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We obtain for the Josephson current an expression which is not based on the assumption that 
the voltage applied to the contact is small and varies at a slow rate. Various limiting cases 
are considered. 

1. A tunnel current can flow between two super­
conductors separated by a dielectric barrier even 
when the voltage on the barrier is zero. If a volt­
age V (t) is applied to the barrier, then the current 
becomes alternating. The usual expression for the 
tunnel Josephson current is [ 11 

t 

j(t) = imaxsin( ~ 2V(t')dt'). (1) 

This formula is valid only when the voltage and its 
frequency are small compared with the gap in the 
superconductor spectrum. Such conditions are 
frequently not fulfilled during experiments. 

We derive below a general expression for the 
current through the barrier for arbitrary V(t) and 
for all temperatures. We consider the limiting 
cases of slow and fast variation of V (t), and also 
the case of small V with arbitrary time depend­
ence. In all these cases the expression for the 
current reduces to four single integrals, for which 
the limiting values are obtained. 

2. The voltage on the Josephson element con­
nected in a certain circuit is not specified, and 
depends itself on the magnitude of the current and 
on the impedance of the remainder of the circuit. 
The problem of finding the current in the circuit 
breaks up into two. First it is necessary to find 
the current flowing through the Josephson element 
for a given voltage, i.e., its current-voltage char­
acteristic. Then, knowing this characteristic and 
the impedance of the remaining circuit, we can 
find the current in the circuit. We consider below 
only the first problem, and the results are directly 
applicable only for a sufficiently narrow contact. 
In the case of broad contacts, or in the study of the 
emission of electromagnetic waves, it is neces­
sary to take into account the variation of the vol­
tage and current over the width of the contact. [ 2- 41 

To solve this waveguide problem, we can use the 
results that follow, which give the local connec-

tion between the current and the voltage at a given 
point of the contact. 

At finite temperatures and for a large potential 
difference, both the superconducting and normal 
currents flow through the contact. In this case the 
voltage varies not only on the contact, but also in­
side the superconductors. The permittivity of the 
dielectric film is exponentially small, and if the 
voltage drop across it is of the order of the mag­
nitude of the gap, then the variation of the poten­
tial inside the superconductor, over distances of 
the order of the pair dimension, can be neglected. 

In the zeroth approximation in the barrier pene­
trability, each superconductor is situated in a po­
tential that is variable in time but constant in 
space. The Hamiltonian of the system has in this 
approximation the form 

H0 = Bt + H2 + Vt (t) ~av; av, + V2 (t) ~at, av,, 
... v, 

where the indices v1 and v2 describe the single­
electron states of the first and second supercon­
ductor, and H1 and H2 are respectively the Hamil­
tonians of these superconductors and do not depend 
explicitly on the time. The potential V(t) leads to 
no physical effects, and its influence reduces to 
the appearance of trivial phase factors in the oper­
ators a(t) and the Green's function[ 51 

G(t, t', v1,2) = -i <T (av,, (t) a~: .• (t')) > 
t 

= exp[ -i ~ V1,2(tt)dtt J ~ ~: Gt,2(w)exp[-iw(t- t')], 
t' 

F+(t, t', v1,2) = <T(a:;,,(t)a~ .• (t')) > 
t t• 

= exp [i ~ Vt,2(tt)dtt + i ~ Vt,2(tt)dtt J 

\ dw + 
X.\ -F1;2(w)exp[-iw{t-t')], 

· 2n 
(3) 

where the brackets ( ) denote averaging over the 
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Gibbs distribution with Hamiltonians H1 and Hz, 
and G1 z(w) and Fi z(w) are the Green's function 
without the externai field. 

The penetration of the electrons through the po­
tential barrier can be analyzed with the aid of a 
tunnel Hamiltonian, making the total Hamiltonian 
in the representation of the states v1 and vz: 

H=Ho+T~ 

The operator a~1avz transforms the electron from 
the state v2 on one side of the barrier to the state 
v1 on the other side. 

It was shown in [ 6 J, with the case V = 0 as an 
example, that the results of such an analysis coin­
cide with the solution of the equations for the 
Green's functions for superconductors separated 
by a potential barrier. 

3. The change in the number of electrons on 
one side of the barrier is described by the opera­
tor 

. a t 1 

N = Tt{ exp [ i ~ H dt1] ~·11v,+11v, exp [ -i ~ H dt1]}. (5) 

"' 
In second order in T we obtain 

t 

N= ~ [T(tt)[N(t)T(t)]]dtt. 

Averaging this expression over the Gibbs distri­
bution with Hamiltonian H1 + Hz, we obtain for the 
current through the barrier 

t 

J(t)= -4Re ~ 1Tv,v,l 2 ~ {[Fv,*(t, t!) Fv,+'(t, t1) 

I 
-F .. ,+(t, tt)Fv,(t, t1)] +[Gv,(tt. t)Gv,(t, lt) 

- Gv, • ( t, ft) Gv,* (t1, t)]} dt1. (6) 

The Green's functions depend only on the energies 
E v and have a sharp maximum near the Fermi 
surface. The transition probability averaged over 
all the states varies slowly with the energy, and 
is expressed near the Fermi surface in terms of 
the resistance of the layer between the normal 
metals: 

Taking (7) into account, the general expression for 
the current through the contact takes the form 

1 0 00 t 

RJ (t) = 2Jt3 Re ~ i dt, { ~ ~ dw1 dw2 exp[ -i ~ V (t') dt' 
-oo -oo 

t+t, 

- i ~ V(t')dt'] 

X Im ( G1 ( w1) G2 ( w2)) } . 

Here 

F(t) = Vz(t)- F1(t). 

The Green's functions integrated over the ener­
gies 

(8) 

(9) 

G1,2 ( w) = ~ de1,2G ( w, v1,2), F t2 ( w) = ~ de1,2F+ ( w, Vt,2) ( 10) 

have the same form as for an infinite supercon­
ductor, and do not depend on the presence of non­
magnetic impurities and on the character of re­
flection of the electron from the surface. 

4. To simplify the general expression for the 
current, assumptions must be made concerning 
the character of the time dependence of the poten­
tial. In the integral (8), the important frequencies 
are w ~ Tc, and consequently t1 ~ T~1 . Therefore 
if the frequency of variation of the potential is 
small compared with the transition temperature in 
the interval from t to t + tit the function V (t') can 
be replaced by its value at the point t. As a result 
we obtain 

t t 

RJ0 = /1 sinn 2V(t1)dt,)+ / 2 cos ( ~ 2V(t!)dt1) + /3, (11) 

where 

Re "" 
/1 = 2Jt3 ~j i[w,+w2+V+U>]-1Im(F1+(w1) 

XF2(w2) )dw, dw2, 

Re co 

/2 =- 2n3 ~ ~ [u)f + wz + V + iB]-1 Im(F1+(w1) 

-oo 

Re "" 
Ia= 2Jt3 ~ ~[w1-wz-V+iB]-1!m(G!(W!)G2 (w2))dw1 dw2, 

-oo 

Re co 

/4= zna ~ ~i(wl-wz-V+iB]-1 Im(Gl(wi)G2 (w2))dw1 dw2. 
(12) 

The integral I4 does not enter in (11), but it will 
be useful in what follows. An expression similar 
to (11) was obtained by another method in [ 1J. 

Sometimes the next term of the adiabatic ap­
proximation is important. To calculate it we ex­
pand expression (8) for the current up to first or­
der in av 1 at, making the substitution 

1 J i av exp[i ~ V(t1)dt1,- exp[iV(t)(t- t')][1+.2-at(t- t') 2]. (13) 
t' 



TUNNEL EFFECT BETWEEN SUPERCONDUCTORS 1037 

The first t~rm of this expression yields formula 
(11), and the second is equal to 

1 av [ a2J2 ( ~~ ) R/<1> = -- -sin 2V(t1)dt, 
2 at a¥2 

(14) 

It is of interest to consider the case when in 
addition to the slowly-varying potential there is a 
small rapidly varying potential. We denote the 
slowly varying part of the potential by V s(t), and 
the rapidly varying part by 

\ dw 
Vr(t)= J V(ro)exp[-irot]Tn. (15) 

-oo 

Expanding the right side of (8) in powers of V(w), 
we obtain the increment of the current 

t 

X exp [ -i (rot+ 2 ~ Vs (t,)dt,)]) [J,(V s + ro)- J,(Vs)l 

- Re(V(ro) exp( -iwt) )[/s(Vs - ro)- ls(Vs )] 

- Im(V(ro)exp(-irot))[!t(Vs -ro)-lt(Vs)] }. (16) 

In the principal terms of (11) and (14) it is neces­
sary here to replace V by V s only in In. Formula 
(16) is valid not only when Vr « 1::!., but also for 
large w in a broader region V r « w. 

Thus, for both rapid and slow variation of the 
potential, the current is expressed in terms of 
the four integrals of (12). 

5. The integrals of (12) can be reduced to sin­
gle integrals. For 11 and 14 we obtain in trivial 
fashion 

(17) 

To calculate the integrals 12 and 13, we use the 
dispersion relations[ 51 between the time-dependent 
Green's function and the functions oR and [if, 
which are obtained by analytically continuing the 
temperature functions to the real axis of the vari­
able iwn: 

G(w) = _!_ r [ 1-th(x/2~)-+ 1 +th(x/2T) J•m GR(x)dx, 
2:rt _,,., ·X - 0) + ~i) X - (I) - i{j 

iF+(w) = __!_ ~ [ 1- th(x/2_T) 
2:rt_:00 X- 0) + ~i) 

+ 1 +t~013.T) ]1m fF+(-ix)d.r. 
X- (I)- ~{j 

(18*) 

Substituting these expressions in (12), we ob­
tain 

1 ""[ x x+V] _ . 12 =- \ th-- th-- Im ;J 1+(-~x) 
2:rt2 J 2T 2T 

-oo 

-1 00~ [ X-V X J / 3=- th----th- ImG1R(x) 
2tt2 · 2T 2T 

-oo 

(19) 

The obtained expressions are valid also for super­
conductors with paramagnetic impurities. 

6. We consider first superconductors without 
magnetic impurities. In this case 

GR(w) =- :rtro _, fif'(-iw) = ~=:rt=~==--=-
f~2- (w + ii>)2 -y'.1,2 _ (w + i6)2 

(!) 

G(ro) = Re GR·(w) + ith ZT Im GR(w), 

iF+(w) =· -iF(w) = Re fiF ( -iw) 

+ith (w/2T) Imff(--iw). 

(20) 

(21) 

Substituting these expressions in (17) and (19), we 
obtain 

J, = ~~~2-r [ 8(~,-,!(J)- VI )8( lwl- ~2) 
2 -oo -y~,2-(w-V)2-y'ro2-~22 

-~-~~-~~)8(~2=1_<t>_+_l'l) J thMd.u 
-y'w2-~'2l'A22-(ro+V)2. 2T 

61~2 ""~ ( (J) co + v ) /2=--- ,th--th---
2 • \ 2T 21' 

-00 

sign (!) • sign ( (!) + V) 8 ( I (J) 1- 6!) 8 ( I (!) + v 1- 62) 
X . ~ 

}'w2- 6 12 l"(w + V)2- ~22 
co 

1r( w-v w) Is=-- J th---th-, lwllw-VI 
2 2T 2T 

-00 

*th"' tanh. 
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1 rl I (J) [<w-V)6(Iwl-~r)6(~2,;_1w-VI) 
/ 4 =- J w th--

2 2T f'w2 - ~~2 1'~22 - (w- V)2 
-00 

+ (w+V)6(Iwl-~z)6(~!-lw+VI) Jaw. (22) 
l'wz- ~2z-y~12- (w + V)2 

When V = 0 we obtain the welllmown expression 
of [ 61 ; when V is close to ~1 + ~2, the amplitude 
of the Josephson current becomes logarithmically 
large. When V > ~1 + ~2 • the normal current ap­
pears abruptly: [ 71 

(24) 

At finite temperatures, the integrals (22) can be 
calculated only in limiting cases, When V » ~ we 
have 

(25) 

For V close to ~ 1 + ~2 • the integrals (22) have 
a singularity. The singular parts of these integrals 
are 

} ( ~I+ ~2 ) 

X n IV-(~~+~z)l ' 

la(+)-/a(-)= -(/2(+)-/z(-)) 

= nl'-w;;( h~+ h~) 
4 t 2T t 2T . (26) 

When V « ~ or T, the integrals of (22) can be 
calculated only for identical superconductors on 
both sides of the barrier, i.e., when D- 1 = D- 2• In 
this case 

'Jt~ ~ 
11=1,.=-th-· 

2 2T' 

/2 =Is= ~ (~)In ( min(T, ~) ) . (27)* 
4 ch2 (M2T) T V 

*ch ~cosh. 

At zero temperature and for V < ~1 + ~ 2 differ­
ent from zero, only the first integral, which de­
scribes the superconducting Josephson current, 
differs from zero: 

(23) 

Thus, for a potential V that is large or has a 
high frequency, the main contribution to the cur­
rent is made by the first term in I 3 from formula 
(25). Substitution of this term in (11) and (16) leads 
to the same connection between the current and the 
voltage as in the normal metal: RJ = V. The Jo­
sephson current, which has in this case a fre­
quency strongly different from the frequency of 
the potential, will be determined by integrals I 1 
and I 2 of (25). For large V it tends to zero like 
v-1 In v. 

When V = ~ 1 + ~2 • the current acquires a sin­
gularity connected with the fact that pair breaking 
by the electric field becomes possible, and one 
electron can go through the barrier. When V < ~ 1 
+ ~ 2 • the normal current at low temperatures is 
exponentially small, and when V > ~ 1 + D- 2, a large 
normal current appears jumpwise. The jump is 
described by formula (26) and does not become 
smeared out with change in temperature. A simi­
lar jump occurs in the integral I 1• The Josephson 
alternating current becomes logarithmically large 
when V is close to D- 1 + D- 2• A similar singular­
ity, as follows from (16), arises in a weak rapidly­
alternating field at a frequency w = D- 1 + D- 2• In 
this case the pairs break and a quantum of alter­
nating electromagnetic field is absorbed. If there 
is a constant potential V and a weak alternating 
field of frequency w, then a singularity arises at 
V + w = D- 1 + D- 2• Usually the alternating field is 
connected with the existence of an alternating 
Josephson current and has a frequency w = 2V. 
Thus, the singularity should exist at 3V = D- 1 + D- 2• 

For small V and w, the principal term of the 
current has the usual form (1), and formulas (14) 
and (16) lead to small corrections. It is interest­
ing to note that the normal current I3 which is ex­
ponentially small at low temperatures, is propor­
tional to V In V for small values of V, i.e., the 
resistance is logarithmically small. Such a singu-
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larity is connected with the high density of states 
at energies close to the gap in the spectrum. It 
exists only for identical superconductors, for only 
in this case can the electron have an energy close 
to the gap in the spectrum before and after the 
transition. 

7. The general formulas (17) and (19) obtained 
above are applicable also for superconductors 
with paramagnetic impurities. In this case the 
Green's functions are more complicated[S] and 
can be expressed in parametric form: 

nu 
GR(w)=---

. 1'1- u2' 
cr . n 
:J (- ~w)-= --==' 

1'1- u2 

{iJ I 1 \ 
----; = u ( 1 - •• ~{1 ~;-; (28) 

We note that the same formulas are valid also in 
the case of thin contaminated films situated in a 
magnetic field. [ 9] The parameter ( T sA) -t is re­
placed by 2r(((p·A)2))/A. 

Substituting (28) in (21), (17), and (19) we can 
obtain a general expression for the tunnel current 
in this case, too. At a magnetic-impurity concen­
tration which is not close to the critical one at 
which the gap of the spectrum disappears, the re­
sults do not differ qualitatively from the impurity­
free case. 

The most interesting difference in the gapless 
region is that at low temperatures and for a small 
potential difference, a noticeable normal current 
flows in this case. From formula (19) for I 3 it 
follows that when T or V « A this current is pro­
portional to the product of the densities of states 
in the left and right superconductors, and is equal 
to 

The superconducting Josephson current is deter­
mined by the integral 11, which for small T and V 
is equal to 

11 = ~r-~- tan- 1(-1-- 1 )'''--2~ '- 2 ,._,~) 2 3-r.~ 

+ (1-(-r.~)2)''• (1-(-r.~)2)'l•l__ T2n2 (-r.~)3 

Ts~ 3-r8~ J M 1'1- (-rs~)2 
(30) 

The first term of this expansion was obtained ear­
lier by Kulik. [tO] 

8. The derived formulas (11), (14), and (16) are 
the boundary conditions for the Josephson effect. 
They relate the current density at some location 
on the contact with the potential difference at the 
same location. The potential varies little over dis-

tances of the order of the pair dimension, so that 
formulas (11), (14), and (16) give the correct local 
connection between the current and the potential. 
To determine the total current through the contact, 
it is necessary to solve the waveguide equation, 
which can be obtained from the current-conserva­
tion law:[ 3] 

-[ c2 ( a2 az ) 8 az J 
J(x,y,t)= 4n(J.,+t..z) ax2 +ay2 ___,4ndqt2 ~p(x,y,t), 

t 
where cp = J V(x, y, t')dt', d is the thickness of 
the barrier, and the current is connected with the 
potential by formulas (11), (14), and (16). The 
solution of this equation is a separate problem, 
which will not be dealt with here. We therefore do 
not compare our results with experiment and con­
fine ourselves only to general remarks. 

The usual expression for the Josephson current 
(1) is valid only for a small and slowly-varying 
potential. If the potential V or its frequency w 
are comparable with the gap A, then deviations 
should be observed, and singularities should occur 
in the value of the current when V s + w = A 1 

+ A 2• [ 11 ] When V » A or w » A, the principal 
term in the current coincides with the current in 
the normal state. But a small superconducting 
Josephson current exists even in this case. 

In conclusion we are grateful to I. 0. Kulik, 
A. V. Svidzinskil, and V. A. Slynsarev for the op­
portunity of becoming acquainted with their work 
prior to publication. 
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