states in all channels 
the complete double spectral function A;t(s, t, u), 
can be written in the form 

A,/(s,t,u) = Pst 1 (s,t,u) + Pt/(s,t,u). (14) 

The two-particle spectral function of the s-channel 
P~t(s, t, u) is determined by the Mandelstam equa­
tion in the s-channel, and the peripheral spectral 
function of the s-channel is determined by the 
Mandelstam equation in the t-channel. 

Since the amplitude A1(s, t, u) is symmetric 
(I = 0, 2) or antisymmetric (I = 1) with respect to 
exchange of t and u, it is sufficient to consider 
graphs corresponding to two-particle states only, 
for example, in the t-channel. Equation (14) makes 
it possible to calculate the jump of the partial wave 
over the right cut corresponding both to the two­
particle intermediate states and the peripheral part 
of the many-particle intermediate states. For the 
jump in the partial wave we have the following ex­
pression: 

2 r ( t \ dt 
ImAz1 {s)=-J Ast 1 (s,t)Qz 1+~2-J--2-. 

:rt to ~qs · 2qs 
(15) 

The partial-wave projection of the two-particle 
spectral function, determined by the Mandelstam 
equation in the s-channel, gives rise to the well 
known result[s] 

where J. is the unit step function. Here we have 

written explicitly the contribution from the two­
particle intermediate states 1r1r and nw; qs is the 
momentum of the pion in the center of mass system 
corresponding to ann-pair energy equal to s; qws 
is the same for the nw pair, 

q,2 = s /4- !Jz, q,sz = Ij4s-I[s- (m- !-1)2] (17) 

X [s- (m + ~-tFl; 
Jl is the pion mass, m is thew-meson mass; A1w(s) 
is the amplitude for the transition 1r1r - nw, corre­
sponding to the total angular momentum l and par­
ity (-l)Z. 

Let us express now the peripheral spectral 
function of the s-channel in terms of the absorptive 
part A1 (s, t). To this end we first make use of the 

s 
crossing symmetry 

A 1 (s,t,u) = ~1JAJ(t,s,u), 

(
1/3 1 "h) 

~Ij =' 1/3 1/2 -5/6 ' 
1/3 - 1/2 1/6 

(18) 

from which it follows that 

Pt/ (s, t, u) = ~rJPt) (t, s, u). ( 19) 

The quantity pj (t, s, u) is the two-particle spec-
ts 

tral function of the t-channel corresponding to an 
isospin j in the t-channel. It is determined by the 
Mandelstam equation[ 5J 

Ptsi(t,s,u)nrr= 2q1_I dzidzz[Asi(t,zi)Asi*(t,z2) 
:nit ~ex> 

lt{- K) + AuJ (t, zi)Aui* (t, Zz)) -=--===-, (20\ 
1- K(z1,zbz2) 

where 

- K (z 1, Zt, z2) = z12 + z12 + Zz2 - 2ZtZiZz- 1 

2s 
= ---[{t- 4u 2)p2- s1sz) 

(2qt2)3 r ' 

p~= 1/4s- 1[s- (1~~--v~)2][s- {ys~+l/·~ 2]. (21) 

The subscript 1r1r indicates the state in the t-channel 
to which this p corresponds. Since Aj (t,- z) . . u 
= (-1)JAJ (t, z), the contribution of the second term 

s 
in Eq. (20) is equal to the contribution of the first. 
If we make use of the crossing symmetry, Eq. ( 18), 

(22) 

and go over to integration over s 1 and s 2, then we 
obtain for the peripheral double spectral function of 
the s-channel the following expression: 

2 00 

Pt/(s,t,u)nn=CI~I,---= ~ A/•(s!,t)A/•*(s2,t)· 
:rt yst 

41-'' 

(23) 
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where 

(24) 

or explicitly 

The expression for the peripheral spectral func­
tion contains the value of the absorptive part of the 
s-channel for unphysical values of momentum 
transfer (t > 4J,t 2). We can express the absorptive 
part for these values oft in terms of physical 
partial waves of the s-channel by making use of the 
expansion obtained in the second part of the paper 
(Eq. (12)). Upon substitution of Eq. (12) into Eq. 
(23) and projection into partial waves we obtain 

N v:;;-+v~=vs 

~ ~ dstds2rLz,(s,st,s2,N) 
N~oo l1l2 

X lim 

X lmAz/'(st)lmAz/'(s2). (25) 

Here we have introduced the notation 

l l'2(2lt + 1) (2l2 + 1) 
rz,z, ( s, St, s2, N) = . Re 

n2l's q.3 

J Ql( 1 + t/2qi) dt 
~(~) . 

l't{(t- 4fl2)p2 - StS2)'/, 

(26) 

The summation in Eq. (25) is over values I1 and I2 

equal to 0, 1, and 2 and also over physical values of 
partial waves having the same parity as the iso­
spin. In the integrand there appear values of imag­
inary parts of partial waves at energies ..fi; and IS; 
at least by 2 J.1. smaller than ..fS. 

4. In an analogous fashion one can calculate the 
peripheral spectral function corresponding to the 
exchange of rr and w mesons in the t-channel. The 
imaginary part of the 1rrr-scattering amplitude in 
the t-channel corresponding to the two-particle 
intermediate state 1rw, is equal to 

A! qrot ~ r Im (t, s, u)rcro = --_ LJ J dQAnro(t, St,8i)A'"'00*(t.s2,8i), 
2nl't 

8; 

(27) 

where Ei is the polarization vector of the w meson. 
From symmetry properties it follows that the 

amplitude for the transition rrrr - 1rw may be written 
in the form 

A""'(t, s, e) = ea.flY6pta.PatJqroye6F(t, s, u), (28) 

where F(t, s, u) is a function that is symmetric 
under permutation of all three variables. The 
presence of just one invariant function corresponds 
to the fact that one has only one independent heli­
city amplitude or that only one direction of the 
polarization vector is possible, perpendicular to 
p 1 and qw in the center-of-mass system (p1 + p3 
= 0). 

Substituting Eq. (28) into the unitarity condition 
(27) and summing over polarizations we obtain 

1 qrot3 q t2 l't) • lm.A (t,s, u)rcro = dQ(z1 - z1z2 )F(t,zt)F (t.z2), 
2n 

(29) 

where Zt, z 1, and z2 are the cosines of scattering 
angles in the t-channel 

Zt = ODS tfp,p, Zt =·COS trp 1q, Z2 = COS trp,q, 

s 
Zt = 1 +-2 2 , 

qt 

By analytic continuation of the unitarity condi­
tion (29) one obtains the following expression for 
the double spectral function: 

Pts1 ( t, s, U) rcro 

(zt- Z1Z2) tr (- K) 
X dst ds2. 

l'- K (zt. Zt, z2) 
(31) 

In the derivation of Eq. (31), use was made of the 
symmetry of the function F(s, t, u). 

Now, as in the case of rrrr scattering, we express 
F s(s, t) in terms of physical partial waves of the 
transition 1r1r - 1rw. The expansion of the rrrr - rrw 
in a partial-wave series has the form 

00 (2l + 1) 
A""'(s,t)= ~ Az" 00 (s)Pzl(zs), (32) 

1= 1 Yl(l + 1) 

where A~w(s) is the partial wave for the production 
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of the 7rw pair with total and orbital angular momen­
tuml, P/(z) =-sinJdPz(z)/dz is the associated 
Legendre polynomial of first order. The summa­
tion is over odd l. Correspondingly we have for 
F s(s, t) 

1 CX> 2l +1 
Fs(s,t)=-----~ __ ImAz""'(s)P{(z.). (33) 

q.,. q. l"s 1= 1l'l(l + 1) 

In analogy with the case of the 7r7r-scattering am­
plitude, this series can be transformed into a ser­
ies that converges in the entire plane with the cut 
zs: 

1 00 2l + 1 1 
F.(s,t)= -----_lim~ ImAt"'(s)PZN (z.,zo), 

q.,. q. is N~oo Z=i l"l (l + 1) 
(34) 

where 

P'ZN(Zs, zo) = dPZN(Zs, zo) / dz •. 

Substituting this expansion into Eq. (31) and pro­
jecting into partial waves we obtain 

Im Az1 (s) ""' = '(} (s- 16~-t2 ) ~11 

N l'$,+;8,=~ 

X lim ~ ~ ds1ds2rLz,(s,st,s2,N)ImA1/'"'(s1) 
N---+-oo l~oh=1 4J,!2 

X ImAz,""'(s2), 

where 

CX> 

(2l1 + 1) (2l2 + 1) 

X~ P;,N[Zs,(t, si), zo(si)]Pl:N{Zs,(t,s2), zo(s2)]. 

q.,t -yt(zt- Z1Z2)'fr(- K) ( t ) 
x Q1 1+- dt. 

l"-K(zt,Z1,z2) 2q.2 

(35) 

(36) 

The lower limit of integration is determined by the 
function J(- K). Summation in Eq. (35) is over odd 
l 1 and Z2. 

5. Let us write out the resultant unitarity con­
dition for the scattering amplitude with two-particle 
intermediate states 7!'7!' and 7l'W taken into account, 
as well as the peripheral parts of the many-parti­
cle states corresponding to the exchange of 7r and w 
mesons in the t- and u-channels: 

2q. 
ImA11 (s) = 'fr(s- 4~-t2)-=-IA/ (s) 12 + 'fr[s- (m + 1!)2)611 

l's 

.N 1,rs1+''"'~=\''s 

X lim ~ ~ 
N-+oo z:l~ 4J.L2 

X lim ~ 

(37) 

The unitarity condition (37) has exact crossing 
symmetry, although, of course, in practical calcu­
lations we retain in the sums only a finite number 
of terms and the crossing symmetry is then only 
approximate. 

6. Two comments are necessary with respect 
to Eq. (37\ and the method of its derivation. In the 
first place, in the derivation of the expression for 
the peripheral spectral function p~s(s, t, u) we have 
introduced an expansion for A~(s, t) in the form of 
Eq. (12). If A~(s, t) increases as ltl - oo, then such 
an expansion on the cut itself, in the conventional 
sense, does not converge. However, integration 
with the smooth function Q1(z) improves the con­
vergence of the series, so that if one takes l 
sufficiently large (to the right of singularities in 
the Z-plane), then the integrated series will con­
verge. 

In the second place, the integral with Qz 
(Eq. (15)) exists only for values of l which lie in 
the complex Z-plane to the right of all singulari­
ties. The partial waves with l lying to the left of 
the singularity farthest to the right are determined 
by analytic continuation in l from the region in 
which the integral converges. 

If the partial wave A}(s) has a Regge pole a(s), 
then even that part of the many-particle intermed­
iate states, which is taken into account by Eq. (37), 
gives rise to moving branch points in the Z-plane, 
Zn = n[a(s/n2) - 1) + 1. However, the jumps over 
these cuts, obtained when the two-particle spectral 
function in the t-channel is taken into account, do 
not correspond to jumps of the real partial 
waves[tol. This is related to the fact that the jump 
in the real partial wave is determined by the be­
havior of A~t(s, t) as t- 00 , where one has many 
contributions from many-particles states in the 
t-channel and where Pst + Pts differs substantially 
from Ast· Therefore allowance for the singulari­
ties of the partial wave in the Z-plane is outside the 
framework of the approximation considered here. 

One may, however, hope that the jumps in the 
exact amplitudes over the cuts in the Z-plane are 
small so that they may be neglected. Then if we 
retain a finite number N of terms in the expansion 
(37) we obtain a good approximation for the lower 
partial waves. 

7. The expansion considered in the second part 
of this work for the scattering amplitude, Eq. (12), 



UNITARITY CONDITION FOR rrrr SCATTERING 1209 

together with crossing symmetry, Eq. (18), makes 
it possible to obtain an expression for the jump in 
the partial rrrr-scattering wave over the left cut, 
which converges for all values of s: 

41l' -s dt ' t 
lmA/(s)=~Ii ~ - 2P1(1+-2 )ReA 1i(t,s,u) 

, 2 2qs 2qs ! 
•ll 

X ReP1,N [1 +~, z0 (t)] P1 (1 +-t-·). 
2qt" 2qs2 . 

(38) 

For the absorptive part in the t-channel we have 
used an expansion of the type (12), which does not 
converge on the cut if the absorptive part increases 
at infinity. Thus we have followed a formally non­
rigorous procedure by introducing this expansion 
under the integral sign. However, the resultant ex­
pression for the jump in the partial wave over the 
left cut converges regardless of whether the ab­
sorptive part increases at infinity or not. The point 
is that the partial wave is bounded as one goes to 
infinity along the left cut. This can be shown by 
making use of the unitarity condition on the right 
cut and assuming that the partial wave does not 
have too strong a singularity at infinity.l 11 • 12 ] 

Consequently the effective growth of the absorptive 
part at infinity is cut off upon integration with the 
Legendre polynomial, and therefore the series does 
not diverge. 

More formally this can be shown as follows. In 
the complex s-planes the expansion (38) for the 
partial wave converges up to the cut, since the 
corresponding expansion (12) converges in that 
region. On the cut the partial wave is a smooth 
function at all finite points, and at infinity it is 
bounded. It follows from this that the series will 
also converge on the cut. 

Let us note that expansion (38) automatically 
gives for the jump in the partial wave over the left 
cut an expression that is bounded by a constant, 
even if we retain in it only a finite number of par­
tial waves. Thus, the use of Eq. (38) eliminates the 
divergence of the bootstrap problem, due to the 
exchange of a particle with spin larger than or 
equal to unity in the t- or u-channel. 

In conclusion the author expresses his gratitude 
to V. N. Gribov and Ya. I. Azimov for useful dis­
cussions and valuable comments. 
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