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The asymptotic behavior of molecular terms connected with exchange of electron pairs be­
tween atoms is considered. An asymptotically exact formula is derived for the splitting 
corresponding to large internuclear distances. The effect of the spins of the electrons that 
do not participate in the transition is taken into account. The cross section for double 
resonance charge exchange in inert gases is calculated and the results are compared with 
those of previous calculations and experiments. 

1. Resonant processes occuring in slow collisions 
of heavy particles (charge exchange, excitation 
transfer, spin exchange) are determined by the 
asymptotic behavior of the terms of the quasimole­
cules. The magnitude of the separation of the sym­
metrical and antisymmetrical terms at large inter­
nuclear distances is exponentially small and can be 
calculated by perturbation-theory methods only ac­
curate to the pre-exponential factor. It therefore 
becomes necessary to refine the wave function in 
the deep subbarrier region, solving the Schrodinger 
equation anew in this region. The asymptotic be­
havior of the splitting Eg- Eu with the correct 
pre-exponential factor was obtained for the H; sys­
tem in[t-a]. Gor'kov and Pitaevski1[4J, and also 
Herring and Flickerl 5], found the singlet-triplet 
splitting for the ground state of the hydrogen mole­
cule. The exchange coupling of two different atoms 
was discussed by Ovchinnikoval6J. 

The purpose of the present paper is to obtain an 
asymptotic expression for the splitting Eg- Eu for 
the case when two atoms exchange a pair of elec­
trons. Such a splitting was calculated by a varia­
tional method by Fetisov and Firsovl7], who used 
it to estimate the cross section for double reson­
ance charge exchange. However, we shall show that 
they obtained an incorrect argument in the exponen­
tial, owing to the poor trial function employed. The 
terms of the quasimolecule He~+ were also calcula­
ted with account of the overlap of the configurations 
by Ferguson and Moiseiwitsch[a], and more accur­
ately by Brownl9]. Although the latter calculation 
is sufficiently reliable at medium internuclear dis­
tances, the region of large R calls for a special 
analysis. 

!)Institute of Nuclear Sciences "Boris Kidric," Belgrade, 
Yugoslavia. 

Let us consider a system of two identical atomic 
cores A2+, one of which contains a pair of electrons. 
We shall characterize the atomic core by means of 
an effective potential, so that the total function of 
the system will be regarded as dependent only on 
the coordinates of the transferred electrons. The 
transition of two electrons to one of the centers as 
the atoms move apart corresponds to the terms 
~g and ~u of the molecule A~+. Following the stan­
?ard procedure[4], we express the splitting Eg- Eu 
m terms of the surface potential in configuration 
space (see Fig. 1). To this end we make up linear 
combinations of the molecular functions w~ and '~~u; 
when the atoms move apart these go over mto 
loca:Iized two-electron functions of the atoms 
situated at the points± a (a = R/2): 

(1) 

Let us cons~der the integral J = ( Eg - Eu) 
x J w g '~~u dT over the domain Q, This integral can 

Q 

be transformed by means of the Schrodinger equa­
tion into a surface integral 

a 

a ~~ 

FIG. 1 
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where '\7 6 is the six-dimensional gradient. In the 
domain ~ the wave function is essentially concen­
trated near the center (-a), so that with exponen­
tial accuracy JwglJ!udT = 1/2, and finally 

~ 

l=+(Eg-Eu) =~ 'l'aVs'¥-adS. (3) 
:E 

When the internuclear distances are sufficiently 
large, the most important in this integral are the 
two cylindrical regions x1 = -x2 ~±(a± E) (see Fig. 
1), which correspond physically to electrons loca­
ted at different centers. The wave function is 
largest there and changes most strongly, therefore 
the flux through the plane is largest in these reg­
ions. In the case of very large internuclear distan­
ces it can be assumed that the entire flux is deter­
mined by these two regions, so that it is sufficient 
to construct a function >It-a' which goes over into 

the atomic function when lr1 + ai, lr2 + ai « R, 
R- co, only in these regions. 

As the zeroth approximation function in the 
domain ~ it is necessary to choose, if not the func­
tion of the isolated atom itself, at least its a_symp­
totic value. At the present time, however, there is 
no known two-electron function which is uniform 
over r 1 and r 2• In the cylindrical regions of interest 
to us, however, one of the electrons is close to the 
"nucleus," therefore we choose, say for lr1 + al 
> lr2 + ai, 

'Y!, = N_ae-a•l r,+a rl r1 +a 13 e-a,l r,+a 1. (4) 

In this formula -c:d/2 and -a~/2 are the first and 
second ionization potentials, {3 is a parameter of 
the theory, characterizing the external electron, 
with {3 ~ (1- a 1)/a 1, and N_a is a normalization 
coefficient. The latter would have been obtainable 
by making the chosen function continue into the ex­
act atomic function, but since such functions are 
unknown, N_ a is in practice a parameter of the 
theory. An asymptotic behavior of this type was 
analyzed by Fock[toJ. 

The wave function (4) is constructed in such a 
way that the internal electron is in the ground state 
of a Coulomb field with energy -a~/2, and the outer 
electron is in a potential which is Coulomb-like at 
large distances and has an energy -ai/2. There 
exist, however, real atomic systems of the K- type, 
in which the inner electron is not in the ground 
state but in an excited state. In this case it is 
necessary to take into account in (4) polynomials 
of I r 2 + ai, and this alters somewhat the final ex­
pressions, but does not influence the reasoning. We 

note also that the situation under consideration 
(distinguishable electrons) eliminates the need for 
symmetrization within the transferred pair, so that 
the difference Eg - Eu will be determined by the 
same formulas for the ortho and para states. 

The splitting Eg- Eu in (3) is connected with 
the flux through the hyperplane ~ (see Fig. 1), un­
like the singlet-triplet splitting in the H2 molecule, 
which is connected with the flux through~'. Since 
the electron interaction is maximal on this hyper­
plane, allowance for it is essential in the calcula­
tion of the singlet-triplet splitting. In our situation, 
however, the interaction of the electrons is strong­
est when both electrons are at one nucleus, and this 
interaction has already been effectively accounted 
for in the atomic function (4). Therefore, to take 
into account the influence of the second center it is 
sufficient to refine the wave function of the external 
electron. The latter is in the field of two Coulomb 
centers with different charges Z 1 and Z 2 (Z1 and Z 2 

are the effective charges of the summary field of 
the core and internal electron, and of the core 
alone, respectively). The quantity Z 1 is expressed 
in terms of {3 and a 1, namely Z1 = a 1({3 + 1), and 
Z2 = a2· 

The Schrodinger equation for a molecular ion 
with charges Z 1 and Z 2 is 

( _ ~ _ z1 _ Z2 Z1Z2 ) _ E ( 5) 
2 jx2+aj jr1-aj+ "R cp- cp. 

It was investigated by Gershte1n and Krivchenkov[7l. 
The variables in this equation separate in the ellip­
tic coordinates~ = (r1 + r 2)/R, T/ = (r1 - r 2)/R, and 
cfl = tan-\y/x), namely cp = X(~)Y('T/)exp(imcfl), with 

d [ dX] 
d£ <£2

- 1) ds 

+ [-_!!!!_-t-R(Z! -t-Z2)6- p262 +A ]x = 0, (6a) 
£2-1 

d [ 11 , .dY] - ' -1]2)--. 
d1] dfJ 

+ [-~-t-R(Z2-Zi)1J + p21J2 -A] Y = 0, (6b) 
1-1]2 

where p2 = -(R2W)/2, W = E- (Z1Z2)/R, and A is 
the separation constant. The energy of the molecule 
is usually obtained by equating the separation con­
stants from ( 6a) and ( 6b) 

Ans (R,p, m) =AnTI (R,p, m). 

Let us consider the transformation of the mole­
cular functions cp into atomic functions cp±a· At 
large internuclear distances (6a) takes the form 
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(with the change of variables ~ - v = (~ - 1)R 
= lrt + al + lrt- al- R) 

vX" +X'+ [- .J: v + A - p2 + R (Zt + Z2) ] X = 0 
R 2R 

'(7) 
(We henceforth put m = O). 

The solution which is finite on the axis of the 
molecular ion, i.e., at v - 0, is expressed in terms 
of the confluent hypergeometrical function 

X= e-pv!RF e-- A- P2 +R(Zt + Z2) 1. 2pv ') 
2 4p ' ' R (8) 

For the function to be finite at large distances from 
the axis, we must set the first argument equal to 
zero or to a negative integer 

1 A- p2+R(Zt +Z2) -2- 4p = -nt =0, -1, -2, ... 

In accordance with formula (4), we have n 1 = 0 (we 
are considering a spherically symmetrical state of 
the external electron) . 

Let us transform the equation for Y. We intro­
duce the variable Jl = ('IJ + 1)R = lri + al -lr1 - al 
+ R. Small values of Jl denote localization of the 
electron near the "nucleus" Z 1, and when Jl « R 
and R » 1 Eq. (6b) is similar to the just-considered 
equation for X: 

~tY"+Y'+[-.!!_~+ -A+p2-R(Z2-Zt) ]Y=O. 
R 2R (9) 

Its solution is also a confluent hypergeometric 
function, but unlike (8) it is necessary to choose a 
solution that decreases exponentially at infinity: 

Y=e-PI11R'J'(-~',1;2p~/R), (10) 

where 

_ f = ~~ + A - p2 + R (Z2- Zt) 
2 4p 

By equating A~ to A'IJ we can express A and p/R 

in terms of the already fixed parameters of the 
problem a 1, a 2, and {3'. The complete function for 
1 « lr1 + al « R can be written by using the asymp­
totic expression for Y: 

fo !Jl-a ~ e-a.d r,+a I (at I rt +a I)B' 

or, comparing with '~~~a from (4), 

!Jl-a = N -a J r1 +a J~ e-a, 1 r,+a 1• (11) 

Near the other center we must replace 'IJ by 
Jlt = (1- 'I])R = -lrt +a! + !r1 - al + R, and when 
ilt « R Eq. (6b) goes over into 

Y"+Y'+[-!!_ + -A+p2+R(Z2-Zt)]Y=O 
J.tt R J.l.t 2R ' 

(12) 

and it is necessary to choose a solution which is 
finite at zero. Noting that the parameters A and 
p/R have already been determined, we obtain 

Y = e~'""'• 11•F(v, 1; UtJ.tt), v = 1- a2 I at. (13) 

We assume that 'Y is not equal to a negative integer. 
This means physically that the considered terms 
!:g, and !:u do not coincide at R - oo with any other 
term of the system. Multiplying X from (8) by Y 

from (13) we obtain the function near the foreign 
center: 

!Jl+a = N +aF (y, 1; atf.tt) e-a, 1 r,-a 1• ( 14) 

The coefficient N+a has not yet been determined, 
but it can be expressed in terms of the parameters 
of the problem by considering the transition from 
cp _a to cp +a in the intermediate region. Let us 
carry out this transition, solving in this region 
Eq. (6b) by the usual semiclassical method, putting 
Y = exp(S0 + 81 + ... ) and confining ourselves to the 
81 terms. Leaving out the straightforward inter­
mediate steps, we obtain 

(15) 

This allows us to write down the two-electron 
wave function in the region of interest to us when 
the external (first) electron is close to the foreign 
core, and the internal (second) electron remains at 
its own core 

'¥-a = N -a (2R)B+a,f a, e -a,R e -a, I r,-a 1 -a, 1 r,+a 1 

(16) 

We took account here of the fact that Jlt Rl I r 1 - al 
- (x1 - a) when R » 1. 

Let us use the function (16) to calculate the inte­
gral J. We change the notation somewhat, introduc­
ing lr1- al - r 1, lr2 + al - r 2, and x1- a= -(x2 +a) 
= z; then, in the new variables 

J = ~ 'I' +a V 6'1' ~adS = 2 ~ 'I' +a:V 6'1' -adS 
l: 

B r1 r 1 8 ra r 2 

= 8n2N+a [ ~ dr2 ~ drt ~ dz + ~ drt ~ dr2 ~ dz J 
0 0 ~r 1 0 0 -r, 

(17) 

The integral (17) can be calculated for sufficiently 
large E in terms of elementary functions (see the 
appendix). It turns out to be 

1 =A (at, a2, N) (2R)2(!1+aJa,)e~2a.,R, (18) 

where 
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[ 5 37 ( a2 ) ( a 2 )
2 J 

x - 6 ' a1 + a2 , + a1 + a2 ' 
(N == N-a). 

The difference Eg- Eu is positive, correspond­
ing to the well known fact that the 1~g term lies 
higher than the 1~u term. In the derivation we made 
use of the fact that exp(- a 1R) » exp(- a 2R) for 
sufficiently large R. But this inequality does not 
impose any limitations on a 1 and a 2, since a 1 < a 2 

always. Therefore the only criterion for the appli­
cability of (18) is a 1R/2 » 1. Under this condition 
this formula gives an asymptotic exact value of the 
splitting. We note that formula (18) differs from 
the corresponding expression of Fetisov and Firsov 
even in the argument of the exponential. 

2. In the derivation of (18) it was assumed that 
the atomic residue has zero spin. As shown by 
Firsov and Smirnov[s] , using single-electron 
charge exchange as an example, if the core has 
spin 1/2 the difference Eg- Eu, is half as large for 
the case considered by them as for the electrons in 
the field of spinless nuclei. This is connected with 
the fact that the splitting Eg- Eu depends on the 
symmetry properties with respect to permutations 
of all the electrons. Let us take these symmetry 
properties into account. 

We consider the transition of a group of elec­
trons between two identical centers. We shall des­
cribe the atomic residue by means of a total spin 
~a with projection u'ta, in the transferred group 
of electrons by a spin 82 with projection u2• Such a 
transition corresponds to complete functions ~g 
and ~u• which depend on the coordinates of the 
transferred electrons and on the values of 81 2 and 
u1,2• We draw in configuration space a symm'etry 
plane that divides this space into two parts; then, 
integrating to the left of this plane and transforming 
the integral into a surface integral, we obtain in 
analogy with (2) 

(Eg-Eu) ~ 'l'g'¥udT = ~ ~ ('l'g'V'l'u- 'l'u'V'l'g)dS (19) 
g l: 

(summation over the spins is implied in this form­
ula). 

At large internuclear distances, \lf go over g,u 
into the functions \lf ± a = 2-11 2(\lf g ± \lf u> , which are 
localized on the centers ±a and which are eigenfunc­
tions for the spin operator and can be represented 
in the form 

(20) 

Here cpa is the coordinate function, centered on the 
nucleus (a), and 

X±a = IS!'Fa, Oi'Fa)IS!±a, s2, s, a>, (21) 

where S and u are the spin and its projection for 
the isolated atom. The spin characteristics of the 
atoms coincide, since we are considering the case 
of the symmetrical initial and final states. The de­
pendence on the quantities S and u is manifest in 
terms of the symmetry properties in the coordinate 
functions CfJ±a· We introduce the functions CfJg,u 
= 2- 112(cpa ± cp_a), which describe a molecule with 
zero-spin nuclei. Let us compare the splitting 
(Eg- Eu) 0 in such a molecule with Eg- Eu. To this 

end we relate llfg,u with <Pg,u= 

"'¥ g = 1/2{<pg (Xa + X-a) + <jlu (Xa - 'X-a}}' 

It is easy to see that the integral in the left side 
of ( 19) is equal to 

) "'¥ u "'¥ gdr: = ~ (Xa2 + X.:_a) ) fPurpgdr: = ~ fPurpgdr:, 
Q g g 

and the right side of (19) yields 

~ ('l'g'V'l'u -"'¥u 'V'l'g)dS 

= <xa I X-a> ~ ( f{Jg V f{Ju- f{Ju V rpg} dS. (23) 
l: 

Thus, the splitting in the case of a core with spin 
is connected with the spinless splitting by the rela­
tion 

We express the matrix element in terms of the 
Clebsch-Gordan coefficient. To this end we repre­
sent Xa in the form 

The expression for x_ a is similar and, using the 
orthonormality of IS<T), we obtain 

Sa 
<xa I X-a> = {Cs, a a, as,a,l2• (26) 

If the spins cancel out in the transferred group 
or in the cores, i.e., 82 = u 2 = 0 or 81 = u1 = 0, then, 
as expected, ( x I x a> = 1. a -

We note also that for the case of exchange of one 
electron at a core spin 1/2 and S = 0 we get 
<xalLa> = 1/2, which coincides with the result of 
Smirnov and Firsov[ 12 ]. 

A relation similar to (24) for spin charge ex­
change is 
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FIG. 2. Cross sections for double resonant 
charge exchange in inert gases. The solid line 
shows the result of the present work; .6., 0, X -
experimental data from [13], [ 14], and [ 15], respec­
tively. Dashed curves-calculation from [7]; dash­
dot-calculation from ["]. 
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where 
s+a+ s+cp+ s-a- s-a•-<xa I X-a> = Cs,a,s,a,Cs,a,s,a,,Cs,a,s,a,Cs,a,s,a,•, (27) 

a± = a1 ± a2, a'± = at ± a{. 
In this case the degeneracy in the spin projec­

tions of the transferred electrons is lifted. 
The foregoing analysis enables us to write an 

asymptotically exact formula for the splitting of 
the terms in two-electron exchange. Using (18), 
(24), and (26) we obtain ultimately 

1 sa 
2.(Eg- Eu) = [Cs,a,s,a,]2A (2R)2<1l+a,/a,J e-2a,R, (28) 

where S2 = 0, 1 and the spin of the atomic residue 
can be arbitrary. 

3. Knowing the asymptotic behavior of the term 
splitting, let us estimate the cross section for dou­
ble resonant charge exchange in inert gases. In the 
adiabatic approximation it is equal to 

a = 112;tpo2,, (29) 

where the critical impact parameter Po is deter­
mined most naturally from the condition 

(30) 

u, em/sec 

Here C is Euler's constant. 
The splitting Eg - Eu, determined by (28), con­

tains the parameter N, which is the normalization 
coefficient of the asymptotic atomic wave function. 
We have determined it by using the experimental 
data of[15J. 

Figure 2 shows the double charge exchange cross 
sections calculated from (28), (29), and (30), as 
functions of the velocity. The same figure shows 
the results of the calculations of[7 ,B] and of the 
experiments[t:t-ts]. The comparison shows that our 
curves have a slope which is closer to the experi­
mental value. We note that the use of (28) for the 
calculation of the cross sections in Ne, Ar, Kr, and 
Xe is by way of a crude. estimate, since we have as­
sumed in the derivation of (28) that the transferred 
electrons are in the s-state. Since the existing 
experimental data pertain to a velocity region 
which is at the upper limit of applicability of the 
present theory, it is very desirable to carry out 
experiments at lower velocities. 

The authors consider it their pleasant duty to 
thank Yu. N. Demkov for interest in the work and 
useful discussions. 
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APPENDIX 

The integral ( 17) can be readily transformed into 
e r, Tt 

J == M ~ drz ~ dr1 ~ dze-><(r,+r•>{x (zr1 ~ zrz) 
0 0 -r1 

- a1(r1r2 + r1z)F(y, 1; a1(r1- z)) 

XF'(y, 1; ai(rz + z))- at(r1rz- rzz)F'(y, 1; at(r1- z)) 

X F(y, 1; a1(rz +z))} = M(lt + Iz + I3) = MI, (A. I) 

where K = a 1 + a 2 and M = 8n2N~a· 
We use an integral representation for the con­

fluent hypergeometric function: 

1 (1) 

F(y, 1; x) = B ~ exuK(u)du, (A.2) 
(0) 

where K(u) = uY- 1(1 - u)-Y, B is a beta function, 
and the integration must be carried out in the com­
plex u plane, choosing a contour which is regular 
in its dependence on y and which circles around the 
points 0 and 1. By changing the order of integration 
we obtain for the integrals I1, I2, and I3 the expres­
sions 

(1) 

I 2 = a~~ ~vdudvK(u)K(v)(-lr,r,-lr,z), 
B <o> 

(1) 

Is=..!!:.!. \ \ u du dv K (u)K (v) ( -lr,r, + lr,z). (A.3) fl2 .l ~ 
(0) 

We put here 
8 Ta +r1 

lpq = ~ dr2 ~ dr1 ~ dzpq exp {A-rt+ ,.u2 + (Jl- A.)z},(A.4) 
0 0 -r1 

where A =a 1u- K and /-1. =a 1v- K. 

Taking into account the fact that A, 1-L '>" 0 and 
exp(A, /-1., E) « 1, these integrals are equal to 

J.tz _ 1.,2 f.lz + Af.l- 2A.2 
lr,z = 4A.3J.t4 ' lr,z = 4A.3f.l4 ' 

l =- f.lz + 2A.f.l + 2A.z (A.5) 
r,r, 4A.3f.l4 • 

Substitution of these expressions into (A.3) leads 
to 

1 1<t~ { 3 2 2x 2x x } 
I 2Bz ~ ~ dudvK (u) K (v) A.f.t3 + A.zf.lz + A.J.L" + A.2J.t3 +A.3f.l~ . 

(0) 

(A.6) 
Integration with respect to u and z is indepen­

dent, and thus (A.6) breaks up into products of inte­
grals of the type 

1 (f) ( a )-m 
Cm=- ~duuV-1 (1-u)-Y 1--1 u . 

B ~ I 

(A.7) 

It is easy to see that Cm is the hypergeometric 
function 2F 1(y, m, I; a 1/K). Noting that 

zFt(a, c, c; x) = (1- x)-a, 

and using the recurrence formula 

2ft(a -1, b, c; x) = 2F1(a, b -1, c; x) 

a-b + --xzF1(a, b, c + 1; x), 
c 

we obtain the required expression for I: 

(A.8) 
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