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Formulas for the cross sections for inelastic scattering with excitation of collective nuclear 
levels are derived by the method of approximate separation of variables. [1) No expansion in 
the nonsphericity parameter is used in the calculation, so that the effect of higher approxima­
tions in this parameter can be studied. It is shown that in the case of vibrational levels the 
inclusion of higher approximations leads only to a simple renormalization of the original S 
matrix for elastic scattering. In the case of rotational levels the higher approximations lead 
to a deviation from the Blair phase rule. rsJ Observation of these deviations may serve to de­
termine the sign of the nuclear deformation. 

1. INTRODUCTION 

IN a recent paper.fiJ a method has been developed 
for the approximate separation of variables which 
allows one, under certain circumstances, to reduce 
the problem of the scattering of a particle in a non­
spherical field to the spherical problem. This 
method has been used in the case where the nucleus 
is strongly absorbing and kR » 1, i.e., when the 
scattering has a diffraction character. 

In the present paper, this method is employed to 
solve the problem of inelastic diffraction scattering 
with excitation of collective nuclear states. It turns 
out that the inelastic scattering cross sections can 
be calculated in closed form without expanding in 
powers of the nonsphericity parameter. The re­
sults obtained allow us to improve considerably 
the formulas derived under the assumption of a 
small nonsphericity parameter, [2] and to determine 
the limits of their applicability. 

2. GENERAL EXPRESSIONS FOR THE INELASTIC 
SCATTERING AMPLITUDES 

We shall consider the inelastic scattering prob­
lem in the adiabatic approximation. [3] We restrict 
ourselves to the case of scattering by spinless 
nuclei. This restriction is not essential, and we 
shall make the corresponding generalization later. 

In the adiabatic approximation the amplitude 
for inelastic scattering with a transition of a spin­
less nucleus to a state with spin I and projection M 
is equal to 

(1) 

where ka and kt are the wave vectors of the parti­
cle before and after the scattering, with ka = kb = k; 
f(ka, kb, 0 is the amplitude for scattering on a 
nuclear potential, and the nuclear coordinates play 
the role of parameters determining that potential. 

For the amplitude f(ka, kt• 0 we use an expres­
sion found earlier: [ 1] 

where 

t(ka,kb,s)= ~- 'Y.. Yt'm•(nu)Yzm*(na)i1-l'(Yi'm',Tz·Yzm), 
tk ~ ' 

l'm'lrn 

lla = ka / k, 

The quantities Tz are functions of the nuclear 
radius 

Substituting (2) and (3) in (1), we obtain after 
some transformations 

/IM(ka, kz,) = tiJ\r(ka, kb) + (-1) 1 tiM(kb, ka), 

where 

(4) 

tar(ka, kb) = ~ ~. Yz•m•(nb) Yzm• (na)il-l' (Yl'm', TlJMYlm), 
tk 

l'm'lm (5) 

f/M = (IMITt(R(n, s)) IOO). (6) 

Let us now make use of the transformation 
properties of the quantities trM<ka, kb) under rota­
tions: 
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(7) 
M' 

The rotation g transforms na into nb into na, and 
is therefore a rotation by 1r about an axis directed 
along the vector na + nb. 

By (4) and (7) we have 

hM(ka, k1,) = ~ {61\·fM' + ( -1) 1 D~)~r·(g) }trAI'(ka, kb). (8) 
JI' 

Let us consider some general properties of the 
inelastic scattering amplitude defined by (8). 

We introduce a system of coordinates whose z 
axis is directed along the vector q = nb - na and 
whose y axis is directed along the vector K = na 
+ nb. In this system the Euler angles defining the 
rotation g (we use the definition of Edmonds[4J) are 
equal to 

a = 0, ~ = :rt, v = 0. 

Then 

fl}.i~I'(g) = ( -1) I+M 6-MM'· 

Using also the fact that in this system we have the 
relation 

we obtain 

From this we have the selection rule: fiM = 0 if M 
is odd. This rule was obtained by Blair and 
Wilets[ 5J from the general properties of the scat­
tering amplitude in the adiabatic approximation. 

Let us now consider a system of coordinates 
with a z axis directed along the vector K. In this 
system the Euler angles are equal to 

a = :rt, ~ = 0, v = 0. 

Thus, 

( 9) 

From this expression we obtain the selection rule: 
fiM = 0 if I + M is odd. 

It can be shown that this rule, as well as the 
preceding one, is a consequence of the general 
symmetry properties of the scattering amplitude 
in the adiabatic approximation ( cf. Appendix A). As 
far as we know, this rule has not been discussed 
before. 

For the further calculations it is convenient to 
use a coordinate system where the z axis is direc­
ted along na and the y axis is perpendicular to the 
reaction plane. In this system the Euler angles 
corresponding to the rotation g are 

a = 0, ~ = 0, V = n, 

where J. is the scattering angle. Thus 

D~~)w (g)= Di~~~f' (0, {}, :rt) = ( -1) M' n1~)\1' ( {}). 
We now obtain the following expression for the 

inelastic scattering amplitude in the chosen coor­
dinate system: 

M' 

1 'V . , IM' 
liM'( it)= 2.ik L yn(2l + 1) ~l-t (Yt·-.w, Tt· Yt,1 ) Yt'-M•(it, 0). 

ll' (11) 

For the calculation of tiM(J.) we note first of all 
that owing to the scalar nature of the operator 
R(n, ~) 

T/M=(JM!T1(R(n,£))!00)= V2l~l Ym*(n)N, (12) 

T/ = (IOITt(R(na, £)) jOO). (13) 

The sum over l obtained after substitution of (12) 
in ( 11) is calculated according to [t, 2 J, and we ob­
tain as a result 

1 . (I) ( :rt ) "' ' . ' ( :rt \ trM(1'}) = ----:-DHo . ·. L.J }':rt(2l + 1)Tt1Yt.'lf \ 0,-;:-). (14) 
2rk , 2. . 2 . 

l 

Only terms with large l make a contribution to this 
expression. After substitution of (14) in (10) we en­
counter the sum 

Let us distinguish to limiting cases. 
In the first case, kRJ. ::s 1, i.e., the region of 

small angles, 

" (/) ( :rt ) • ( :rt ) b = DMo \2 Yuu {} 2- · 

In the second case, kRJ. » 1, this sum is equal to 

" - (I) ( :rt . \ • ( :rt ) 
.::..; - DMo , 2 + if) Yu \ tt, 2 · 

This is easy to see recalling D~0(7r/2) = 0 if I + M 
is odd and using the asymptotic expressions for the 
spherical functions for l J. » 1. 

Thus we have for scattering angles satisfying 
the inequality kRJ. ::s 1 

and in the region of angles kRJ. » 1, where the 
diffraction maxima and minima are observed and 
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which is of greatest interest, we have 

1 { (I) ( :rt ) (I) ( :rt ) ) 
frM(fJ)= 2 DMo 2 +DMo -z+il rt!(it), (16) 

where 

1 00 

h (it)= ik ~ i:n:(2l + 1) T/Yn (it, 0). (17) 
1=0 

For the differential cross section kR~ » 1 we ob­
tain 

Formulas (15) to (18) are close in structure to 
the corresponding expressions obtained by Austern 
and Blair. [2 J However, in our calculations we do 
not make use of an expansion in the nonsphericity 
parameter, and therefore the expressions (15) to 
(18) contain the dependence on the nonsphericity 
parameter in closed form (in the quantities Tj). 

The remainder of this paper is devoted to the 
calculation of the quantities Tf. We consider separ­
ately the excitation of vibrational levels and the 
excitation of rotational states. 

3. EXCITATION OF VIBRATIONAL LEVELS 

In the case of vibrations, the dynamical variables 
hw entering in expression (3) can be expressed in 
terms of the creation and annihilation operators of 
phonons of the corresponding multi polarity ,\: 

(19) 

where a,\ is a parameter determining the amplitude 
of the vibrations. 

Let us denote the matrix elements corresponding 
to the excitation of n phonon states with spin I by 
Tnl. l . 

T1ni = (nlj.T1(R(na, S)) \0) = (nljeao/aRoiO)TL(R0), 

(20) 

Let us show that the elements Tf1 are simply con­
nected with the average values of the quantities Tz 
in the ground state of the nucleus, 

Tt(Ro) = (0\Tt(R(nn. ~)) \0). (21) 

To establish this connection we use the operator 
relation 

(22) 

where p is an integer. This equality holds if the 

commutator of the operators a and b is a c-num­
ber. We also note the relation 

(23) 

which is a consequence of (22). 
Applying now (23) to (20), we obtain for a one­

phonon transition 
a 

T/ 1 = bi--Tt(Ro). 
8Ro 

(24) 

Analogously, if two phonons with angular momenta 
ItM1 and 12M2 are excited, we have 

T121 =[1-J-6r.r,J-'h(J1l200IIO)br,br, :;02 Tt(Ro). (25) 

Expressions (20), (24), and (25) show that the 
elastic scattering amplitude is expressed through 
the quantities Tz (R0), and the inelastic scattering 
amplitudes through the derivatives of the same 
quantity Tz(R0) with respect to R0. Our formulas 
differ from the corresponding formulas of Austern 
and Blair[2J obtained in the first non-vanishing ap­
proximation in the nonsphericity parameter in that 
the quantity Tz ( R0) is replaced by Tz (R0) defined by 
(21). 

Thus the inclusion of the higher-order terms in 
the nonsphericity parameter leads to a simple 
renormalization of the scattering matrix. If we 
take into account that the elastic scattering matrix 
is given phenomenologically in the analysis of the 
experimental data on diffraction scattering, then it 
becomes understandable why the first approxima­
tion in the nonsphericity parameter yields good 
results in the comparison of theory and experiment 
(in particular, the Blair phase rule is fulfilled[6J), 
notwithstanding the fact that the condition for the 
applicability of perturbation theory, 

(26) 

is usually not satisfied. The quantity ~ in (26) is 
the nonsphericity parameter defined by 

(27) 

It is easy to express the connection between 
Tz(R0) and Tz(R0) given by (20) in a simpler form. 
Indeed, one can show using (22) ( cf. Appendix B) 
that, if a certain process is described by the am­
plitude f(~, R0) without account of the higher ap­
proximations in the nonsphericity parameter, then 
one obtains for the amplitude f(~, R0) including the 
higher approximations 

f 1 ()2 } 
f(it,Ro)= exp l 2 ~2 iJHo 2 . j(fJ,Ro). 

Since the amplitudes for diffraction scattering are 
oscillating functions of the scattering angle with a 
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frequency w = kR0, we may write to a good approxi­
mation 

The exponential factor in the last formula is the 
same for the elastic and inelastic scattering ampli­
tudes. It takes account of the effect of higher ap­
proximations. If ~J « 1, this factor can be dis­
regarded, in complete accord with what has been 
said before. 

These results generalize the results obtained 
earlier by us[7J for the special case of the excita­
tion of nuclear monopole vibrations. 

In the most interesting region of angles, krJ 
» 1, one can establish a direct connection between 
the inelastic and elastic scattering amplitudes. 
Using (24) and the asymptotic form of the spherical 
functions for l » 1, we obtain for the excitation of 
a one-phonon state with spin I 

w a . 
h (it)=(-1) 112br oRo fo(it,Ro), (28) 

if I is even, and 
> b a2 

j~ (it)=(-1)(1-1)12 - 1 --/o(it,Ro), (29) 
kRo att oRo 

if I is odd. In these formulas 

1 ; 
/o(it,Ro)=-:--- ~ -y'n(2l+ 1) Tl(Ro)Yw(tt,O) (30) 

tk l=O 

is, according to (17), the elastic scattering ampli­
tude. 

Similarly, we find for a two-phonon excitation, 
using (25), 

fi2> (it}= (~1) I/2 [1 + 6r ,I 2]-'1• 

of an n phonon state with spin I are in phase with 
the oscillations of the elastic scattering cross sec­
tion if I + n is even and in opposite phase if I + n is 
odd. 

Our results can be easily extended to the case 
where the target nucleus has spin J 0• Denoting the 
spin of the nucleus in the excited state by J and 
the angular momentum of the even-even core in 
the same state by I, we find that the corresponding 
scattering amplitude is obtained by multiplying fiM• 
the amplitude for scattering on a spinless nucleus, 
by the factor (J0IM0MI JM + M0). The corresponding 
cross section differs from the cross section for 
scattering on a spinless nucleus by the factor 
(2J + 1) [(2Jo + 1)(21 + 1) r 1. 

4. EXCITATION OF ROTATIONAL LEVELS 

In the consideration of transitions of the rota­
tional type we shall assume that R(n, ~) contains 
only quadrupole terms. Then the elements Tf 
corresponding to the excitation of a rotational 
state with spin I can be written in the form 

1 

T/ = (2I + 1)'1• ~ Pr(x)exp{ -y'5~P2 (x) a~Jdx·T1(Ro), 
o <3m 

where the nonsphericity parameter !:!.. is given by 
(27), as before. 

Thus the problem reduces to the consideration 
of integrals of the type 

t 

Ar (s) = .\ esP,(x>Pr (x) dx. 
0 

Here it is convenient to use the relations 

d 

(34) 

a2 
X (Id200IIO)br,br, aRo2 /o(it,Ro}, (31) A2(s) = ds A 0.(s), 

if I is even, and 

fi2> (it)= (-1)<1-ll/2[1 + br,r,]-'1• 

(I I OOI 0 br,br, aa 
X 1 2 I ) kRo attaRo2 fo(it,Ro), (32) 

if I is odd. 
Since f0(J, R0) is an oscillating function of the 

scattering angle J with frequency w = kR0, then 
n-fold differentiation of f0(J, R0) with respect to R0 

leads to a change of its phase by mr/2. The differ­
entiation with respect to J gives an additional 
phase shift of rr/2 corresponding to an odd spin of 
the final state of the nucleus. 

Thus (28) to (32) lead to the Blair rule mentioned 
earlier, which states that the oscillations of the 
cross section of inelastic scattering with excitation 

d 
(2IOO II+ 20)2 Ar+2(s) = ds Ar (s)- (2/00 I I0) 2 A 1 (s) 

-(2IOOII-20) 2Ar-2(s) (I=2,4, ... ). (35) 

The integral A0( s) is equal to [B J 

1 1 3 3 
A 0 (s) = I e•P,(x) dx = e-•12<1> (- -- • - s) ( 36) 

~ 2' 2! 2 

where <P(a, c; x) is a confluent hypergeometric func­
tion. 

Making the substitution s- fill 8j8R0, we obtain 
for the amplitude for inelastic scattering with exci­
tation of a rotational level with spin I the following 
expression: 

/I (tJ') = ( -1) If2 (2I + 1) 'I•Ar (-y5 ~ _!__) j(f), Ro), (37) 
oRo 

where 
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1 00 

/(ft, Ro) = tk ~' l'n(2l + 1) T1(Ro) Y10 (ft, 0) (38) 
1=0 

is the amplitude for scattering in the corresponding 
spherically symmetric field. 

Expressions (34) to (38) permit us to obtain a 
rigorous condition for the applicability of the first 
approximation in the nonsphericity parameter A. 
Indeed, f(J., R0) is an oscillating function of the 
scattering angle J with frequency w = kRo; there­
fore the operator a; BR0 acting on f(J., R0) yields a 
factor kJ., so that the desired condition is of the 
form 

(39) 

where {32 is the usual parameter characterizing the 
quadrupole deformation. Condition (39) differs 
from the earlier condition[sJ {32kR0J. « 1 by a fac­
tor of order 1/10. This explains why the first ap­
proximation in the nonsphericity parameter can 
yield satisfactory results for the excitation of rota­
tional levels, when kR0J. » 1. 

It is interesting to consider the effect of the 
higher approximations in the nonsphericity parame­
ter. One of the most important questions is whether 
the Blair phase rule is violated. Assuming that the 
amplitude f(J., R0) has the form [sJ 

/(fJ', Ro) = F(ft) cos (kRofJ' + y), 

and taking account of the next order in A, we ob­
tain from (37), using (34) to (36), 

fo(fJ') = F(ft) cos (kRofJ' + y), 

]2(1'l) = _}~_ kRoHF(fJ')sin[(kRo +b){}+ y], 
2l'n 

f,(fJ') = - 2:n (~~kRofJ') 2 F (\'l) cos [ ( kRo + ~~ b),'}+ y l. 
6 = 1/1,y5 I n~2kRo. 

These formulas show that the inclusion of the 
next approximation in the nonsphericity parameter 
has no effect on the elastic scattering, but leads to 
a modification of the frequency of the oscillations 
of the inelastic scattering cross section and hence, 
to a deviation from the Blair phase rule. This ef­
fect depends on the sign of the deformation parame­
ter {32: for positive deformations the frequency 
increases, while it decreases for negative deforma­
tions. Hence we have the possibility to determine 
the sign of the deformation of the nucleus experi­
mentally. 

Let us consider, for example, the scattering 
into the angle J = J.n, where 

fJ'n= (kRo)-1[(n-1)n/2-y] 

(n is an integer). The elastic cross section must 
have a minimum at this angle, and the inelastic 
cross section a maximum if I = 2 and o = 0. We 
obtain the following shift in the position of this 
maximum relative to the minimum of the elastic 
scattering cross section for o "' 0: 

/lf}n = - 1/14f5; Jl~2ftn. 

If we set {32 = 0.3, J.n = 90°, then AJ.n = 2.4°. Such 
an angular shift is quite accessible to experimental 
determination. 

In conclusion we quote the formulas for the 
cross section for scattering on a nucleus with spin 
J 0. This problem is easily reduced to the previous 
one, and we obtain for the cross section for scatter­
ing accompanied by the nuclear transition J 0 - J 

- "' 21 + 1 ., ' GJoJ(fr)- L.; 21 + 1 (llu-KKJ!O)-aiw-(1}), 
IJ[ 

where K is the projection of the nuclear spin on the 
symmetry axis. From this we obtain for kRJ. » 1, 
using (18), 

2J + 1 
aJoJ(\1)= L (Jlo-KKJ10)2a!(ft). 

'21 + 1 

APPENDIX A 

THE SELECTION RULE (9) 

Let us show that the selection rule (9) is a direct 
consequence of the adiabatic approximation. 

We write the inelastic scattering amplitude in 
the adiabatic approximation in the following form: 

frM(ka, kb) = (<DIMb(s) lf(ka, kb, s) I<Dooa(s)). (A.1) 

We make a rotation through the angle n about the 
z axis [rotation C2 (n)] in a coordinate system whose 
z axis is directed along the vector K = na + nb. As 
a result we obtain 

f(ka, kb, s) = f(kb, ka, s') = !( -ka, -kb, £')' (A.2) 

where ~' are the values of the nuclear coordinates 
after this rotation. In deriving (A. 2) we have also 
used the invariance of the elastic scattering process 
under time reversal. 

Making further an inversion, we obtain from 
(A.2) 

/(ka, kb, s) = f(ka, kb, ~"), (A.3) 

where ~" are the values of the nuclear coordinates 
after C2 (n) and the inversion P. Evidently 
~ = PC2(n)~", therefore 

<'Dooa (s) = p a<'Dooa (s")' 

(A.4) 

After the change of integration variables ~" - ~ we 
obtain 
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frM(ka, kb) = PaPb(-f)MfrM(ka, kb). (A.5) 

In the case of interest to us Pa = + 1, Pb = (-1) 1, 
and (A. 5) leads directly to the desired result. 

APPENDIX B 

CALCULATION OF (OJeO!JO) 

First of all we have 

00 1 
(OJe"JO)= ~I (OJaPJO). (B.1) 

p=oP· 

The average value (O/aP/0) can be written in the 
form 

Applying (22), we obtain 

(0JtJ~aP-1 j0) = (p -1)b;.(OJuP-2J0). (B.3) 

If we further use 

then we find the following recurrence relation, 
using (B.2) and (B.3): 

(OiaPIO) = (p-1)(0iu2 IO)(OiuP-2IO). (B.4) 

This implies 

( 
(2k) ! (O I 21 o k f ')k 

(0 J uP I 0) = 2kk! a ) ' i p = ~ 
0 ' if p = 2k + 1 , 

i.e., 

(Oie"IO) = exp {1/z(OiatiO)}. 
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