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It is demonstrated that quantization of the energy of a conduction electron in a film may lead
to the appearance of logarithmic singularities in the state density. The singularities are
responsible for the peculiar oscillations of the electronic thermodynamic characteristics of
metallic films at low temperatures and high pressures.

1. INTRODUCTION

THE singularities of the energy spectrum of con-
duction electrons in metals can give rise, as shown
by I. M. Lifshitzm, to a unique electronic transi-
tion, due to the change in the topology of the Fermi
surface as the latter is continuously deformed at
high pressures. In the vicinity of the transition
point, anomalies of the surface quantities become
significantm, besides the anomalies in the volume-
tric thermodynamic characteristics of the metal.
A study of similar effects in the thermodynamic
properties of metal films shows that under certain
conditions the character of the transition is greatly
altered by the quantization of the conduction-elec-
tron conductivity in the film.

For certain equal-energy surfaces, the quanti-
zation of the energy spectrum leads to logarithmic
singularities in the density of the states. A charac-
teristic feature of a surface of this kind are saddle
points. This circumstance is clearly manifest in
the giant oscillations of the thermodynamic quanti-
ties, resulting from the shift of the chemical poten-
tial ¢ upon deformation of the film. The amplitude
of the oscillations is quite large, and at sufficiently
low temperatures it is of the order of or even lar-
ger than the smooth part of the corresponding
quantities. In this respect, the oscillations under
consideration differ greatly from the oscillations
investigated by I. M. Lifshitz and A. M. Kosevich!?!

To observe the oscillations, low temperatures
T £ 103/L, [deg] are required (L, is the number of
atomic layers in the film), according to estimates
of Itskovich!*), and also a film deformation such
that the chemical potential 6¢ is at least of the or-
der of the distance between the energy levels near
the limiting Fermi energy, i.e., 6¢ ~¢/L,. Accord-

ing to Kosevich!%!, the deformation necessary for
this purpose is uj; ~1/L;. The observed displace-
ments of the chemical potentia1[6] upon deforma-
tion of the metal are sufficient, for example, for
films of thickness L ~107% cm.

2. DENSITY OF STATES

The density v(€) of the electronic states per
unit energy interval is given for a layer of thick-
ness L by

gv - | oS (g, 1) ‘
, 1
(2mh) 2L zl de (D

n={

v(e)=

where g = 2s + 1, s—spin of the quasiparticle,
V—volume of the layer,

' oS (e, n)

de ! = Sﬁis—sm,n)]dm, (2

p| =ipy * jpy, 6(x) is the Dirac 6-function, the
quantum energy levels €(p,, n) are determined by
formulas (5) and (5') of?! "and

S(e,n)= S‘e[e—s(p_L,n)]dzPJ., (3
0, z<<0
0(z) = 1, z>0" (37

In those cases when only one pair of roots occurs
in the quantization of Eq. (4) ofl?] | the quantity
S(€, n) has an intuitive geometrical interpretation.
Let the equal-energy surface & (p) = € bound in
p-space a certain volume with energy smaller than
€. Projecting on the plane p, = const the points at
which the given surface cuts off from the lines
parallel to the p, axis segments of length 2nhin/L,
we obtain a line bounding a certain figure. The
area of this figure is equal to S(e, n). In the par-
ticular case when the quasimomentum component
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P, = mhn/L is quantized, the quantity S(e, n) is
equal to the area of intersection of the equal-
energy surface with the plane p, = p,,, and
9S/0€ = 2rm*, where m* is the effective mass of
the electron for the given cross section.

Just as a change in the topology of the equal-
energy surfaces leads to singularities in the vol-
ume density of states“], the corresponding changes
in the topology of the curves bounding S(€, n) also
leads to unique singularities in the state density
(1). In this respect, a characteristic example is
the two-dimensional analog of the ‘‘break in the
neck,’’” when the curves bounding S(€, n) have a
hyperbolic point (see Fig. 1). In the vicinity of the
hyperbolic point, the equation for the corresponding
curves is

P2l 2ms — p [ 2my = ¢ (e, n), (4)

where ¢(€, n) is a certain sign-alternating function
which vanishes at the hyperbolic point:

(P(8717 n) = 07 (5)

the exact form of which can be obtained only under
certain assumptions concerning the dispersion
law.

Calculating the profile S bounded by curves (4)
and the lines py = + Py, and differentiating with
respect to the energy, we obtain

0S5 (g, n)
de

o8

—
= —2Vmim2~a—§lnl<p(e,n) |+

(6)
where 8§/ de is a continuous function. From (1) and
(6) it follows that

gV ymimg, & @ -~
“Wz]%lnl@(e,n)l-l-\’(e)- (7

n=4

v(e) =

At energy values € = ¢, satisfying (5), the density
of the states goes to infinity logarithmically.

Followingm, we separate the oscillating part
of (7), summing over the Poisson formula:

'V(S) = Vo + Vosc }

gVymm, d¢ .
— 2 ‘
()2 In |2sinmp(e)]|, (8)

Vosc(€) =
where v((€) is a smooth function and p(¢) is defined
by

ole, p(e)] = 0. (9
The logarithmic singularities occur at p(e,) = n,
n=1,2,3,...
The presence of logarithmic singularities in

the density of states is intrinsically connected
with a definite form of the equal-energy surfaces.
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FIG. 1. Change in the topology of the curves bounding the
figure S(¢, n) in the vicinity of the hyperbolic point.

A characteristic attribute of surfaces of this type
are saddle points. Near the saddle point (0, 0, p,¢,
the dispersion law &(p) takes the form!"):

& (P)= €eo(p) + 020 ! <M~ p,ﬁ) .

apzo (pz - sz) + E ma my

From this, in the case of quantization p,,, = 7hn/L,
we have for the function ¢(€, n)

¢(e, n) =g — g — vo(nhn | L — p,),
where €, and v, are respectively the energy and
velocity at the saddle point. From the formulas
obtained it follows that the density of states (7)
becomes logarithmically infinite if the plane
P, = Py, is tangent to the equal-energy surface at
the saddle point.

The next characteristic examples are the equal-
energy surfaces in the vicinity of a conical point.
In the corresponding coordinate system, the dis-
persion law near a conical point is defined by

R 2
2m, 2ms

&(p)==e+

+

2
Dx (10)
my

2
Let N(sin 6 cos ¢, sin 6 sin ¢, cos 6) be a normal
to the surface of the film in the given system of
coordinates, and 6 the angle between the axis of
the neck and the normal N. Determining by means
of formulas (5) and (5%) ofl?] the corresponding
quantum energy levels from (10), we obtain by

straightforward but somewhat cumbersome calcula-
tions

v(e)=

gV ( mymayms 3‘/2

T 2(@h) i\ M
> 24252
3 ‘ g, T .
Xoa T e e TV (11)
where
2 in2 2
M-t = sip2g (259 SO q’)— 8 12
v my my mg

The logarithmic singularities in the density of
states are missing if M~! < 0.
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Summing (11), we obtain

v(e) = vo -+ Ov, (13)
. gv mymoms \"2
ov(e) = Z(nh)zL( M )

L 1
" [ln[ 25in—ﬁ—(2M(a—so))’/2l—Eln le—el ], (13

where v((€) is a certain continuous function. Logar-

ithmic singularities arise at € = €, where
en = &0 + n??n2 [2MI2, n=1,2,3,... (14)

In the limit as L — « there follows from (13)
the well known!!) root singularity

ov(e) = —a(eo — €)"0(gp — €), (15)
g2 vV — ,
= e

here 0(x) is defined by (3’).

3. OSCILLATIONS OF ELECTRONIC THERMO-
DYNAMIC QUANTITIES

Logarithmic singularities of the density of
states are manifest strongly in the thermodynamic
properties of metal films.

Calculating the free energy F in the case of
state density (8) under the assumption that

2n2p/'T < 1, (16)
we obtain
BF nz
F={ vo(#) ede — = Tvo(er) + Fosc,
0
EF 6
FOSC=—13{S sa—(PlnI.‘Zsinnp(s)lds (17)
e
0
T ¢ « cos(2mkp) _ ‘
DWW —————— O (2n2kp'T } 17%)
29, aEFh§i 2 (2“ e ) (
where
VY mum, 1 1
= = — *
=7 TR @ (z) . iz (18)

and p’(€) =dp/de ~1/A€, Ac is the distance be-
tween the energy levels.

The Fermi € is determined from the condition
that the number of conduction electrons N is con-

stant:
’r tF P)
N = g vo(e)de — B S —-agLIn |2sinnp(e) [de.  (19)
1]

0

*sh = sinh.
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Summing the series in (17’) under the condition
(16), we obtain

€

F
7] e 7]
Fosc=—8 OS e—&%ln |2 sin mtp (&) |de + o T2 a;pF
In (2% (er)T), &r=¢8n
X .
In'|2sinnp(er)|, &r 7= én (20)

We see therefore that there is a characteristic os-
cillatory dependence of the free energy F on the
shift of the Fermi level ep. The amplitude of the
oscillations decreases with increasing tempera-
ture, and the oscillations vanish when 27rzp’T > 1.

Substituting in the condition (16) p’ = ex/Ly,
where L is the number of atomic layers in the
film, we obtain the equivalent condition

LT [ er <1, (16"

which is more convenient for estimates.

The formulas obtained for the free energy allow
us to consider the behavior of the thermodynamic
quantities under deformation of the film.

A. Fermi level. The dependence of the Fermi
level € on the deformation tensor u can be ob-
tained from the condition that the number of con-
duction electrons (19) be constant. Differentiating
(19) with respect to the components ujj, we obtain

Oep aln |2sinx ,
ul = '—aik+ ﬁik I Sln_ 9(817' u)' N (21)
o 1 —aln |2sin np (eF, u) |
where
1 84, 1 04y der dp
Qip = —-~ ’ ih=— — T —(— 2
Vo auik Vo au,-k ap 6uik
&
F
0Ny 0
== | d
6u,~k S 0uik WO(S’ u) ©
0 V. Ymyme (22)
u;p, °(e . , u)= const L (:ﬂﬁ)2
o(ep,u)
a 7]
P g 2 n |2 sin np]Mdp, (22')
v O¢ dp
p(0, u)
V Ymm, 1 g (23)

YT T @h)E v er

In order of magnitude, a ~1/L,. As follows from
(21), the linear dependence of the Fermi level

€ on the deformation tensor u is strongly violated
near the singular values of the energy ep(u) = €p(u),
i.e., plep, w) =n.
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The other thermodynamic quantities are calcu-
lated in similar fashion.
B. Electronic part of the elastic moduli Ajj7p,:

@F (T, u)
Ainim == (—.-—'—'— )

ou0um / r=o
aln |2sin qip (ep u) |

- ) (24)
1—aln |2sinsp (er, u) |

= Mikim -+ voBirnPim

where Xiklm is a smooth function of u. From (24)

it follows that the amplitude of the oscillations is

~ Voﬁikﬁlm’ i.e., of the order of the smooth part.
C. Electronic heat capacity C:

C = V ymym,
7= 3" L s
In(2n2p'T), EF = € (25)
05F In |2sinnp(er,u)|, er = &n

The ratio of the amplitude of the oscillations of the
heat capacity to its smooth part is
~ L},illn(TLO/eF)l. For a film of thickness
L ~10 % ¢m at helium temperatures, this amounts
to ~ 10%.

D. Electronic part of the stress tensor oj):

1 dow _ 1 @F(Tyu) (1 00,~k)
T or T 0Touy, _<T ar /o
+f—ﬁ- vo(dp/der)acot (mp (e, u)) (26)
E 1 —aln|2sinnp (er, u) |
for ep # €,,i.e., p #n,n=1,2,3,... The zero

denotes here the smooth part of a given function.
In the vicinity of the point p(ey, u) = n for

p =n+ (2n%’T), the function T 90y /9T reaches
an extremal value

(1 aO’z‘k)
T or/,,

n” dp G(§)

160'1k
T 6T/°

B /T) |In(2n2p'T) | (27)
where ¢ is determined from
S fih_x_—_lcos (zt)dz =0, (28)*
shz
and the function G(¢) is defined by
G(5)=6§ zethz = (ot da. (29)
p x sh x

*cth = coth.
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At the point p(e, u) = n we have

1 doimn _(1 aoin )
0

T T 6T

(30)
T oT

E. Paramagnetic susceptibility x:

u2 v vﬁzﬁ:{' ¢ (er + pH, u)

K= T L (wn)e der

—In|2sinznp(er + pH, u) |
atp(sF_ MH, u)

+ aSF

In |2 sin np (ep — pnH, u)|} (31)
Formula (31) determines the dependence of the
paramagnetic susceptibility on the external mag-
netic field H and the deformation tensor u.

4. ANOMALIES OF THE THERMODYNAMIC
CHARACTERISTICS OF A METAL FILM IN
THE VICINITY OF THE ELECTRONIC TRAN-
SITION POINT

In considering the anomalies of thermodynamic
quantities of a metal film near the point of elec-
tronic transition, we confine ourselves to the most
interesting case, when the Fermi-surface topology
is altered via rupture of a neck. For simplicity,
and also for comparison of the obtained results
with the corresponding results in“’ﬂ, we shall
take hydrostatic compression to be the external
perturbation that shifts the chemical potential.

At low temperatures

T/ |er —en| <1, (32)

the free energy F is determined by the well known
expression!?]
€

F

2
§ #(e, Vyde— - T2v(er, V), (33)

0

F(T,V) =N6F"‘

and the Fermi energy € is determined from the

condition .
F

N(er, V) = S v(e,V)de = N,

0

(33)

where the density of states v is given by formulas
(13) and (13").

We put z = e — €;. Substituting (13) and (13’) in
(33’) and differentiating them over the volume V,
we obtain

;%f:y [1 —a(ln !2sinﬁ£}/2ﬂz_’——%ln12l )]—t (34)
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pA
Z3¢
FIG. 2. Displacement of the
Z,F Fermi level €g = z + €, upon
Z deformation of a metal film.
fs
)’(Vtva)
where
1 /0N ds V ymymam
vz_ﬂ(_" °) — V¥mmams - q )
vo \ OV Cav L{nk)2yMv,

;f/'o is defined by an expression similar to (22’), and
differs from the smooth volume part of the number

of states &} in having a smooth surface part ~1/L,.

v coincides in order of magnitude with the corre-
sponding quantity in(17,
When z # zy,, where

2, = n2hn2 [ 2M12, (35)

we have z ~y(V — V() (here V; is the volume at
which the rupture of the neck occurs). The deriva-
tive dz /dV vanishes at the points z = z,, as follows
from (34), so that the dependence of z on V is of
the form shown in Fig. 2.

For the coefficient of electronic compressibility
0p/ 0V we obtain as a result of the calculations

9o _ O _ 1) (22,
oV av: gV, vav,
5 (9P _ _ voy'a(in|2sin LA-'Y2Mz| — '/yIn |z])

(36)

Vov/ T {—a(ln|2sin LA-ty2Mz|— o In|z])

Here and below the subscript zero denotes the con-
tinuous part of the corresponding quantities. Under
the conditions

2 <0, L—:lsz|z|>1 (37

we set from (36) the well known expressionm

o( fﬁ/ av)

2l
wY

z~p(V-Vy)

i /12 2 Z3

FIG. 3. Oscillation of the coefficient of electronic com-
pressibility of a metal film near the transition point.
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FIG. 4. Anomaly of the electronic heat capacity of a metal
film near the point of transition (as a function of z ~ y(V=V,)):
a—T=0; b-T/A€e > 1, T/|z| << 1.

ZnZn Zps2 2

op
o (57 ) ==l

When z > 0, oscillations of electronic compressi-
bility take place (Fig. 3).
The electronic heat capacity C is given by
8C

= 6C;
C CO + ’ CO

—a(lnl2sin§~}/Ml——2iln|z|>. (38)

Under condition (37),
6C [ Co = —(a/ wo) |2]|",

it follows from (38) that

and the oscillations shown in Fig. 4a take place
when z > 0.
The thermal pressure coefficient 9p/0T is

top 1
T oT

FF (1 ap
T aTav Tﬁ)o

a2 yaz~'"2(ctg LA~ y2Mz — h/L VZ,—JIE)

6 1—a(In|2sin LA~ Y2Mz|— 1/:1n|z])

from which it follows under condition (37) that

/_ip
i(r '

H J
T

b I ﬁﬂ)
Z, Zm,‘qzn*.? z

S

FIG. 5. Anomaly of thermal
pressure coefficient of a metal
film near the transition point (as
a function of z =y(V-V,)):

a—T = 0; b—T/Ac > a—T/|z|<<1.

Lr.h
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1 6p> a2
adl =t
o ( T oT volz|”
and when z > 0 we get the oscillations shown in
Fig. 5a.

A similar expression determines also the coeffi-
cient of thermal expansion 9V/9T.
For the paramagnetic susceptibility x we have

y = %o + Ox;
2y

b= — £ TR i 2sin L2 e |
2 L(nh)?

1 -
— 5 In|z+ uH|+lnl2sinFY2M(z—p,H) ‘

— Inls— A } (40)

The oscillations of the paramagnetic suscepti-
bility are shown in Fig. 6.

In the case under consideration, as follows from
the presented formulas, there are no singularities
of the thermodynamic quantities at the point z = 0.

The obtained expressions for the free energy F
and its derivatives are valid when T — 0, with the
exception of the vicinity of the singular points
€F = €. To consider the thermodynamic quantities
near the singular points it is convenient to write
the state density (13’) in the form

(5’\’(8) = 6\?0 + Vosc 3 (41)

dvo(e) = —a(eg—€)"20(eo— &)+ ———In|e —eo|, 42)

2L sz

af
Ly2i

Vosc(g) = —
In|2 sin{LA-1(2M (e — Yz
><{n| sin | (2M (e — =0) ) "], e= g (43)
In(1—exp[— 2LA-1(2M (g0 —&))']), &< eo
In the region z > 0, under the condition

Ly, s

1
z-16A¢ -z +Z

lﬁAe -Z ,u//

FIG. 6. Oscillations of paramagnetic susceptibility of a
metal film near the transition point.
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the free energy is F = Fy + §Fj + Fyge, where Fy
is a smooth function, 6 F; is determined by the den-
sity of states 6v, (42) and was investigated in(?

and

ah z
Fosc = — L}/ZM ln I 2s1n—V2Mz‘ (g0 + z)dx
T&V_z S cos (2kLA—1Y2Mz) /nkTiv%\ ’
f k2 h z /
(45)
where
Ae = m2h? | 2MI2,
and the function &(x) is defined by (18).
Summing the series in (45) we obtain
F ok ln|2sn 'VZMxI(e +z)dz
osc™— m——
s LY2M 3 ’
2T
In ( A ), Z2=2n
€
oh_ % "
Ly2M 6 I
In IZSinh—VZMz\ iz, (46)

The dependence of z on V is determined from (33’).
In the opposite limiting case

nl — L V————>1

we have

1 Ly/2M
lo ~ 0 (— : [-——-nf _V__._:D
s¢ Lo3 » eXp ﬁ V4 ’

and z, which is given by the equation
8otz

N={

0

(‘Vo + G’Vo) de,

depends linearly on V— V,. It follows therefore
that if

TlAe =1, T/|z1<<€1 (47)

the thermodynamic quantities have at the transition
point z = 0 singularities due to their volume and
surface par’cs[1 2); these singularities are not com-
pensated by oscﬂlatmg terms.

Knowing F from (45) and (46) we can obtain ex-
pressions for the thermodynamic quantities in the
vicinity of the singular points z,.

The heat capacity C at the points z = z, has a
maximum equal to

afi  n2 I 2T

—— 7 |In——
Ly2mM 3 nhAe

mar - C0+ 3 (48)
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and when z # z, it is determined by formula (38).
Under condition (47), a logarithmic singularity
of the electronic heat capacity occurs in the vicinity
of the point z = 0 and is due to the surface part of
the state density[”, and oscillations, whose ampli-

tude, given by (48), increases with increasing n
(see Fig. 4b), occur in the region z > 0, at suffi-
ciently large n, such that T/nAe «< 1. The ratio of
the amplitude of the oscillations to the smooth part
increases logarithmically with decreasing tempera-
ture.

The thermal coefficient of pressure dp/9T
reaches in the vicinity of the points z,, at
z = zy + (7T/nA€)&, an extremal value

(L) (1) _m,, E0O__
T 0T/ exe \NToT/s 6 " T|ln(w?T/nhe)|’
where ¢ and G(¢) are determined by (28) and (29)
respectively. Outside the vicinity of the points

z = z,, the coefficient of thermal pressure is given
by formula (39). Under condition (47), a strong
singularity exists at the point z = 0 and is due to
the volume and surface parts of the density of
states (see Fig. 5b).
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In conclusion I am sincerely grateful to Profes-
sor I. M. Lifshitz for attentive guidance of the
present work.
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