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Assuming that the velocity of the normal component of helium V n = 0 we find equations for the 
hydrodynamics of a superfluid liquid, which take into account the relaxation of Ps near the A 
point. We evaluate the velocity of the fourth sound and its absorption coefficient which is con­
nected with the relaxation of p s· 

THE propagation of sound waves in superfluid he­
lium has a number of interesting properties caused 
by the presence of two liquid components. The 
first sound waves corresponding to normal sound 
are connected with pressure (density) oscillations. 
In such a wave each volume element of the liquid 
oscillates as a whole; the normal and the super­
fluid masses move together. In the second sound 
wave the superfluid and normal masses of the fluid 
oscillate "in opposition" such that their center of 
mass in each volume element remains stationary. 
If, however, the situation is such that the normal 
part of the fluid is partly "pinned" and cannot 
freely take part in the oscillation, then both first 
and second sound will be strongly absorbed. Such 
a situation occurs when oscillations propagate in a 
porous medium saturated with liquid helium. [ 1• 21 In 
the limiting case where the normal part of the liq­
uid is completely "stuck" to the walls of the chan­
nels, the wave corresponding to second sound, i.e., 
the temperature wave, is attenuated and the wave 
corresponding to first sound goes over into the 
weakly-damped fourth-sound wave in which both 
the pressure and the temperature oscillate. [ 1-7J 

Such a situation occurs when the width of the 
channels along which the sound propagates is ap­
preciably less than the penetration depth of the 
viscous wave. The penetration depth of the viscous 
wave is o = (27Jn/wpn)1/ 2, where 7Jn and Pn are, 
respectively, the viscosity and the density of the 
normal component of helium, w the frequency of 
the oscillations. An estimate shows that near the 
A point o:::; 2.10-2 w-112cm. For a sound frequency 
w :::::; 104 se~- 1 in channels with a width d:::::; 10-5 em 
we can thus assume that the normal part of the 
liquid does not take part in the oscillations and that 
the velocity of the normal component of the liquid 
Vn = 0. Such a situation is realized in experiments 

on the propagation of fourth sound in porous sub­
stances saturated with superfluid helium. [ 4• 5• 7J 

The purpose of the present work was a study of 
the propagation of fourth sound in helium near the 
A point. When the A point is approached, the den­
sity Ps of the superfluid component of the liquid 
tends to zero and the time taken by Ps to attain its 
equilibrium value increases steeply and this must 
lead to a damping of the fourth sound. Near the A 
point the usual equations for the hydrodynamics of 
helium become unsuitable since they do not take 
into account the relaxation of Ps· In this tempera­
ture range the natural approach is the one used in 
the phenomenological theory of second order phase 
transitions. Such an approach was developed in a 
number of papers[ 8• 91 and we shall use them as 
our starting point. 

1. EQUATIONS FOR THE HYDRODYNAMICS OF 
A SUPERFLUID LIQUID NEAR THE A POINT 

We describe the superfluid part of the liquid by 
a complex function lf! (x, y, z, t) = rJeicp defined in 
such a way that 

1i 
V. =- Vcp. 

m 
(1.1) 

The energy per unit volume of the liquid can, if we 
restrict ourselves to the first term in an expan­
sion in the gradient of 1/J, be written in the form 

where E is the internal energy per unit volume of 
the liquid. Minimizing the energy of the liquid with 
respect to lf! or 1/J* , we can obtain the equilibrium 
condition [ 8 1 

/i2 ( ae) --~'¢+- ¢=0. 
2m ap. p,S 

(1.3) 
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The imaginary part of (1.3) gives the condition 

div (p8Vs) = 0. (1.4) 

This condition follows also from the equation of 
continuity when Vn = 0 and is, therefore, not an 
independent equilibrium condition. The actual equi­
librium condition is thus the real part of ( 1. 3). For 
small gradients of p s it takes the simple form 

( f!!:_') + v.z = 0 
Ops pS 2 . 

(1.5) 

The time-dependent equation for If! can by 
analogy with quantum mechanics be written in the 
form 

[ ( &e ) ( &e ) J A + - + - m'¢+L¢ 
ap P8 8 Ops p,S ' 

(1.6) 

where L is a non-Hermitean operator that de­
scribes the approach of Ps to its equilibrium 
value. Recognizing that the equilibrium condition 
for Ps is in fact the real part of (1.3) we can 
write L If! in the form 

-· iA Re ~- !!._ ~'¢ + (f!!:__) m'ljJ}. 
\ 2m &p. p,s 

(1. 7) 

Here A is a dimensionless coefficient which is in­
versely proportional to the relaxation time. Tak­
ing all this into account we can write the equation 
for If! in the following form: 

- iA Re [ - _!_ ~'¢ + ( f!!:__)P.Ii m'¢ J. 
2m &p. 

To obtain the complete set of hydrodynamic 
equations we must add to (1.8) the conservation 
laws for mass and entropy: 

(1.8) 

& iii _f+-('¢~'1'*-'ljJ*~'¢) =0 
&t 2 

(1. 9) 

&S + div(~) ===; !!_ 
Eit . . T 1 T' 

(1.10) 

where the heat current q and the dissipation func­
tion of the liquid R must be chosen in such a way 
that the energy conservation law is satisfied. The 
momentum conservation law is not satisfied in our 
case as there is transfer of momentum from the 
superfluid part of the liquid to the normal part of 
the liquid which is "stuck" to the walls of the 
channel. 

The energy conservation law requires that, if 
Eqs. (1.8) to (1.10) are taken into account, the re­
lation 

&E I &t + div Q = 0, (1.11) 

be identically satisfied; here Q is the energy cur­
rent vector. Substituting (1.8) to (1.10) into (1.11) 
we get 

aE 2A 
-+divQ=R--
&t li 

{ [ nz (ae) ]}z VT X Re --~'¢+ - m~J +q--T, 
2m ap.; p,s 

where Q is the energy current 

ih &\IJ* li2 

Q; =2m ax;-{- 2m·~'¢ 

(1.12) 

+[ ( !~)p,s +( !~.) p,s] m¢ }+ c.c.+ q;. (1.13) 

To satisfy the energy conservation law we must 
put the right-hand side of (1.12) equal to zero. 
Hence it follows that the dissipation function is 

2A{ [ liz ( ae ) ]}z VT R=T Re - 2m~¢+ &p. m'¢ -qT.(1.14) 

Recognizing that R is positive we find 

q = -xVT. (1.15) 

We now write down the equations which we have 
in this way finally obtained: 

- iARe [- - 1 ~¢ + (_i!!:__) m\IJ ], 2m &p. p,s 
a iii 
~ +z-('¢~'¢* -'¢*A'¢)= 0, 

.as 1 . 1 2A 
iit= ydiV(x V T)+y-li-

X {Re [-___.!._A 'ljJ + (!!._) m'¢ ]}2 

2m &ps p,S 

(1.16) 

(1.17) 

(1.18) 

For small gradients of p s we get from Eqs. ( 1.16) 
to (1.18) the following set of equations: 

. r V .z ( ae ) ( ae ) 't 
V.+v~~ -. + - + ·-- (=0, 

~ 2 ap p,, s 'ap. p;s) 
(1.19) 

i) 

a~ + div p.V. = 0, ( 1. 20) 
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aS= !_div(x V T)+ 2Am [ V.2 +(~) Jz P• at T n 2 ap. p,s ' 

(1.21) 

iJp. . 2Am [ V •2 . ( Oe ) J -+dtvp.V.= --- --+ -- p •. at fi 2 ap. p, s 
(1.22) 

In contradistinction to the usual equation of hy­
drodynamics, the quantity Ps is in these equations 
not assumed to be given but is an independent var­
iable. Its approach to its equilibrium value is gov­
erned by Eq. (1.22). The coefficient A is deter­
mined from the absorption of first sound near the 
A point. The expression (8E/8p)P s + (8E/8ps)p s 

s. ' 
is the chemical potential of the liquid written in 
terms of the variables (p, Ps• S). 

The set of equations (1.19) to (1.22) could have 
been obtained from the equations derived by Pita­
evskil, [ 91 if we put in them V n = 0. However, in 
Pitaevskil's paper the equation for V s contains 
an extra term proportional to div Ps<V s- Vn) 
which arose from the incorrect use of the equilib­
rium condition (1. 3) in the derivation of the equa­
tion for V s· We must also note that the equilib­
rium condition for p s obtained by him when V n 
f. 0 should contain an extra term - (ifi/2p s> 
x div p V n 1jJ arising when we take into account in 
the expression for the energy terms proportional 
to the spatial derivatives of V n· 1 > 

2. FOURTH SOUND NEAR THE :A POINT 

Using the hydrodynamical equations obtained in 
the preceding section we shall now consider the 
propagation of fourth sound. The characteristic 
length of the problem over which the wave function 
of the superfluid liquid changes appreciably is 
equal to[Bl l = fi[2ma(TA- T)]-112, where 
a= ~cpm(T:AI 8pss/8TIA)-1. 

When TA-T ...... 10-3 °K, l ....., 10-6 em. In order 
that the wavelength of the sound be of the order of 
l it is necessary to have a sound frequency 
w ...... 10 10 sec-1• As the experiments are performed 
at much lower frequencies and the width of the 
channels in which the propagation of fourth sound 
is studied are d ...... 5 x 10-5 to 5 x 10 -s em we can 
use the set of hydrodynamic equations valid for 
small gradients of Ps· Our considerations will be 
applicable for channels with a width d satisfying 
the following inequalities: 

1 >L. P. Pitaevskii has drawn the author's attention to this 
fact. 

A numerical estimate gives 4 x 10-8(TA- T)-112 

« d « 2 x 10-2 w-112• All calculations will be valid 
for a temperature range for which T:71.- T « TA. 

The propagation of sound in helium II can be de­
scribed by the set of equations (1.19) to (1.22) 
which in our case can be linearized. After linear­
ization the equations become of the form 

(2.1) 

~ + div P• V. = 0 (2.2) 

a (pa) = !:.._AT 
at T 

(2.3) 

ap. . 2Am ( ae ) - + div P• V a = ~ - .. - .,--- P a P•· 
~ n u~ ' 

(2.4) 

The equilibrium condition (1.5) for Ps takes in 
our case the form 11- 2 = (8€ /8ps)p a= 0. We 
choose a, p, and 11- 2 as independent variables. 
Using (2.1) to (2.4) we can easily evaluate the non­
equilibrium contribution to 11-2 caused by the prop­
agation of the sound wave in the liquid, 

I n [ ( ap. ) a ( ap.) 1 J 
!lz = 2Ampa ap a,!l, -p {k; P,Jl,-

T = ( 2A~p.) ( ~~J a,p• 

div p8 V. 
1 +iwT 

(2.5) 

where the meaning of T is that of the relaxation 
time of the system. 

The change in the chemical potential 11-1 
= (8E/8p)a,ps caused by the propagation of the 
sound wave is equal to 

1 1 + ( OJ.tt) 1 
!l1 = JliO a!l2 a,p !l2 ' (2.6) 

where 11-fo is the change in the potential caused by 
the deviation of p and a from their equilibrium 
values while (8M!f8M2)a, p 11-~ is the change in the 
chemical potential connected with the deviation of 

11- 2 from its equilibrium value. Substituting (2.5) 
and (2. 6) into Eq. (2.1) we get 

V. + V {J.t1o1 - s div p8Vs} = 0. • (2.7) 

The coefficient of second viscosity t caused by 
the relation of Ps is equal to 

s = _n_ 1 l- ( ap.) _.!!... ( ap.) _ 1l2 

2Amp. 1 + iwT ap <J,jl, p ' aa P.l'z 
(2.8) 

In the low-frequency case of wT « 1, which is of 
practical interest, we need not take into account 
the frequency dispersion of t. The dispersion of 
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!; is important only for w > 108 sec - 1 when 
TA. - T < 10-4 o K. 

We eliminate V s from (2.2) and (2. 7) and use 
the thermodynamic identity 

d!l1 = p-1dP - adT. 

We then obtain a set of two equations 

Ps • 
P + PsU D. T-- D. P- ~Ps D. p = 0, 

p 

,1 
O"P + pO"--xAT= 0 

T 

(2.9) 

(2.10) 

We can write the pressure P and the tempera­
ture T in the sound wave as the sum of constant 
equilibrium values and small additional terms 
varying as exp [ iw (t - x/u)] (we choose the x axis 
in the direction of propagation of the wave; w is 
the frequency and u the sound velocity). Substi­
tuting this form for P and T into (2 .10) we get a 
set of algebraic equations. 

The compatibility condition of this set of equa­
tions gives us an equation to determine u. If we 
neglect effects connected with thermal conductivity 
this equation is quadratic in u and we can write 
the square of the velocity of fourth sound in the 
form 

where u1 is the first sound velocity, u2 the second 
sound velocity, and ap the expansion coefficient. 

The imaginary part of the wave vector k = w /u 
is equal to the sound absorption coefficient 

a = Im ( :J = [u44 + ~wp.~)Z]''• 
X { [u44 + ({1)~·~)2]'/•- u,.2 r. (2.12) 

In practice we have always ui » wps!; so that the 
sound absorption coefficient has the form 

(2.13) 

The second viscosity coefficient !; has the fol­
lowing form in the variables P and T: 

~ = _fi_·{t + r_t( op8 ) -~I op) 
. 2Amp L p fJT .p p aT IP 

_ cp ( ap.) +~ ( op. ' 
T aP T p ar J f' 

It is clear from (2.13) that as the A. point is ap­
proached the fourth sound absorption coefficient 
increases steeply. A comparison of the experi­
mental data on the absorption of fourth sound with 
the calculated value would give a possibility to de­
termine the coefficient A appearing in the theory. 
Unfortunately, however, there are at present no 
such experimental data. Estimates using absorp­
tion of first sound data[ 10 J lead to A""' 20 to 35. 
Taking thermal conductivity into account leads in 
the fourth sound absorption coefficient to an addi­
tional term 

where C is the specific heat per unit volume of 
the liquid. Because cp and cv differ little for 
liquid helium, a K is small compared with a. 

The author is grateful to L. P. Pitaevskil for a 
discussion of the results of this paper. 
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