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We investigate the nonstationary solutions of the Korteweg-de Vries equation that describes 
the evolution of nonlinear disturbances in a plasma or other dispersive media. The conditions 
for the decay of the disturbances into "solitons" are found. The physical meaning of the self
similar solution of the Korteweg-de Vries equation is elucidated. Some general asymptotic 
relations are obtained for the nonstationary solutions. 

1. INTRODUCTION. GENERAL RELATIONS 

THE quantitative difference between nonlinear 
plasma dynamics and gas-dynamics consists in the 
important role of dispersion effects (see, for ex
ample, [ 11 ). To explain the character of the re
sultant phenomena, it is natural to consider first 
the case when the deviations of the dispersion law 
from linear are small, so that the dispersion equa
tion can be represented in the form of a series of 
powers of the wave number: 

(J) = Vtk(f + f>2k2 + · · .), (1.1) 

where Vf is the phase velocity of small oscilla
tions at k- 0, and 6 is a certain constant charac
terizing the magnitude of the dispersion effects 
(dispersion "length"). If it is possible to confine 
oneself in (1.1) to the first two terms (6is small 
compared with the characteristic wavelengths that 
are important in this problem), and also to con
sider perturbations of finite but sufficiently small 
amplitude, then in many cases the equation for 
such perturbations (in the first non-vanishing or
der relative to nonlinear and dispersion effects) 
reduces to the form 

Ut + UUx + ~Uxxx = 0, (1.2) 

where u is the magnitude of the perturbation (for 
example, the velocity or the magnetic field in the 
plasma), and the parameter {3 is equal to 'fvf62. l) 

Equation (1.2) was first derived by Korteweg 
and de Vries[ 21 for surface waves of sufficiently 
large wavelength (compared with the depth), and 

1 )Equation (1.2) is written in a coordinate frame that moves 
with a velocity vr = lim (w/k) relative to the medium; the 

k->0 

quantity u has the dimension of velocity. 

sufficiently small but finite amplitude in liquids. 
A similar equation for plasma waves was first ob
tained by Gardner and Morikawa[ 31 (for waves 
propagating transverse to the magnetic field in a 
cold plasma) and in [ 4• 51 (for waves propagating 
at an angle to the magnetic field). 2> Of course, the 
importance of (1. 2) is not confined to these cases. 
As noted in [ 41 , it is valid also for other types of 
plasma waves of small but finite amplitude, when 
it is possible to confine oneself to the first two 
non vanishing terms in the dispersion equation (1.1), 
which can be readily obtained from (1.2) after lin
earization and transition to a reference frame in 
which the plasma is at rest (see also [G-BJ). We 
note, finally, that Eq. (1.2) is also closely con
nected with the Fermi-Pasta-Ulam problem deal
ing with the establishment of stochastic oscilla
tions in a nonlinear string. [ 9• 101 

It is easy to verify that the solutions of the 
Korteweg-de Vries equation for {3 < 0 can be ob
tained from the corresponding solutions for the 
case {3 > 0 by making the substitutions 

u---+- -n, X---+- -X, t---+- t. (1. 3) 

We can therefore confine ourselves to a detailed 
investigation of (1.2) with {3 > 0. 

2)For waves propagating transversely to the magnetic field 
in a cold plasma, {3 = V AC2 /w~e (when the ions have a suffi
ciently large Larmor; radius, the sign of {3 reverses[7 ' 8]. For 
waves propagating at an angle rr/2 :- e to the magnetic field, 
{3 = v Ac2 @2/w~i (when 1 » e » (me/mY1'. In the case of 
gravitational-capillary waves on the surface of the liquid, 
{3 = (1/2) (gh)'h(h2 /3 - a/ pg), where a is the surface-tension 
coefficient, p the density, and h the depth of the channel ["], 
so that, depending on the latter, {3 can be either positive or 
negative. 
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The stationary solutions of (1. 2) were already 
obtained by Korteweg and de Vries, [ 2J who showed 
that these solutions are solitary and periodic 
waves propagating with constant velocity relative 
to the medium, i.e., they are described by equa
tions of the type u(x, t) = u(x- Vt). For solitary 
wave, or using the terminology of [10 J, for a "sol
iton," u(x) is of the form 

u(x) = u0 sch2 {(u0 l12~)'"x}, (1.4) 

and the velocity of the wave is determined by its 
amplitude and is equal to V = UQ/3. For periodic 
waves 

u ( x) = · ( 2a I s2) dn 2 { (a I 6.~) 'f, ( x I s) } + y, 
V = 2lll(2- s2) /3s2 + y. (1.5) 

Here dn z is the elliptic Jacobi function with 
modulus 0 ::s s ::s 1, and a and y are arbitrary 
constants, with a having the meaning of the wave 
amplitude. The wavelength A and the mean value 
of the amplitude ii are equal to 

A= 2(6~ I a) '"sK(s2), u = 2aE (s2 ) I s2K(s2 ) + y, (1.6) 

where K(s2) and E(s2) are complete elliptic inte
grals with modulus s. 

When s ____.. 1 we get 

1 ( 16 ) K(s2) ~-In -- , 
2 1- s2 

A---+ oo, dn z--+ sch z, (1. 7) 

so that a periodic wave with s f';j 1 can be approxi
mately regarded as a sequence of solitons with 
amplitudes u0 = 2a (relative to the level ii = y), 
separated by the logarithmically large distance 
A= 2 (6{3/a) 1/ 2 lln (1- s 2) 1. The width of each soli
ton, according to (1.4), is (12f3/Uo) 1/ 2 , and its ve
locity is V = (2a/3) + y (in the reference frame 
that moves :vith velocity Vf = lim (w/k) relative 
to the plasma). k------0 

The solutions presented above are stationary. 
Some nonstationary solutions of the Korteweg-de 
Vries equation were considered earlier by the 
authors in [ 4J, 3> where a detailed study was made 
of a self-similar solution of (1.2), and also by 
Zabusky and Kruskal, [ 10 J where a solution corre
sponding to the periodic initial condition u(x, 0) 
= cos 1rx was obtained by numerical integration. 
An interesting approximate method for analyzing 

3 !In ['] the problem was considered not with initial but 
with boundary conditions (excitation of waves by a source 
on a plasma boundary); the corresponding equation was 

Ut + VfUx + (u / Vt) Ut + (~ / Vt3) Uttt = 0. 

Introducing new variables r = xjv f and ,; = v ft- x, we arrive 
at Eq. (1.2) with initial conditions. 

nonstationary solutions of the Korteweg-de Vries 
equation, based on the representation of these so
lutions in the form (1. 5) with slowly varying pa
rameters a, s, and y, was developed by Whith
am. [ 12J 

The solution obtained in [ 10 J differs essentially 
from the self-similar solution investigated in [4 J. 

This difference lies in the fact that the former 
gives a series of individual solitons, into which 
the chosen initial perturbation u(x, 0) = cos 1rx de
cays, whereas the self-similar solution represents 
a wave packet, which never decays into solitons. 
Thus, diffferent initial conditions can correspond 
to solutions of essentially different types. In this 
paper we clarify some characteristic features of 
different types of solutions of the Korteweg-de 
Vries equation. 

2. SIMILARITY PRINCIPLE 

Let us formulate first a similarity principle for 
the Korteweg-de Vries equation. We write the ini
tial condition in the form 

u(x,O) =urff!(x/l), (2.1) 

where Uo is the amplitude and l the linear dimen
sion of the initial perturbation. By varying the 
parameters Uo and l we obtain a family of simi
lar initial conditions characterized by the dimen
sionless function cp(x/l ). Introducing new vari
ables 

T)=u/uo, £=x/l, T=uotll, (2.2) 

we obtain from (1. 2) and (2.1) 

Tl• + TITI!i + a-2Tim = 0, T) (£, 0) = IP (£), (2. 3) 

where 

a= l(u0/ M'"· (2.4) 

It follows from (2. 3) that flows corresponding to 
the same value of the number u and to the same 
initial function cp(O are similar. For the solitons 
(1.4) we have 

a= Us= y'12. (2.5) 

The number u is actually the nonlinearity index 
of the problem, and its value us for the soliton is 
characteristic in a definite sense, viz., qualita
tively different solutions are obtained for u » us 
and u « us following an initial perturbation cp(O 
of identical form (see below). 

3. CERTAIN PECULIARITIES OF THE 
NONSTATIONARY SOLUTIONS 

Let us consider the solutions of (1.2) corre
sponding to the most typical initial disturbances 
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that attenuate as x- ±oo. We take first an initial 
perturbation in the form of a single peak, for ex
ample 

u(x, 0) = u0 exp {-x2 I l2). (3.1) 

The character of the solutions will depend on the 
values of a for the initial condition (3.1). 

As shown by a numerical trial (see Fig. 1), for 
sufficiently large values of a »as the initial per
turbation (3.1) decays practically completely dur
ing the course of the evolution into individual soli
tons (it will be shown later that a "tail," repre
senting a limited wave packet of small amplitude, 
is produced in addition to solitons. A solution of 
similar type (decaying into solitons) was obtained 
earlier by Zabusky and Kruskal[lOl for the periodic 
initial condition 

u(x, 0) = cos nx. 

It follows from a numerical trial that the initial 
perturbation (3.1) breaks up into two solitons when 
4 < a < 7, into 3 when 7 < a < 11, into 4 when a 
"' 11, and into 6 when a"' 16, i.e., with increasing 

·number a the corresponding perturbation breaks 
up into a larger number of solitons. 

In the opposite limiting case (a « as), ''non
soliton" solutions are obtained, corresponding to 
perturbations which do not decay into solitons. 
These solutions are rapidly-oscillating wave 
packets. Qualitatively these solutions are similar 
to the self-similar solution investigated in [ 41 , al
though quantitatively they can differ in the law 
governing the decrease of amplitude in time and in 
space (it will be shown below that the character of 
the asymptotic dependence of the wave number on 
x and t in the rapidly-oscillating part of the pack
et is common to all solutions of this type, and co
incides with that previously obtained for the self
similar solution in [ 41 ). 

Finally, we note that at certain initial conditions 
a mixed type of solution is obtained, containing, 
besides solitons that move forward, a lagging 

<r: 

FIG. 1. Profile of perturbation in the case f3 > 0 
with a> ac: a) a= 5.9, b) a= 16.5. 

1l 

1.0 

1,0 :& 

FIG. 2. Profile of perturbation in the case f3 > 0 with a <a c 
(a= 1.9). 

"tail" having the same form as a train of fast os
cillations (Fig. 2). 

Certain qualitative peculiarities of the "pure 
soliton" solutions can be explained by starting 
from the conservation laws derived from the Kor
teweg-de Vries equation. It turns out that in addi
tion to the three known conservation laws given, 
for example, in u 21 , many others existY These 
conservation laws can be written in the form 

aQm(X, t) aPm(X, t) 
at + ax =0 (m=1,2, ... ),(3.2) 

where 

(3.3) 

4 )The conservation laws numbered 4 to 8 were obtained by 
M. Kruskal, N. Zabusky, and R. Miura (Private communication 
from Professor M. Kruskal). The number of such conservation 
laws is apparently infinite. 
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The first conservation law is Eq. (1. 2) itself, writ
ten in divergence form. The second law is obtained 
from (1.2) by multiplying both sides of the equation 
by u, etc. However, the complexity of the deriva
tions increases rapidly with increasing m. 

If the perturbation attenuates at x- ± oo, then 
it follows from (3. 2) that 

00 00 

Sm = ~ Qm(x, t)dx = ~ Qm(x, O)dx. (3.4) 

If N solitons are produced from the first perturba
tion then, after they have diverged from one an
other sufficiently far, the conserved quantities Sm 
will be summations of these values for the indi-

N 
vidual solitons, i.e., Sm = .:0 s~>. Equating this 

r=1 
sum to the value of Sm calculated for the initial 
perturbation (3.1), we obtain the following equa
tions: 

N oo oo 

~l](rr-'f, = :. ~ Qm(~, O)d~ j ~ qm(~)d~ (m = 1, 2, ... ), 
T=i -oo -oo 

(3.5) 

where TJr = Uo/u~r> are the dimensionless ampli
tudes of the produced solitons, Uo is the charac
teristic "amplitude" of the initial perturbation 
( 3.1), the number a determined from (2.4) pertains 
to the initial perturbation, and Qm (L 0) and qm (0 
are the densities of the conserved quantities for 
the initial condition and for the soliton, respec
tively, expressed in dimensionless variables 
(where u0 = l = 1). 

The system (3.5) makes it possible, in princi
ple, to determine the amplitude of the solitons 
produced from the specified initial perturbation. 
Let, for example, this perturbation decay into two 
solitons (N = 2). In this case, solving the system 
(3.5), we obtain the following expressions for the 
amplitudes: 

(1J!,2)'''= 1/2{a!+ [(4a2/3a1) -a12/3J'i'}, (3.6) 

where 

The condition for the roots to be real leads to the 
inequality 4a2 > a~ (the equality sign must be ex
cluded, since this means formation of two solitons 
of identical amplitude, which cannot diverge be
cause the velocity of the soliton is proportional to 
its amplitude). Further, we note that in the deriva
tion of (3. 6) all the square roots were taken in the 

arithmetic sense; therefore the right side of (3. 6) 
should be positive, giving the inequality a~ > a2• 

When ai - a 2 the amplitude of one of the solitons 
tends to zero. 

Thus, for the initial perturbation (3.1) to decay 
into two solitons it is necessary that the similarity 
parameter (2.4) satisfy the conditions 

Gc < (J < 2crc, (3.8) 

Gc2 = 6crl f rp 2 (~)d~· [ frp(~)d~ r3
• (3.9) 

-oo -oo 

The lower limit a = ac separates the perturba
tions that decay into solitons from perturbations 
which evolve principally in a different manner; 
they either do not decay into solitons at all, or 
else produce one soliton and a "tail" having an 
energy comparable with it (Fig. 2). s> For the ini
tial profile (3.1), ac ~ 4, which coincides in order 
of magnitude with as (see (2.5)). On the other 
hand, if we choose as the initial perturbation 

u(x, 0) = u0 sch2 (x / l), (3.10) 

where Uo and l are arbitrary constants, then we 
get ac =as. Consequently, the value of the param
eter a for the soliton determines the order of 
magnitude of the boundary between solutions of 
qualitatively different types. 

When a > ac, the initial perturbation (3.1) al
ways decays into solitons. The crosses in Fig. 3 
mark the amplitudes of the solitons derived from 
(3.1) for different values of the parameter a. The 
dependence of the amplitudes of the solitons on a, 
obtained from the conservation laws under the as
sumption that the perturbation decays into two and 
three solitons, is represented by curves I and II 
respectively (curve 1-two branches of expression 
(3.6), and curve II was obtained by numerically 
solving the system (3.5) for N =c). As seen from 
Fig. 3, the "experimental" values lie well on the 
corresponding curves obtained under the assump
tion that the perturbation decays completely into 
solitons (i.e., that the contribution of the "non
soliton" part of the solution can be neglected).6> 

When condition (3. 8) is satisfied, the "experimen-

S)Numerical solutions for times larger than shown in Fig. 2 
yield nothing that is essentially new: the "tail," consisting 
of short-wave oscillations, lengthens and the front maximum, 
which goes over into a soliton as t-> oo, moves forward. 

6 )Apparently the "non-soliton" part of the solution should 
exist in all those cases, inasmuch, besides those conservation 
laws from which the amplitudes of the solitons were determined, 
there exist also others which should also be satisfied. 



NONLINEAR EVOLUTION OF DISTURBANCES IN PLASMAS 1053 

'l 
2,0 

1.0 

0 5,0 10.0 

)( X 

X 

X X 

X X 

X 
X 

X 

15,0 

FIG. 3. Dependence of the amplitude of the solitons on the 
similarity parameter. Crosses-"experimental" values, curve 
!-decay into two solitons, curve Il-decay into three solitons. 

tal" values fit well the curve I, with the exception 
of the direct vicinity of the upper limit u ~ 2uc. 
Near this limit, the "experimental" points go over 
already to curve II, i.e., when u ~ 2uc R;j 8 three 
solitons are produced, which "converge" with 
curve II, when the amplitudes of two out of the 
three solitons become sufficiently close to each 
other. 

It is easy to verify that the points at which am
plitudes of any two solitons coincide are singular 
also in the general case-in the sense that the so
lution giving the final number of solitons becomes 
unstable at these points. Indeed, if we consider 
the increments of the amplitudes of the solitons 
following infinitesimally small variation of the ini
tial condition, then we obtain from the system 
(3.5) 

1 N 
( m-2) ~ 'I'Jrm-'/, il'l']r-= 6Bm (m = 1, 2, ... ) , (3.11) 

r=l 

where 6Bm are the variations of the right sides of 
the system (3. 5), and Or] r are the increments of 
the soliton amplitudes. Relations (3.11) can be re
garded as a system of equations for the incre
ments 6rJr for SJlecified 7Jr and 6Bm· If we take 
the unknowns to be the quantities 7]-;_.112 6rJr, then 
the system of equations will be linear, and its de
terminant is a Vandermonde determinant made up 
of the quantities 7Jr; this determinant, as is well 
known, vanishes if any two values of 7Jr coincide. 
Thus, if 7Jr _ 1 --17r for at least one value of r, 
then small variations of the initial condition cor
respond to large changes in the amplitudes of the 
solitons (i.e., such solutions are unstable against 
variation of the initial conditions). Near the indi
cated points, a qualitative change should take place 
in the character of the solution (a more stable var
iant is realized). 

It must be noted that the solutions which do not 
give solitons can take place not only when u < uc· 

For example, if the area of the profile of the ini-
00 

tial perturbation is J u(x, O)dx ~ 0, then its decay 
-00 

into solitons only is impossible, since the area of 
the profile is conserved, and it must be positive 
for a soliton. This is correct for the case when 
the dispersion parameter f3 is positive. When 
f3 < 0, the area of the profile of the soliton is nega
tive, and therefore, any perturbation for which the 
profile area is positive cannot decay into solitons. 
Consequently, for the perturbation to decay into 
solitons it is necessary that the sign of the area 
of the profile of this perturbation coincide with the 
sign of the dispersion parameter j3. This condition 
can be generalized on the basis of the general re
lations (3.5). Inasmuch as all the square roots in 
the left sides of (3. 5) are taken in the arithmetic 
sense, these left sides should be positive, i.e., the 
necessary condition for the decay of the perturba
tion into solitons is 

00 00 

sign ~ Qm(X, O)dx =sign ~ qm(x)dx, (3.12) 

where Qm (x, 0) and qm (x) are determined by re
lations (3. 3) for the initial perturbation and for the 
soliton, respectively. 

Figure 4 shows by way of illustration the solu
tion of Eq. (1.2) with f3 < 0, corresponding to the 
initial perturbation (3.1) with llo > 0 (a = 10). It is 
analogous to the solution for the case when f3 > 0 
and a < uc, the only difference being that the short
wave oscillations go off to the right and not to the 
left (in accordance with the transformation (1.3)). 

4. SELF-SIMILAR SOLUTION OF THE 
KORTEWEG-De VRIES EQUATION 

Using the results presented above, we can ob
tain additional information with respect to the pre
viously investigated[ 41 self-similar solution. Let 
us consider a sequence of initial perturbations, for 
which the characteristic dimension l -- 0, but the 
product u0 l 2 remains constant. Solutions of ( 1. 2) 
corresponding to such initial conditions should be 
similar if f3 has the same value for them, since a 
remains constant. The form of these solutions as 
l -- 0 can be established by starting from the fact 
that the limiting solution cannot contain constant 
parameters with dimensions of length of velocity. 
The only dimensional parameter which can enter 
in the solution is the dispersion parameter j3, with 
dimensionality cm3sec-1• Therefore the limiting 
solution can have only the following form: 

u(x, t) = ~·J,t-'13'\jJ{x / (~t) ''•}, (4.1) 



1054 Yu. A. BEREZIN and V. I. KARPMAN 

where 1/J is a dimensionless function. Expression 
( 4.1) coincides with the self-similar solution ob
tained in [ 4l, where the behavior of the function 1/J 

was also investigated. 
It is easy to verify that the initial perturbation 

which leads to the limiting solution ( 4.1) is of the 
form 

u.(x, 0) = ~cr26'(x), (4.2) 

where a is the similarity parameter correspond
ing to the considered sequence of initial perturba
tions and 6' (x) is the derivative of the 6 function. 
Indeed, if C is an arbitrary constant, then in the 
relation 

Co'(x) =lim {-(Cx/n't.za)exp(-x2jl2)} (4.3) 
l-+0 

the quantity C/1 2 is the characteristic velocity Uo· 
and consequently u0 12 = C = const. According to 
(2.4), Uo Z2 = {3a2' from which (4.2) indeed follows. 
Thus, the physical meaning of the self-similar so
lution ( 4.1) is that it describes the evolution of ini
tial perturbations of the type 7> 

a 
- {(C/n'h)exp(-x2/l2)} ax 

5. CERTAIN ASYMPTOTIC RELATIONS 

It follows from the foregoing that for a rather 
broad class of initial perturbations, the "evolving" 
profile will consist of a train of fast oscillations 
in the left (right) side of the profile when {3 > 0 
({3 < 0), and a certain sequence of solitons, which 
goes off to the right (to the left). In certain defi
nite cases, the amplitude of the fast oscillations 
the wave number k = 27r /A., and the mean value ii 
(see (15) and (16)). The modulus of the elliptic 
function s is connected with a and K by the fol
lowing expression: 

sK(s2) = (n/k)(a/3M'!.. (5.1) 

If s- 0, then the elliptic function dn z in (1. 5) 
converges to a trigonometric function, and the am
plitude of the oscillations can at the same time re
main finite (as k- ao ); such a case is realized in 
the rapidly-oscillating part of the profile. In the 
opposite limiting case, when s - 1 at a = const, 
the wave number k ~ {1/ln (1- s)}- 0 and the 
wave can be regarded as a sequence of solitons; 

~·!Of course, this pertains to any other sequence of functions 
that tends to o'(x) as l-> 0, for example, 

{} 
u(:r, 0) = Cl'- {(zZ + l") -t} 

ox 
(the solution does not depend on the detailed form of u(x, 0) 
when x and t are large). 

can be negligibly small compared with the ampli
tude of the solitons (Fig. 1). For other initial con
ditions the solution gives a wave packet (Figs. 2 
and 4) with fast oscillations, on one hand, and slow 
ones on the other. It turns out that certain general 
asymptotic relations can be obtained for the 
rapidly-oscillating and "soliton" parts of the solu
tion (for the latter, of course, only in the case 
when the number of solitons is sufficiently large). 

To obtain these relations we shall use the pro
cedure developed by Whitham in [ 12 l, where he 
considered solutions characterized by sufficiently 
slow variation of the parameters of the oscillations 
at distances that are large compared with their 
period. In this case, the profile can be represented 
as a quasi-periodic wave (1.5) with slowly varying 
parameters (amplitude a, velocity V, etc.). For 
Eq. (1.2) there are three independent parameters, 
for which we choose, for example, the amplitude a, 
this case is realized in the "soliton" part of the 
profile. 

Whitham's equations for the "slowly" varying 
parameters take a form which is convenient for us 

a a 
---(b1+b2)+va~(b1+b2)=0, .. , (5.2) at ax 

where the dots denote cyclic permutation, and 
bi(x, t) denotes quantities connected with a, s, and 
u by the relations 

ii= 
2aE (s2) 
s2K(s2) + ba 

(5.3) 

(for the sake of uniformity we denote here the 
quantity y of (1. 5) and (1. 6) by b3); the velocities 
vi(x, t) are defined 

v1 = (VI 6)- aK/9(K- E), 

v2 = 1(V I 6)- a(1- s2)K/ 9[E- (1- s2)K], 

va = (V 16) + a(1- s2)KI9s2E, (5.4) 

V = (b1 + b2 + b3)/3 is the velocity of the wave, de
termined by (1. 5). The quantities vi (x, t) have the 
meaning of propagation velocities of "Riemann in
variants" bi1 + bi2 (it, i2 i- i). 

In the general case (5.2)-(5.4) are rather com
plicated equations, but in the limiting cases 1 - s 
« 1 and s « 1 they simplify appreciably. Let us 
consider these cases in greater detail. 

Let 1 - s « 1 (sequence of solitons). Then 
b2 - b3 ~ 1- s, so that b2 ~ b3• Further, b3 = y 
has the meaning of the magnitude of the perturba
tion between the solitons; therefore b3 ~ 0 (this 
can also be obtained directly from (5.2)) and the 
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quantity u is logarithmically small 
(u"" 1/ln (1- s)). 

Thus, bt ~ 2a = Uo (Uo =soliton amplitude), 
Vt ~ 0, v2 ~ v3 ~ 2Uo; the second equation of (5.2) 
becomes degenerate, and the first and third as
sume an identical form: 

auo + .!.._ Uo ~ = 0. 
at 3 ax 

(5.5) 

The general solution of the equation can be writ
ten in the form 3x - u0(t - t0) = f(IJo), where f(Uo) 
is an arbitrary function, defined from the condi
tions at the instant t0, when the solitons have al
ready been formed. With increasing t, the slope 
of the profile u0(x, t) increases and for sufficiently 
large t the solution becomes multiply valued. In 
the region where the solution is multiply valued, 
it becomes physically meaningless, since the aver
aged equations (5.2)-(5.4) are not valid for large 
gradients. In the uniqueness region, the solution 
assumes for sufficiently large t - to the asymp
totic form 

ao(x,t) =3xl(t-to), (5.6) 

i.e., at sufficiently large fixed t the peaks of the 
solitons should lie on a straight line,8> the slope 
of which decreases in inverse proportion to the 
time. 

Relation (5.6) is valid, naturally, when the num
ber of solitons is sufficiently large. In practice its 
accuracy, as shown by a numerical solution, turns 
out to be perfectly satisfactory even for a pertur
bation decay-into six solitons (Fig. 1b). With this, 
the peaks of the largest and of the smallest soli
tons deviate somewhat from the straight line, ob
viously because of the large gradients of the 
"average" amplitude in these regions. It is inter
esting that relation (5.6) begins to be satisfied 
with good accuracy even before the solitons trav
erse a distance which is large compared with the 
width l of the region of the initial perturbation 
(the formation of solitons, generally speaking, is 
very rapid compared with the time necessary to 
traverse a distance of the order of l ). 

We can obtain a few other interesting relations 
characterizing the asymptotic behavior of the quan
tities k and u for a sequence of solitons. Since 
these quantities decrease when s- 1 (see (5.1) 
and (5. 3)), it is necessary to take into account in 
(5.2) small terms, which we have hitherto neg
lected. We can, however, proceed in simpler fash
ion by using the "conservation law" for the wave 
number[ 121 

B)This was already noted in the analysis of the "experi
mental" data in [10]. 

iJk a 
-+--(Vk)=O 
at ax ' (5.7) 

which follows from the exact equations (5.2). Con
fining ourselves in the expression (1.5) for V to 
terms which do not vanish when s -1, we obtain 
V = Uo/3. Using formula (5.6) for Uo· we obtain 
from (5. 7) a simple equation, which has a general 
solution of the type k = c 1 f(x/t), where f is an 
arbitrary function. Just as in the derivation of 
(5.6), we should stipulate that the asymptotic ex
pression for k be independent of the detailed form 
of the initial conditions. The wave number k has 
the dimension of the reciprocal length, and this re
quirement can be satisfied only when f(x/t) = Ct/x, 
where C is a dimensionless constant. Therefore 
for sufficiently large x 

k ~ Clx. (5.8) 

Thus, at a fixed point of space the average dis
tance between solitons does not depend on the time. 
Relation (5.8) can be recast in a more illustrative 
form by determining the average distance between 
solitons in the vicinity of a point that moves with 
some soliton (for example, soliton number r). De
noting its amplitude by ~r>, we obtain for the soli
ton coordinate from (5.6) the expression 
x = ~r>t/3, from which we get 

kr ~ 3C I uo<rJt, Ar ~ 2nuo<rJt I 3C, (5.9) 

where A.r = 271" /kr is the average distance between 
solitons. It increases in proportion to the time, 
inasmuch as the solitons move uniformly but with 
different velocities V = Uo/3. 

Let us now find ii for the region under consid
eration. Taking (5.1) and (5.3) into account and 
neglecting b3, we obtain 71"2 ii-2 ~ 6/J1Jok2, whence 

u ~ (18C2~ I nxt) 'I•. (5.10) 

Finally, let us consider also the region of fast 
oscillations in profiles similar to those shown in 
Figs. 2 and 4. In this region s 2 « 1. Then it fol
lows from (5.2)-(5.4) that 

and 

a (- a2 ) _ a (- a2 ) 

Tt \ u + 12~k2 + u ax u + 12~k2 = o, (5.12) 

a= 3~k2s2 I 2 

When s2 « 1 we can put ii = 0 in (5.11), after 
which we get for sufficiently large x and t the 
asymptotic relation 
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u 

FIG. 4. Profile of r,erturba-
(}.5 J: tion in the case {3 < 0 (a = 10). 

-1,0 

-2,0 

k2 ~ -x/3~t. (5.13) 

The minus sign denotes here that the region of 
fast oscillations is situated in the rear (x < 0) and 
front (x > 0) parts of the profile, depending on the 
sign of {3 (see Figs. 2 and 4 respectively; the ori
gin is chosen at the center of the initial perturba
tion). 

If we recognize now that the complete solution 
is of the form u(x, t) = u(x- Vt), and that when 
s « 1 we can write u(x) ~ a sin (kx + a) and 
V = -{3k2, then 

u (x, t) ~ a (x, t) sin [ (2/ 3) ( -x3/3~t)''• + a], (5.14) 

where a(x, t) is the amplitude determined from the 
initial conditions. Relation (5.14) has in a definite 
sense a universal character; it is valid for any 
rapidly oscillating part of the profile where u is 

sufficiently small (the amplitude in this case need 
not necessarily be small). It is therefore natural 
that the asymptotic expression for the self-

bt . d . [ 41 ha similar solution for large x, o ame m , s 
the ~orm (5.14). 
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