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A generalized Boltzmann equation for the density matrix-describing polarization and the state 
distribution of atoms is derived by taking into account resonance exchange of excitations in 
slow atomic collisions. The atomic polarization and the velocity distribution of various density 
matrix components are assumed to be arbitrary. Exact values for the relaxation coefficients 
are obtained by numerical integration in the two-state approximation (s and p states). The 
equations deduced are used to determine the absorption-line shape for long electromagnetic 
waves. 

1. INTRODUCTION 

A process playing a very important part in a 
number of optical phenomena in gases is the reso­
nant exchange of excitations when like atoms col­
lide. The cross section of this process, as shown 
by Vlasov and Fursov/ 11 is inversely proportional 
to the collision velocity and greatly exceeds the 
gas-kinetic cross section in a wide velocity inter­
val. In collisions of this type, a change takes place 
in the polarization of the atom, the phase of the 
atomic oscillator collapses, and a redistribution 
of the population over the sublevels takes place. 
All these processes occur at approximately equal 
rates. It is of interest to take these effects into 
account in the kinetic equation for the density ma­
trix that describes the polarization of the atom and 
the distribution over the levels. 

This problem was considered earlier by Byron 
and Foley,[ 21 D'yakonov and Perel',[31 and 
Omont, ~ 41 who obtained a kinetic equation for the 
averaged (over the atom velocities) density matrix 
describing the distribution over the sublevels. 
They assumed that the individual components of the 
density matrix have Maxwellian velocity distribu­
tions. A similar analysis was made also by Ali 
and Griem, [ 51 who obtained the scattering matrix 
by using perturbation theory which, strictly speak­
ing, is not applicable in this case. 

The purpose of the present paper is to obtain 
for arbitrary polarization of the atoms, a general­
ized Boltzmann equation for a density matrix whose 
elements have arbitrary velocity distributions. 
Although the distribution of the atom velocities 
can usually be regarded as Maxwellian, the same 
cannot be said in general of the density matrix. A 

deviation from the Maxwellian distribution occurs, 
for example, in an external field, and, more im­
portantly in principle, as a direct result of the col­
lisions in which excitation is transferred (the lat­
ter pertains also to the nondiagonal elements of 
the density matrix). This question will be discussed 
in greater detail at the end of the paper. 

In addition, the off-diagonal elements of the 
density matrix are not assumed a priori to be 
small compared with the diagonal ones. The colli­
sion-integral terms that are nonlinear in the diag­
onal elements can obviously be important in the 
presence of a strong electromagnetic field, as in a 
gas laser.u 

The density of the interacting atoms is assumed 
to be sufficiently small, so that we can confine our­
selves to pair collisions. The kinetic equation is 
in general nonlinear and integral. If degeneracy of 
the atomic states is taken into account, then the 
collision integral takes on a very cumbersome 
form, although its structure is relatively simple. 

In the second section of the paper we discuss 
a general method for obtaining the kinetic equa­
tion with account taken of resonant excitation trans­
fer, while in the third section we derive an equa­
tion for the density matrix of an atom with two 
states (s and p states). We note that the excita­
tion-transfer cross section and the scattering ma­
trix were obtained for this case by Va'inshte'in and 
Galitski'i. [ 71 

1 >we note that in a gas laser the parameter N ~ 3 (see form­
ula (23)).is of the order of unity, so that the collisions under 
consideration can determine to a considerable degree the char­
acteristic relaxation time. In particular, they can make a con­
tribution to pressure effects[•]. 

1183 



1184 A. P. KAZANTSEV 

Finally, in the last section of the paper we con­
sider, by way of an example illustrating the appli­
cation of the derived equations, the question of the 
shape of the absorption line of long electromag­
netic waves. It turns out that the absorption line 
shape differs somewhat in this case from a Lo­
rentz shape and is asymmetric. 

2. KINETIC EQUATION 

We consider first the general scheme for ob­
taining a kinetic equation for the density matrix 
Pmn(v). Leaving out for the time being, for the 
sake of brevity, the indices that number the Zee­
man sublevels, and using the energy representa­
tion, we can express the collision integral for 
Pmn(V) in the usual form 

8pm, (v) + - (1) -at-= Stmn(v)- Stmn(v). 

The departure of the particles from the phase vol­
ume is determined by the number of collisions of 
the atoms per unit time, so that the departure 
term has the standard form 

where da = a da dcp is an area element perpendicu­
lar to the relative velocity v = v2 - Vt. and F(v) 
is the atomic-velocity distribution function 

F(v) = 2} Pmm(v). (3) 
m 

To obtain the emission term in (1) it is necessary 
to consider first the problem of collision of two 
atoms. 

We denote by Cmn the amplitude of the proba­
bility that the first atom is in state m and the second 
in state n. Recognizing that in the case of slow 
collisions the transitions in a quasimolecule con­
sisting of two atoms occur only between states with 
identical energy, we can express the result of the 
collision in the form 

Cmn{+oo) = PmnCmn{-oo) + iQmnCnm(-oo), 

Pmn = Pnm, Qm,, = Qnrr.· (4) 
The amplitudes of the probability that the atoms 
remain in the initial state (Pmn) and that they go 
over into the state of the incoming atom (Qmn> de­
pend on the impact parameter and on the collision 
velocity. 

We note that the probability amplitudes of the 
quasimolecule states determine a two-particle 
density matrix R(vi> v2), viz., Rmm'nn' 
= cmnc~'n'• where the superior bar denotes aver­
aging over the ensemble of the atoms. We assume 

further, by analogy with an ordinary rarefied gas, 
that R(vb v2) breaks up approximately into prod­
ucts of single-particle density matrices: 

(5) 

We assume here that a direct product of the single­
particle density matrices is sufficient, since the 
quantum effects connected with overlap of the elec­
tron shell can be neglected. Recognizing that the 
arrival term is given by 

~ da dv2vSP2 {SR(v1, Vz)S+}, 

where S is the transition matrix defined in ( 4) and 
Sp2 denotes summation over the indices of the in­
coming particles, and using (5), we can obtain for 
St~n the following expression: 

St!n (v1) = ~ da dvzv ~ {PmzPn/Pmn (v!) pu(v2) 
I 

+ QmzQnz* Pmn (v2) Pll (v1) + iQmzP nz* Pln (v1) Plm (v2} 

- iPmzQnz.Pml (vi) Pnz(v2)}. (6) 

We took account here of the fact that the main con­
tribution to the exchange of excitations is made by 
collisions at large distances (on the order of 
a0vv0/v » a0 , where ao is the dimension of the 
atom and v0 the characteristic velocity of the elec­
tron in the atom). Therefore the change in the ve­
locity of the atom upon collision can be disre­
garded. 

The individual terms in the right side of for­
mula (6) have simple physical meaning: the term 
with P 2 describes the arrival of atoms in the state 
prior to the collision, the term with Q2 the arrival 
of atoms that go over into the state of the incoming 
atoms, and the term with PQ the arrival of the 
atoms in mixed states. 

We note that by virtue of the unitarity of the 
transformation (4), the equilibrium distribution 

rmn° ~ Omn exp {-(Em+ Mv2 I 2) I kT} 

causes the total collision integral to vanish. 
If we take the trace of (1), we get in our approx­

imation, in lieu of the ordinary Boltzmann equa-
tion, 

8F(v) I 8/ = 0, (7) 

which obviously means that exchange of excitations 
does not change the atomic velocity distribution 
function. 

3. THE TWO-LEVEL APPROXIMATION 

We now consider in greater detail the effects 
connected with the degeneracy of the atomic levels. 
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We confine ourselves here only to transitions be­
tween states with momenta zero and 1. In this 
case the index m takes on the values 0 and li 
(i = 1, 2, 3). 

At large distances, only the dipole-dipole inter­
action of the atoms is significant 

(8) 

In the dipole approximation, the amplitudes of the 
states of the quasimolecule, in which both atoms 
are in 0 or 1 states, are not changed by the colli­
sion: 

Co,o( +oo) = Co,o( -oo), C\;, Jj ( +oo) = Cli, l:i ( -oo) .(9) 

The amplitudes of the remaining states of the qua­
simolecules change in accordance with the follow­
ing equation (repeated indices will henceforth sig­
nify summation from 1 to 3): 

Co,fi(+oo) = P;jCo,i1j(+oo) + iQ;/'!},o(--oo), (10) 

the matrices P and Q being real (see (19)) and 
satisfying, by virtue of unitarity, the relation 

(11) 

It is convenient to introduce a special notation 
for the density matrix: 

We note that the atomic velocity distribution func­
tion is, in the case of two states, obviously f(v) 
= n(v) + nii(v). We shall normalize f(v) to unity. 

We now write down the collision integral for 
the individual components of the density matrix. 
Splitting the two-particle density matrix in accord 
with (5) and using (9) and (10), we get 

an (vi) (' 
at = N .l da dv2 v { (Pii,Pil- 1\T<z) nkz (v2) n (vi) 

+ Qu,Qilnh,(v!)n(v2) 

(13) 

an;(v!) 1 __ a_t_ = N .l da dv2 v {(Pi/,- 1\;k) n" (vi) n (v2) 

+ n; (vi) (Pkz- 1\kz) nkl (v2) 

+ iQ;hnh(v2)n(vt)- iQhznit(Vt)nh(v2)}, (14) 

i.inu (v1) (' 
at = N .l da dv2v { (P;kPJ1 - 6;ki\Jz) nh1 (v1) n (v2) 

+Q;"Q:ilnkz (v2) n (v1) 

+ iQii,P:ilnk (v2) nz" (vi)- iQ:i,P;znk * (v2) n1 (vi)}. (15) 

Here N -density of the atoms. 

With the aid of (11) it is easy to establish that 
not only the distribution function f(v), but also the 
total number of particles in each state is con­
served 

\ rlv an(v) = \ dv an;i(v2_ = 0. 
· at · at (16) 

Equations (10) and (13)-(15) have been written 
out in an arbitrary system of coordinates. Yet the 
transition matrices P and Q are best calculated 
in a coordinate system fixed in the collision plane, 
where we shall denote them by P 0 and Q0• It is 
clear that P and Q are connected with P 0 and Q0 

by the orthogonal rotation 

P;:i = lJ;i'lJ:iJ,pni'J•, (J,,; = lJ;;•njJ.(J0;•j•, (17) 

0 0 
where Dii' = (ei · ei') and ei and ei' are unit vec-
tors of an arbitrary coordinate system and of the 
coordinate system fixed in the (a, v) plane. As 
shown by Va1nshte1n and Galitski1, [ 71 the transition 
matrices P 0 and Q0 are of the form 

P + iQ = sin X e~ia./3. ( 19) 

It is assumed here that the vectors a and v lie in 
the plane (1, 3), with v directed along e~. The 
tensor E ij k is a completely antisymmetrical unit 
tensor. The real functions X and 1/J depend on the 
parameter 

- 3 I <O/d/1i)/2 a---
2 fwa2 (20) 

and are determined from the solution of the system 
of equations 

du 1 __ 

i dx =a{(1-2x2)u1 +2x'Jf1+x2u2}, 

(21) 

vt 
x=----

l'a2 + v2t2 

with boundary conditions 

ul{--1) = 1, u!(+1) = cosxeN, 

uz(-1) = 0, uz(+1) = sinx. (22) 

In all the collision integrals it will be advan­
tageous to separate the characteristic relaxation 
frequency 'Y: 
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(23) S;i; nz(pq) = 1/2[Cpq(6il,o.i! + ISiliSin)+ 2/:;(Dpq + Dqp)IS 1i~kz 

where 'Yo is the reciprocal lifetime relative to the 
spontaneous transitions, and 2rrX is the wavelength 
corresponding to emission at the transition fre­
quency. 

Integration with respect to a in (13)-(15) can 
be replaced by integration with respect to the di­
mensionless parameter a: 

r 9n:y r da 
2n:N .\daavA(a)=- .\-A(a)=v<A>. (24) 

~ ~ ~ az 

Let us expand nij (v) and Im [ni(v1)nj (v2)] in 
terms of irreducible tensors: 

TZ;j (v) = 1/3/Si.ill (v) + ieiikllh (v) + 7];; (v), 

llii = l]ji, lJii = 0, (25) 

where all TJ and v are real. 
Finally, integrating in (13)-(15) with respect to 

cp, we obtain ultimately after straightforward but 
cumbersome calculations 

O'l'] (v!) 1 
iJt = '\' .\ dvz{App'l'] (v1)n(vz) 

+ Aqq'l'] (v2) n (vi)+ ApqV (v,, v2) 

+ ~i.i [B PPllii (vi) n ( v2) + Bqql]ij ( v2) n ( v!) 

+ BpqVij(v~, v2)]}, 

iJ'I']ij(v1) 1 
at = 'Y J dv2{S;;; ~<z(PP)ll~<z(v,)n(v2 ) 

+ S;_;; kz(qq)'l]nz(v2)n(v,) 

We used here the notation 

(27) 

(29) 

(30) 

~ Dpq(~;"o!, __;_ ~i"IS,.,) - Dqp{."l;z<'\i" 

(31) 

The remaining matrices S(pp) and S(qq) are ob­
tained from (31) by replacing q and p with p and 
q, respectively. The equation for n(v) can be 
omitted, so that the distribution function f(v) is 
conserved. 

Since the collision cross section is inversely 
proportional to v, the kernels in the collision in­
tegrals are either constants or depend only on the 
angle functions b.ij· The terms with index pp cor­
respond to departure of the atoms without a change 
in polarization (the integral kernel oij), and with 
change of polarization (kernel b.ij), and similarly 
the terms with index qq describe the arrival of 
atoms. The terms with indices pq and qp, which 
are quadratic in ni> describe apparently effects of 
the saturation type. 

The constant coefficients in (27)-(31) are con­
nected with the scattering-matrix components 
averaged in the sense of (24) in the following fash­
ion: 

Apq = 1/3(P1Q·t + P2Q2 + P3Q:J + 2PQ>, 

Bpq = 1/2<2P3Q3 +PQ- P1Qt- Pz(h), 

apq = 1/z .P3(Q, + Q2) + l'Q ', 

a 1p = 1/2(Q3(Pi + P2) + P()), 

bpq = 1h (P,Qz + PzQI> -- 1/2 (apq + aqp), 

Cpq = 1/4: (Pi+ P2) (Qt + l)z)>, 

Dpq = Cpq --- apq +<PC>, 

2Epq = ; 3/ (P,(Ji + P~Qz) 
+ 1/4(P,Qz + P'21)1) 

+ P3 (Q3 -- Q1 --- Qz) + Q3(P3- Pi - P2)), 

(32) 

The remaining coefficients with indices pp and 
qq are obtained from (33) by making in the corre­
sponding coefficient the substitutions Qi- Pi, 
Q- P or Pi- Qi, P- Q. Exceptions are the 
"diagonal" coefficients APP' ~P' and CPP' which 
differ from this definition by a term -1, so that 
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App = ( 1/3(P!2 + P22 + P32 + 2P2) - 1), 

app= <P3(P1+:2)+P2 -i), 

(33) 

Using the explicit form of the scattering-matrix 
elements (formula (19)) we can readily show that 
the following relations hold: 

App + Aqq = 0, Bpp + Bqq = 0; 

aq = -(apq + aqp), 

bq = -2bpq. 

(34) 

(35) 

The coefficient Aqq serves to express the cross 
section u for resonant excitation exchange in the 
collision of two atoms, one of which is in the s 
state and the other in the p state and is unpolar­
ized: 

(36) 

The remaining coefficients take into account the 
correlation existing in scattering between the atom 
polarization and the collision velocity. 

All the integrals (32) and (33) converge quite 
rapidly. Indeed, in the region of small a, i.e., at 
long impact distances, the elements of the scat­
tering matrix behave as follows: 

1 - P.; - 112, P ~ a2• Q ~ Q3 ~ a3, 

Q1 ~ -Q2 ~ 4/3a. 
(37) 

Thus, the slowest to decrease are Q1 and Q2. 
However, at small values of a the quanties Q1 and 
Q2 are encountered only in the form the combina­
tions Q1 + Q2 ~ a 3 and Q1Q2 ~ a 2, so that no log­
arithmic divergence occurs in (32). 

Equations (21) and the coefficients (32) and (33) 

were numerically integrated with an electronic 
computer. The results are listed in the table. The 
coefficients ap, aq and bp, bq were determined 
from (35). To compare the results of the calcula­
tions with the results obtained by others, let us in­
tegrate Eqs. (27)-(30) with respect to velocity, as­
suming formally that all the components of the 

fJfJ P't qp qq 
----~--

I I 

. t ! --5 . .3 0,783 I 5.3 
II 4.61 1,24 I 0.881 

--4:61 
I! --5.93 o:287 0.497 
b --3,65 I, 08 

! 
--5.91 

r; --8,51 0.81 0 534 
D --:.33 l. 38 I 0.766 l ~ 21 
I~ i.09 0,822 4,.')7 

density matrix have a Maxwellian velocity distri­
bution. The results of the integration will be de­
noted by a superior bar: 

a~ 1 at= O; (27 1) 

a-:;j; I ot = v~~-;n:, 

Vi_= [app + aqq + 1/3 (bpp + bqq) ]y = -8.6y; (28') 

OlJij 1 at= '\'2lJijn:, vz = [Cpp + Cqq- 2/3(Dpp + Dqq} 

+ 2/1s(h'pp + Eqq)]y = -7y; 

on;/ at= v'n:; + iy"(n6;j- n;j)n:j, 

y' ..:_ (ap + bp / 3)y = -5, 7y, 

y" = (aq + bq / :3)v = -1,9y. 

(29') 

(30') 

In the last equation we used the condition f = 1. 
Relations (28') and (29') coincide with the equa­
tions obtained by D'yakonov and Perel'. [al 

In concluding this section we note that the con­
dition under which we can confine ourselves only 
to pair collisions signifies, as is well known, 
smallness of the effective radius of the interaction 
compared with the distance between particles. In 
this case this condition is expressed by the in­
equality 

(38) 
where t:::.w is the Doppler width. 

4. ABSORPTION LINE SHAPE 
In this section we use the derived equations to 

obtain the shape of the electromagnetic-radiation 
absorption line in a rarefied gas. 

To calculate the dielectric constant of the gas 
it is necessary to consider the complete equations 
of motion for the density matrix: 

ap 1 at+ vVp = Tft[H, p] + St(p), 

II= ll0 + 11;, H; = E(t)d, E(t) = Ee-i"'1+c.c. (39) 

where E(t) is the electric field intensity. 
The spatial dependence of the field will be dis­

regarded, since we consider the case t:::.w « y. 
With this, condition (38) may still remain in force, 
since usually Yo« !:::.w. 

For small deviations from the equilibrium posi­
tion it is sufficient to consider only the equation 
for ni(v). Separating the time dependence in the 
form exp (- iwt) and discarding nij (v) compared 
with n(v) ~ f(v), we obtain 

E-d I 
Qn; (v) = -fi- f(v) + y .l du{iaqf(v) ni (u) + ~ii(v- u) 

X[bpf(u)ni(v)+ ibqf(v)ni(u)]}, 

Q = i(i•>o- w)- apy, (40) 
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where w0 is the transition frequency. We shall 
assume that the atoms have a Maxwellian velocity 
distribution 

(41) 

It follows from (4) that the solution takes the form 

E·d 
~i(v) = (h(v)6ii + h(v)L\ii) ;Q , (42) 

and the functions f1 (v) and f2(v) do not coincide 
with f(v). The exact functions f1 and f2 can hardly 
be obtained, and therefore we confine ourselves to 
the approximate solution obtained in the form of an 
expansion in powers of the parameter 'Y/n. We 
note that at large values of I w0 - w I this param­
eter becomes small. 

The polarization of the gas in an external field 
is determined by the vector ni (v) averaged over 
the velocities. From (40) we obtain, accurate to 
u-a. 

E;d 1 [ ( bp + ibq I 'Y n; = h g (Q), g (Q) = Q 1 + , iaq + 3 J Q · 

The expression for the function g(n) obviously (441 

contains terms (corresponding to the Maxwellian 
part of the distribution function ni(v)) which can 
be eliminated by making the substitution n - Q0 

= i(w0 - 'Y"- w)- 'Y' (see formula (30')) 

1[ . 2 (y)2 J g(Q0) = Qo 1 + e(bp + zbq) Qo +... . (45) 

The term in the right side of ( 45), which is pro­
portional to € , is connected with the deviation of 
the distribution function ni(V) from Maxwellian. 
Indeed, if we neglect the correlation between the 
velocity of the atom and its polarization, i.e., make 
the substitution ~ij- 1/g oij , then E vanishes. 

The absorption coefficient is determined as a 
function of the frequency by the expression 

v' { ey'2 [3y'2 - ( 6w) 2] 
Re g(Qo) = (6w)2 + y'2 1 + [y'2 + (6w)2]2 . 

X(b 112 - bq2 + 2bpb./)(•l/v') + ... }. 
6w = (o)o - v" - (J). (46) 

Thus, the absorption coefficient is not an even 
function with respect to ow. The origin of this 
symmetry can be explained qualitatively as fol­
lows. According to (42), the gas is a mixture of 
dipoles of two types: "non-inertial" dipoles orien-

ted along the field (distribution function f1 (v)), and 
''inertial'' dipoles which are polarized along the 
atom velocity (distribution function f2(v)). The 
natural frequencies of dipoles 1 and 2 differ some­
what, owing to the interaction. For this reason, 
the absorption line contour, being a sum of two 
Lorentz contours, has an asymmetric form. 

Collision integrals of the type given in the right 
side of (40) (without account of the tensor proper­
ties) were investigated by Rautian and Sobel-
'man, [Sl who have shown that when 'Y ~ t:..w the ab­
sorption line contour becomes asymmetrical. The 
asymmetry vanishes when 'Y « ~w and 'Y » ~w. 
In the case considered by us, owing to the polari­
zation effects, the asymmetry remains also when 
'Y » ~ w, and is not connected with the corrections 
t:..w I 'Y. However, numerically the deviation of the 
absorption line shape from Lorentzian is small. 
Calculation of the integral ( 44) leads to the value 

e = n I ¥3- 16/g ~ 3·10-2• 

Using the numerical values for the coefficients 
ap. aq, and bp, bq, we can easily estimate that 
the function g(U0) differs from 1/Uo by not more 
than 1%. 

In conclusion, the author thanks V. L. Pokrov­
ski1 and S. G. Rautian for a discussion of a number 
of problems touched upon in the work, and V. S. 
Synakh and 0. S. Ko1fman for the numerical calcu­
lations. 

Note added in proof (November 2, 1966). The cross section 
for the transfer excitation during atomic collisions was also 
calculated by Watanabe [9]. Formula (36) coincides with the 
corresponding corrected expression of [9]. 
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