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It is demonstrated that quantization of the energy of a conduction electron in a film may lead 
to the appearance of logarithmic singularities in the state density. The singularities are 
responsible for the peculiar oscillations of the electronic thermodynamic characteristics of 
metallic films at low temperatures and high pressures. 

1. INTRODUCTION 

THE singularities of the energy spectrum of con­
duction electrons in metals can give rise, as shown 
by I. M. Lifshitz[!], to a unique electronic transi­
tion, due to the change in the topology of the Fermi 
surface as the latter is continuously deformed at 
high pressures. In the vicinity of the transition 
point, anomalies of the surface quantities become 
significant[2J, besides the anomalies in the volume­
tric thermodynamic characteristics of the metal. 
A study of similar effects in the thermodynamic 
properties of metal films shows that under certain 
conditions the character of the transition is greatly 
altered by the quantization of the conduction-elec­
tron conductivity in the film. 

For certain equal-energy surf:;~.ces, the quanti­
zation of the energy spectrum leads to logarithmic 
singularities in the density of the states. A charac­
teristic feature of a surface of this kind are saddle 
points. This circumstance is clearly manifest in 
the giant oscillations of the thermodynamic quanti­
ties, resulting from the shift of the chemical poten­
tial t upon deformation of the film. The amplitude 
of the oscillations is quite large, and at sufficiently 
low temperatures it is of the order of or even lar­
ger than the smooth part of the corresponding 
quantities. In this respect, the oscillations under 
consideration differ greatly from the oscillations 
investigated by I. M. Lifshitz and A. M. Kosevich[ 3J 

To observe the oscillations, low temperatures 
T :S 103/Lo [deg] are required (L0 is the number of 
atomic layers in the film), according to estimates 
of Itskovich[4J, and also a film deformation such 
that the chemical potential o t is at least of the or­
der of the distance between the energy levels near 
the limiting Fermi energy, i.e., ot ~ t/L0• Accord-

ing to Kosevichl 5J, the deformation necessary for 
this purpose is uik ~ 1/L0• The observed displace­
ments of the chemical potential [6] upon deforma­
tion of the metal are sufficient, for example, for 
films of thickness L ~ 10-6 em. 

2. DENSITY OF STATES 

The density v( E) of the electronic states per 
unit energy interval is given for a layer of thick­
ness L by 

_ gV ""1iJS(e,n) I 
v(e)- (2n/i)2£~11 ih ' 

where g = 2s + 1, s-spin of the quasiparticle, 
V-volume of the layer, 

I iJS(e,n) I \ ae = J 6[e- e(p..L, n)] d2p..L, 

(1) 

(2) 

p l = ipx + jpy, o(x) is the Dirac o-function, the 
quantum energy levels E:(p 1 , n) are determined by 
formulas (5) and (5') of[2J, and 

S(e, n) = ~ e [e- e(p..L, n)]d2p..L, (3) 

S(x) = { 0, x < 0 . 
1, x> 0 (3') 

In those cases when only one pair of roots occurs 
in the quantization of Eq. (4) of[2J, the quantity 
S( E, n) has an intuitive geometrical interpretation. 
Let the equal-energy surface &'(p) = E bound in 
p-space a certain volume with energy smaller than 
E. Projecting on the plane Pz = const the points at 
which the given surface cuts off from the lines 
parallel to the Pz axis segments of length 27rnn/L, 
we obtain a line bounding a certain figure. The 
area of this figure is equal to S( E, n). In the par­
ticular case when the quasimomentum component 
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p = 1rnnjL is quantized, the quantity S( E, n) is zn 
equal to the area of intersection of the equal-
energy surface with the plane Pz = Pzn• and 
BS/BE = 21rm*, where m* is the effective mass of 
the electron for the given cross section. 

Just as a change in the topology of the equal­
energy surfaces leads to singularities in the vol­
ume density of states[!], the corresponding changes 
in the topology of the curves bounding S( E, n) also 
leads to unique singularities in the state density 
(1). In this respect, a characteristic example is 
the two-dimensional analog of the "break in the 
neck," when the curves bounding S(E, n) have a 
hyperbolic point (see Fig. 1). In the vicinity of the 
hyperbolic point, the equation for the corresponding 
curves is 

pi/2m2- pi/2m1 = cp(e, n), ( 4) 

where <p(E, n) is a certain sign-alternating function 
which vanishes at the hyperbolic point: 

(5) 

the exact form of which can be obtained only under 
certain assumptions concerning the dispersion 
law. 

Calculating the profile S bounded by curves (4) 

and the lines Px = ± Px, and differentiating with 
respect to the energy, we obtain 

aS(e,n) 

ae 
(6) 

where a§';aE is a continuous function. From (1) and 
( 6) it follows that 

gVl'~ ~ acp -
v(e)=- 2L(n/i)2 n~1TelnJcp(e,n)J +v(e). (7) 

At energy values E = En satisfying (5), the density 
of the states goes to infinity logarithmically. 

Following(3], we separate the oscillating part 
of ( 7), summing over the Poisson formula: 

v(e) =vo+vosc; 

gVl'm1m2 acp . 
V08c(e)=- 2L(nli)2 ae lnJ2smnp(e)J, (8) 

where v0(E) is a smooth function and p(E) is defined 
by 

cp[e, p (e)] = 0. 

The logarithmic singularities occur at p( En) = n, 
n = 1, 2, 3, ... 

( 9) 

The presence of logarithmic singularities in 
the density of states is intrinsically connected 
with a definite form of the equal-energy surfaces. 

p!l 
::;...-·-­

·~-+---:::::-:c:::=-- 0 

'f >0 ---. · ·--- Px 

~-~--­/ ~ 
P.Y 

·~~~:::---t---
-· 

FIG. 1. Change in the topology of the curves bounding the 
figure S( E, n) in the vicinity of the hyperbolic point. 

A characteristic attribute of surfaces of this type 
are saddle points. Near the saddle point ( 0, 0, Pzol. 
the dispersion law 0(p) takes the forml 7J: 

a eo 1 ( p 2 Px2) g (p) = eo(Pzo) +-a- (Pz- Pzo) +- ..c.!!_-- . 
Pzo 2 m2 m1 

From this, in the case of quantization Pzn = 1rnnjL, 
we have for the function <p( E, n) 

cp(e, n) = e- eo- vo(nlin / L- Pzo), 

where Eo and v0 are respectively the energy and 
velocity at the saddle point. From the formulas 
obtained it follows that the density of states (7) 

becomes logarithmically infinite if the plane 
Pz = Pzn is tangent to the equal-energy surface at 
the saddle point. 

The next characteristic examples are the equal­
energy surfaces in the vicinity of a conical point. 
In the corresponding coordinate system, the dis­
persion law near a conical point is defined by 

Let N(sin e cos <p, sin e sin cp, cos 8) be a normal 
to the surface of the film in the given system of 
coordinates, and e the angle between the axis of 
the neck and the normal N. Determining by means 
of formulas ( 5) and ( 5') ofl2 J the corresponding 
quantum energy levels from (10), we obtain by 
straightforward but somewhat cumbersome calcula­
tions 

gV ( m1m2m3 )'h 
v(e) =- 2(nft)2L Jl!l 1 

"" j n2ft2n2 I 
X 'Y. In e-eo---- +v(e) ,..... 2ML2 I ' 

n=l 

where 
( 2 . 2 ) 2£1 M_1 _ • 2 8 . cos (/)+ sm <p cos " 

- Slll -- -- - ---
' m1 m2 m3 · 

The logarithmic singularities in the density of 
states are missing if M- 1 ~ 0. 

( 11) 

( 12) 
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Summing ( 11), we obtain 

v(e) = Vo + 6v, (13) 

gV ( m1m2m3 )'/, 
1\v(e) =- 2(nli)2L. M , 

X [ Inl2sin ~ (2M(e-e0))'f,l- ~In je-eol], (13') 

where v0( E) is a certain continuous function. Logar­
ithmic singularities arise at E = En, where 

en= eo+ n21i2n2 I 2ML2, n = 1, 2, 3,... (14) 

In the limit as L - oo there follows from (l3') 
the well knownr 1l root singularity 

6v (e) = -a (eo - e) •;,e (eo - e) , 

g¥2 v ,--
a= ---ym1m2m3· 

2n2 li3 ' 

here B(x) is defined by (3'). 

( 15) 

(15') 

3. OSCILLATIONS OF ELECTRONIC THERMO­
DYNAMIC QUANTITIES 

Logarithmic singularities of the density of 
states are manifest strongly in the thermodynamic 
properties of metal films. 

Calculating the free energy F in the case of 
state density (8) under the assumption that 

we obtain 
eF 

n2 
F = ~ v0 (e) ede - () T2vo ( BF) + Fosc, 

0 

'F 

Fosc=- ~{ ~ e::In j2sinnp(e) jde 
0 

+ _!___ !.:!__ .; cos (2nkp) c:D (2 2k 'T) } 
2p' ae Li k2 n p ' 

Fh=l 

where 

( 16) 

( 17) 

( 17') 

1 1 
c:D(x)=---- (18)* 

x shx 

and p'(E) = dp/dE ~ 1/ DoE, DoE is the distance be­
tween the energy levels. 

The Fermi E F is determined from the condition 
that the number of conduction electrons N is con­
stant: 

"F 8F 

N = ~ vo(e)de-13 ~ a<p In j2sinnp(e) jde. (19) 
0 0 ae 

*sh"' sinh. 

Summing the series in (17') under the condition 
(16), we obtain 

eF 
(" a(p :rtz a<p 

Fosc=-13 J e-a lnf2sinnp(e)ide+-T2~--
o e 6 aeF 

x{ ln (2n2p' ( BF) T), 

ln 12 sin np (eF) j, (20) 

We see therefore that there is a characteristic os­
cillatory dependence of the free energy F on the 
shift of the Fermi level EF· The amplitude of the 
oscillations decreases with increasing tempera­
ture, and the oscillations vanish when 2rr2p' T » I. 

Substituting in the condition (16) p' = EF/L0, 

where L 0 is the number of atomic layers in the 
film, we obtain the equivalent condition 

LoT I BF~ 1, ( 16') 

which is more convenient for estimates. 
The formulas obtained for the free energy allow 

us to consider the behavior of the thermodynamic 
quantities under deformation of the film. 

A. Fermi level. The dependence of the Fermi 
level EF on the deformation tensor u can be ob­
tained from the condition that the number of con­
duction electrons (19) be constant. Differentiating 
(19) with respect to the components uik• we obtain 

aeF aln j2sinnp(eF,u) I 
--=-a;"+ ~ik , (21) 
au;, 1 - a ln 12 sin np ( Bp, u) I 

where 

1 a.AI'o 
a;k=~---, 

Vo auil, 

e 
a .AI' o F a 
-- = ~ --vo(e, u)de 
an;h ~ auik 

a I v v m1m2 

- au;h P(ep,u)=const L (nli) 2 

P(eF,u) 

1 a<p ae(p,u) 
>< .l ~ ln 12 sin np I dp, 

• ae ap 
P(O, u) 

V 'Y m1mz 1 O<p 
a=---'-~-

L (nli) 2 vo aeF 

(22) 

(22') 

(23) 

In order of magnitude, a ~ 1/L0• As follows from 
(21), the linear dependence of the Fermi level 
E F on the deformation tensor u is strongly violated 
near the singular values of the energy EF(u) = En(u), 
i.e., p(EF, u) = n. 
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The other thermodynamic quantities are calcu­
lated in similar fashion. 

B. Electronic part of the elastic moduli A.ikZm: 

- aln l2sin np(e.z.•, u) I 
='A,il<lm+"Vo~il<~lm 1 l 12 . ( )I - a n . sm np eF, u 

(24) 

where A.ikZm is a smooth function of u. From (24) 

it follows that the amplitude of the oscillations is 
~ vof3ikf3Zm• i.e., of the order of the smooth part. 

C. Electronic heat capacity C: 

Dcp { ·In(2:n:2p'T), x--
aeF. ln l2sin:n:p(eF,u) I. 

(25) 

The ratio of the amplitude of the oscillations of the 
heat capacity to its smooth part is 
~ L(/lln(TL0/EF)I. For a film of thickness 
L ~ 10-6 em at helium temperatures, this amounts 
to~ 10%. 

D. Electronic part of the stress tensor uik: 

1 Dcr;" _ 1 D2F(T, u) ( 1 Da;" ) 
rar--y arau;" = Tar o 

n3 A v0 (iJp/DeF)acot(np (eF, u)) + - p 'k --'--'-'-...,..:.,.-__:_......:_.:.__.:......,.:....:. 
3 ' 1 - a In l2~'>in :n:p ( ep, u) I 

( 26) 

for EF "" En, i.e., p »" n, n = 1, 2, 3, ... The zero 
denotes here the smooth part of a given function. 
In the vicinity of the point p(EF, u) = n for 
p = n ± (2rr2p'T), the function T-1auik/8T reaches 
an extremal value 

(~ aa;n ) = ( ~ aa;h \ 
T aT extr , T aT J 0 

(27) 

where ~ is determined from 

At the point p(EF, u) = n we have 

1 Dcr;n _ ( 1 aa;" ) 
'f-aT- T aT o 

(30) 

E. Paramagnetic susceptibility x: 

Dcp(eF-,Jl,u) } + DeF Inl2sinnp(ep-JJ,ll,n)l. (31) 

Formula (31) determines the dependence of the 
paramagnetic susceptibility on the external mag­
netic field H and the deformation tensor u. 

4. ANOMALIES OF THE THERMODYNAMIC 
CHARACTERISTICS OF A METAL FILM IN 
THE VICINITY OF THE ELECTRONIC TRAN­
SITION POINT 

In considering the anomalies of thermodynamic 
quantities of a metal film near the point of elec­
tronic transition, we confine ourselves to the most 
interesting case, when the Fermi-surface topology 
is altered via rupture of a neck. For simplicity, 
and also for comparison of the obtained results 
with the corresponding results in[ 1•2J, we shall 
take hydrostatic compression to be the external 
perturbation that shifts the chemical potential. 

At low temperatures 

(32) 

the free energy F is determined by the well known 
expression[8 J 

and the Fermi energy EF is determined from the 
condition 

.#'(eF, V) = ~ v(e, V)de = N, 
0 

(33') 

r xcthx-1 
J h cos(xs)dx=O, 
0 S X 

(28)* where the density of states vis given by formulas 
( 13) and ( 13'). 

and the function G(~) is defined by 

~"" xcthx-1 
G(s)=6 sin(xs)dx. 

X sh X 
0 

*cth "' coth. 

We put z = EF- E0. Substituting (13) and (13') in 
(33') and differentiating them over the volume V, 

(29) we obtain 

dz [ I L -
1 

1 ) 1-1 av= v 1- a( In I 2 sinh12Mz - 2Inlzl ~ , (34) 
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FIG. 2. Displacement of the 
Fermi level E F = z + E0 upon 
deformation of a metal film. 

where 

V = _ ~- ( offo + Vodf!o)' 
Vo \ av dV 

.Ar0 is defined by an expression similar to (22'), and 
differs from the smooth volume part of the number 
of states .#'0 in having a smooth surface part ~ 1/L0• 

y coincides in order of magnitude with the corre­
sponding quantity in[l]. 

When z "'- Zn, where 

(35) 

we have z ~y(V- V0) (here V0 is the volume at 
which the rupture of the neck occurs). The deriva­
tive dz /dV vanishes at the points z = Zn, as follows 
from (34), so that the dependence of z on V is of 
the form shown in Fig. 2. 

For the coefficient of electronic compressibility 
op/ av we obtain as a result of the calculations 

ap D2F (aP \ ( ap 
av=- avz= \aV)o+(\m,); 

( iJp \ voy2a (In 12 sin Lfi-1"V2Mz I - 1 /zln I z I) 
6 I -- ) = - --- - - ------------ -------~-- · ( 36) 

\av 1-a(lnl2sinLI'i-1f2ll1;:;l- 1/2lnlzl) 

Here and below the subscript zero denotes the con­
tinuous part of the corresponding quantities. Under 
the conditions 

z <0, (37) 

we set from (36) the well known expression[l] 

rJ{dpjiJV} 

FIG. 3. Oscillation of the coefficient of electronic com­
pressibility of a metal film near the transition point. 

· 'lhluut 
./lz, z2 Z3 

~f( 
• z 

FIG. 4. Anomaly of the electronic heat capacity of a metal 
film near the point of transition (as a function of z - y (V- V 0)): 

a-T= 0; b-T/IH? 1, T/lzi « 1. 

6 ( :; ) =- av2 lzl'f,_ 

When z > 0, oscillations of electronic compressi­
bility take place (Fig. 3). 

The electronic heat capacity C is given by 

liC 
C =Co+ liC; 

Co 

- a (In I 2 sin ~ i2M z I - ~In I z I ) . (38) 

Under condition (37), it follows from (38) that 

6C I Co = - (a/ vo) I z I '1', 
and the oscillations shown in Fig. 4a take place 
when z > 0. 

The thermal pressure coefficient op/oT is 

n2 yuz-'i'(ctg Lft-1 i2111z- ft/ L i2Mz) 
(39) 

6 1 -a (ln 12 sin Lfi-t i2Mz 1- 1/ dn I z I) 

from which it follows under condition (37) that 

a 
!J( 1 iJp) -/ 

-:rar1 

FIG. 5. Anomaly of thermal 
pressure coefficient of a metal 
film near the transition point (as 
a function of z ~y(V- V 0)): 

a-T~ 0; b-T/~E ? a-T/ izi «1. 
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( 1 {}p ) n2 I I 'If 6 TaT = 6 va z -·, 

and when z > 0 we get the oscillations shown in 
Fig. 5a. 

A similar expression determines also the coeffi­
cient of thermal expansion av I BT. 

For the paramagnetic susceptibility x we have 

x = xo + bx; 

Jl2 v-ym,mzma { I L I l5x = -- ln 2 sin -li [2M (z + ~1H) ]'/, 
2 L(nli)2jM 

- ~} ln I z + JlH I + ln 12 sin ~ l'2M ( z - J-tH) I 

-_!_In lz- nHil 
2 r J· 

( 40) 

The oscillations of the paramagnetic suscepti­
bility are shown in Fig. 6. 

In the case under consideration, as follows from 
the presented formulas, there are no singularities 
of the thermodynamic quantities at the point z = 0. 

The obtained expressions for the free energy F 
and its derivatives are valid when T - 0, with the 
exception of the vicinity of the singular points 
EF = En· To consider the thermodynamic quantities 
near the singular points it is convenient to write 
the state density ( 13') in the form 

bv (e) = l'lvo + "asc ; (41) 

I' ali 1 I I &vo(e)=-a(eo-e)"S(eo-e)+--=n e-eo, 42) 
2Ll'2M 

ali 
Vosc(e) =----

Ll'2M 

{ In 12 sin [Lii- 1(2M(e- eo)) 1!.] I, e;;;:,: eo . (43) 

X ln(1-exp(-2Lii-1(2M(eo-e)) 1'']), e::::;;;eo 

In the region z > 0, under the condition 

Lv2M nT- -~1 
fi z 

\ Jr\ 
-z +Z 15/Je-z pH 

(44) 

FIG. 6. Oscillations of paramagnetic susceptibility of a 
metal film near the transition point. 

the free energy is F = F 0 + oF0 + Fosc• where F 0 

is a smooth function, oF 0 is determined by the den­
sity of states ov0 (42) and was investigated in[2J, 
and 

ali r I L -, Fosc=--=·J ln ·2sin-j2Mx (eo+x)dx 
L l'2M 0 1i 

_ 11 Ta-y;~ cos(2kLii-1 {iih.) ( L 112M\ 
e - LJ 1rz <1>1 nkT-Ii v-), 

n k=l • \ z 

(45) 

where 

Ae = n21i2 I 2M£2, 

and the function cl> (x) is defined by ( 18). 
Summing the series in ( 45) we obtain 

ali r I L --1 F osc=---= J ln 2 sin- "V2Mx (eo+ x)dx 
L y2M 0 li 

I ln ( :~J, Z = Zn 

In !2 sin~ 12M2\ z =F Zn ( 46) 

The dependence of z on Vis determined from (33'). 
In the opposite limiting case 

we have 

L 112M 
nT- v-~1 

li z 

and z, which is given by the equation 
ao+z 

N = ~ ( Vo + bvo) de, 
0 

depends linearly on V- V0• It follows therefore 
that if 

T/lzl~1 ( 47) 

the thermodynamic quantities have at the transition 
point z = 0 singularities due to their volume and 
surface parts[1-2l; these singularities are not com­
pensated by oscillating terms. 

Knowing F from (45) and (46) we can obtain ex­
pressions for the thermodynamic quantities in the 
vicinity of the singular points zn. 

The heat capacity C at the points z = Zn has a 
maximum equal to 

ali n 2 I rt2T I Cma~ = Co+--=-T ln- , (48) 
L l'2M 3 nt1e 
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and when z "'zn it is determined by formula (38). 
Under condition (47), a logarithmic singularity 

of the electronic heat capacity occurs in the vicinity 
of the point z = 0 and is due to the surface part of 
the state densityl2J, and oscillations, whose ampli­
tude, given by (48), increases with increasing n 
(see Fig. 4b), occur in the region z > 0, at suffi­
ciently large n, such that T/n.t.E « 1. The ratio of 
the amplitude of the oscillations to the smooth part 
increases logarithmically with decreasing tempera­
ture. 

The thermal coefficient of pressure Bp/BT 
reaches in the vicinity of the points Zn, at 
z = Zn ± (7r2 T/n.6.E)~, an extremal value 

( ~ ap) = (-1- ap) - ~yvo ± cc;) . (49) 
• TaT extr TaT 0 6 Tjln(n2T/n~e) I , 

where ~ and G(O are determined by (28) and (29) 
respectively. Outside the vicinity of the points 
z = Zn, the coefficient of thermal pressure is given 
by formula (39). Under condition (47), a strong 
singularity exists at the point z = 0 and is due to 
the volume and surface parts of the density of 
states (see Fig. 5b). 

In conclusion I am sincerely grateful to Profes­
sor I. M. Lifshitz for attentive guidance of the 
present work. 
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