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A complete set of electrodynamic equations, averaged over volumes with dimensions consider­
ably exceeding the layer thickness, is derived for the intermediate state of a superconductor of 
the first kind at low temperatures. These equations yield the de resistance with allowance for 
the effect of the magnetic field of the current on the intermediate-state structure. It is shown 
that electromagnetic waves similar to normal metal helicons can be propagated in the inter­
mediate state of superconductors with unequal numbers of electrons and holes. The surface im­
pedance of the intermediate state in a varying external field is calculated. 

WHEN a superconductor goes over into the in­
termediate state, its volume breaks up into anum­
ber of alternating layers of normal and supercon­
ducting phases. [ 11 The equilibrium dimensions of 
the layers, determined from the condition that the 
energy be minimal, have an order of magnitude 
(L~ 0 ) 1 / 2 , where L is the dimension of the body and 
~ 0 ...., 10-4 em is the length parameter of supercon­
ductivity theory. At not too small sample dimen­
sions (L » ~ 0 ), the thickness of the layers is much 
smaller than L. 

If the superconductor is placed in an external 
electric field or an alternating magnetic field, then 
the boundaries between the phases become curved 
and, generally speaking, start moving. The thick­
ness of the layers changes, too. The determination 
of the velocity of motion and of the layer configu­
ration is a very complicated problem. However, 
since most experimentally-measured quantities 
characterizing the superconductor are mean val­
ues taken over a large number of layers, it is very 
useful to obtain in this case a macroscopic descrip­
tion of the intermediate state. In this description 
one introduces quantities that are averaged over 
regions whose linear dimensions greatly exceed 
the layer thickness. Such quantities are the mag­
netic induction B and the electric field E, defined 
as mean values of "microscopic" intensities of 
the magnetic and electric fields h and e. The 
fields h and e are quantities which have already 
been averaged over volumes with dimensions con­
siderably larger than the interatomic distance, but 
are at the same time still small compared with the 
layer thickness. Owing to the very low magnetic 
susceptibility of the normal metal, we can ignore 

the difference, in the normal phase, between the 
field h, which is essentially the "microscopic" 
magnetic induction, and the "microscopic" mag­
netic intensity. In the superconducting phase h and 
e vanish. 

The macroscopic description of the intermedi­
ate state was introduced by Peierls[ 21 and Lon­
don. [ 3• 41 They obtained equations that make it 
possible to determine the averaged fields in the 
state of thermodynamic equilibrium, and also in 
certain particular static cases in the presence of 
an electric field. 

In this paper we obtain a complete system of 
macroscopic equations describing the electromag­
netic properties of the intermediate state at low 
temperatures. These equations yield the de re­
sistance. In a weak current, the resistance of the 
intermediate state is equal to the resistance of the 
normal phase multiplied by its concentration. With 
increasing current, the influence of its magnetic 
field on the structure of the intermediate state be­
comes important. The resistance becomes depend­
ent on the current, reaching ultimately the value 
characteristic of the pure normal metal. 

Weakly damped electromagnetic waves with 
quadratic dependence of the frequency on the wave 
vector can propagate in the intermediate state of a 
sufficiently pure superconductor with unequal num­
ber of electrons and holes. In an earlier paper[ 51 

we obtained the spectrum of these waves by a 
microscopic procedure. The presence of undamped 
oscillations exerts an essential influence on the 
behavior of the intermediate state in an alternating 
external field. They were recently observed ex­
perimentally by Maxfield and Johnson. [ 61 
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1. FUNDAMENTAL EQUATIONS 

The "microscopic" fields h and e in the nor­
mal phase satisfy Maxwell's equations 

4n 
roth= -i, divh = 0, 

c 

1dh 
11ote=---. 

c at 
(1)* 

where i is the electric current density. On the 
interphase boundary the tangential component of 
the electric field and the normal component of the 
magnetic field should be continuous in the coordi­
nate frame attached to the boundary. [ 7 1 Since the 
actual values of the electric field in the normal 
phase are always much lower than those of the 
magnetic field, and since h = e = 0 in the super­
conducting phase, these conditions reduce to the 
vanishing on the phase boundary of the component 
of the vector h which is normal to the boundary 
and of the tangential component of the vector 
e + V x h/c, where V is the velocity of the 
boundary. 

Let us assume that the configuration and the 
velocity of the layers change little over distances 
of the order of their thickness. In this case the 
fields h and e are practically constant along the 
thickness of the normal layers. The latter makes 
it possible to obtain a simple connection between 
the current density i and the intensities e and h. 

The current density should be determined by 
solving the kinetic equation for the electron dis­
tribution function of the normal phase. If, as usual, 
we seek the distribution function in the form 
f = f0 + x 8fo/8E, where f0 is the equilibrium func­
tion, E is the electron energy, and X a new un­
known function, then the equation for X takes the 
form 

ax. ax. 
v -. - + Q-+I {x.} = - eve. ar a. (2) 

Here v is the electron velocity, Q the cyclotron 
frequency in the field h, and T the dimensionless 
revolution time (see [81 ), e the electron charge, 
and I{ x} the collision integral. We have neglected 
in (2) the term containing the derivative of X with 
respect to time, assuming that the characteristic 
frequencies of the motion are much lower than the 
collision frequency. This condition imposes no 
real limitation on the frequencies, since actually 
the macroscopic description becomes invalid much 
earlier, owing to the fact that the characteristic 
distance over which all the quantities change be­
comes comparable with the dimension of the 
layers. 

It is necessary to add to (2) the boundary con­
ditions on the interface with the superconducting 

*rot= curl. 

phase. These conditions depend on the character 
of the electron reflection from the boundary, which 
in this case has a number of specific peculiari-
ties. [ 91 The point is that the width of the transition 
layer between the phases (the order of magnitude 
of which is ~ 0 ~v/Tc, where Tc is the tempera­
ture of the superconducting transition) and the 
characteristic value of the "potential energy" in 
the transition layer (which is equal to T c> are 
such that the change in the quasimomentum of the 
electronic excitations ("electrons" and "holes") 
during reflection is much smaller than the quasi­
momentum itself. Indeed, 

6p "'p(~o/v) "'(Tcl~o) (so/v) "'(T"/pv)p<p. (3) 

On the other hand, if the energy of excitation is 
much smaller than the energy gap t::.. in the super­
conducting phase, then such an excitation should be 
reflected from the boundary, since in a supercon­
ductor there exist no excitations with energies 
lower than t::... The only possibility lies here in 
the fact that the incident electron (hole) is con­
verted upon reflection into a hole (electron). The 
quasimomentum remains practically unchanged. 
On the other hand the quantity ~(p) = E(p}- EF 
reverses sign, and with it the excitation velocity 
which is equal to v~ I I~ J. 

We shall assume that the temperature of the 
system is small compared with the critical tem­
perature Tc. In this case the energy of practi­
cally all the excitations is smaller than the gap t::.. 
and in accordance with the statements made 

' above, their distribution function n should satisfy 
on the phase boundary the condition n(p, ~) 
= n(p, -O.[lol Since the quasimomenta of the in­
cident and reflected excitations are practically 
equal, this condition retains its form even at non­
zero velocity of the boundary. Going over now to 
the usual representation, i.e., introducing the dis­
tribution function of the electrons, f(p) = n(p) when 
~ > o, and f(p} = 1- n(-p) when ~ < 0, we obtain 
the sought boundary condition for the function X 
contained in (2): 

X(P) +X( -p) = 0. (4) 

As already noted, in (2) the electric field e can 
be regarded as independent of the coordinates. In 
this case this equation has a solution that does not 
depend on the coordinates and coincides with the 
solution corresponding to an infinite normal metal. 
Using the symmetry of the collision integral with 
respect to the inversion transformation p - -p, 
we can readily verify that this solution satisfies 
automatically the boundary condition (4). The den­
sity of the electric current calculated with the aid 
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of the function X obtained in this manner will, ob­
viously, coincide with the current density produced 
in an infinite normal metal placed in a magnetic 
field h and an electric field e. We thus conclude 
that the dependence of the current i on the elec­
tric field is determined by the static conductivity 
of the bulk metal in the magnetic field h: 

(5) 

It remains for us to write out the boundary con­
dition for ht-the magnetic-field component paral­
lel to the interphase boundary. The latter can be 
easily done by using the quality of the normal 
forces on both sides of the boundary 

(6) 

where He is the critical magnetic field and F the 
force acting on the boundary on the side of the 
electrons. In the right side of (6) there should be 
written, generally speaking, one more term con­
nected with the surface tension. Simple estimates 
show, however, that in our case, when the radius 
of curvature of the boundary is much larger than 
the thickness of the layer, this term is negligible. 
Since the quasimomentum of the electronic excita­
tions is practically unchanged by reflection, at 
low temperatures we can assume that the force 
F = 0. The boundary condition thus reduces to the 
equality ht = He. 

We now choose the origin of the coordinate 
frame (~, 1J, t;) at a certain point in the middle of 
some normal layer. The t; axis is directed normal 
to its boundaries, and the ~ axis along the mag­
netic field h at the origin. If the layer were plane­
parallel and at rest, then inside the layer we would 
have everywhere h = ho, where ho~ =He, hot=ho1J 
= 0, and e = 0. In our case we can linearize all 
the relations in terms of e near the origin and in 
terms of the deviation h' of the magnetic field 
from ho· The boundary conditions then yield 

e; = 0, h{=O. (7) 

Using (7) and (5), we obtain from the first equation 
of (1) 

ahr.' 4n . 4n -- = - z~ = - (a~TJeTJ + Ot:t;et}, as c c 

ah~' 4:rt . 4st --= - -- zTJ = -- ( crTJTJeTJ + aTJ~ed. (8) as c c 

We now go over to the averaged values. We in­
troduce the vector H, the value of which at the 
given point (i.e., in the given physically infinitesi­
mally small volume whose dimensions are large 
compared with the layer thickness but small com-

pared with the distance over which a noticeable 
change takes place in the layer configuration) is 
equal to the field h in the normal layers. The ab­
solute value of H, in accord with the second equa­
tion of (7), is He. Since h = 0 in the superconduct­
ing regions, the magnetic induction vector B, de­
fined as the average of h over the volume, is 
given by 

B = XnH, 

where xn is the concentration of the normal 
phase. 

(9) 

The magnetic moment M per unit volume of the 
intermediate state, due to the currents flowing 
near the boundaries of the superconducting layers, 
is likewise related to H by a simple formula. 
Recognizing that the magnitude of these currents 
is determined by the jump of the magnetic field h 
on the phase boundary, we obtain (cf. [ TJ) 

M = -x.H/4:rr, (10) 

where Xs = 1 - xn is the concentration of the su­
perconducting phase. Comparison of (9) and (10) 
shows that the quantities B, M, and H are con­
nected by the relation B = H + 47rM, i.e., H is the 
magnetic intensity of the intermediate state. 

We can readily show analogously that the aver­
age electric field E differs from the field e in 
the normal layers only by the factor Xn· From 
this, taking the first formula of (7) into account, it 
follows that in the intermediate state the electric 
field is always perpendicular to the magnetic field 

EH=O. (11) 

From the "microscopic" equations (1) follow the 
usual formulas that relate B, H, and E: 

1 aB 4n . 
divB=O, rotE=--- rotH=-J, (12) 

c at · c 

where j = i- c curl M is the density of the con­
duction current. 

Relations (7) and (8) make it possible to find 
the connection between the conduction-current 
component j 1 perpendicular to the magnetic field, 
and the electric field. Comparing (7) and (8) with 
the last formula of (12), we obtain 

(13) 

where a 0'.{3 is the two-dimensional conductivity 
tensor of the normal metal placed in the field H, 
in a plane perpendicular to the magnetic field. 

As to the current along the magnetic field j 11 , 
there is no universal connection for it with the 
electric field. Indeed, since Xn is a variable that 
must be determined by the equations themselves, 
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formulas (9) specify the connection between B 
and H. Were there also a connection between j 11 
and the field intensities, then relations (12) would 
constitute a complete system of equations. Since 
we have the condition (11), this system would in 
general be overdefined. It can be said that (11) re­
places the connection between j 11 and the field. 

In order to eliminate j 11 from the equations, we 
take the vector product of the third formula of (12) 
and H. Recognizing that when I HI = const, we 
have the equality 

[H,rotH] = -(HV)H, 

we get 
(HV)H = 4rrc-1 [hH]. (14)* 

Finally, we write out the resultant complete sys­
tem of equations 

divB = 0, 1 &B 
rotE=--­

c at' 
4n 

(HV)H = -(j..LH], 
c 

EH=O~ 
. <Ya;ll 

B = XnH, ]..La;=-· -Ell. (15) 
Xn 

We note that it is nonlinear even when ua{3 does 
not depend on H. After solving the equations, we 
can determine the complete current density 
calculating (c/4n) curl H. 

2. DIRECT CURRENT 

In this section we shall calculate the de resist­
ance of the intermediate state. We consider a 
plane-parallel plate placed in a perpendicular 
magnetic field :;e. As is well known, [ 7 J in the ab­
sence of current the plate is in the intermediate 
state when :Je < He. Since the conductivity ua{3 

depends essentially on whether the parameter 
rl/v is large or small, where rJ is the cyclotron 
frequency in the critical field and v is the elec­
tron collision frequency, we shall consider these 
two limiting cases separately. 

Let at first rJ « v. In this case we can use the 
conductivity in the absence of the magnetic field, 
which we assume to be isotropic. We choose the 
coordinate system such that the z axis is normal 
to the surface of the plate, the x axis coincides 
with the current direction, and the boundaries of 
the plate correspond to z = ±a (a is half the plate 
thickness). It is clear from symmetry considera­
tions that all the quantities depend only on the co­
ordinate z. The equation div B = 0 then reduces 
to the condition that the product xnHz be constant 
and equal to the external field :;e: 

(16) 

*[H, rot H} co H x curl H. 

The equation curl E = 0 leads to constancy of Ex 
and Ey, while the equation for H can be written 
in the form 

dH 4ncr[ ] -=-EH 
dz c:Jt ' (17) 

from which, using the condition E • H = 0, we get 
that E is constant. Differentiating (17) with re­
spect to z and again using (17), we can eliminate 
the electric field: 

d2H + (4ncr1EI ) 2H = O. 
dz2 c:Jt 

(18) 

The general solution of the latter equation takes 
the form 

( 4:rocr I E I \ ( 4ncr I E I ) 
H = H1 cos c:Jt z} + H2 sin c:Jt z , (19) 

where H1 and H2 are constant vectors which, by 
virtue of the condition I HI = He, are mutually per­
pendicular, with I H1 1 = I H2 1 = He. Substitution of 
(19) in (17) yields 

(20) 

The obtained formulas define the field in the 
plate in the general case, when besides the field :;e 
there is also an arbitrary external field lying in 
the xy plane. In the particular case considered 
here, we have from (19) and (20) 

( 4ME ) Hz= He COS --z , 
c:Jt 

( 4ncrE \ 
Hy =-He sin c:Jt z), 

Ey = Ex = 0, Ex== E. (21) 

Substituting this in (16) we get the concentra­
tion of the normal phase 

( 4n<rE ) 
Xn = :Jf/HcCOS c:Jt Z • (22) 

If cos (4nuEa/c.JC) ~ :Jt/Hc, then the concentration 
obtained with the aid of (22) satisfies everywhere 
within the plate the necessary condition xn ::s 1. 
This means that the entire plate is in the interme­
diate state. We calculate the total current in this 
case: 

a a 
I . c \ dH y cH c . ( 4ncrE ) 

I= jlx dz = -- .l - dz = - sm --a . (23) 
4n dz 2n c .'JC 1 -a ~a 

On the other hand, if cos (4nuEa/cJC) < :JC/Hc, then 
formula (22) yields Xn > 1 when I z I > z0, where 
cos (4nuEz0 /c:Jf) = :JC/Hc· It is clear that actually 
at these values of z we simply have xn = 1, i.e., 
part of the plate is in the normal state (see [ 0 ). 

Formulas (21), which define H, are valid only when 
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I z I < z0• When I z I > z0, the current density is aE, 
and the value of the electric field in the normal 
region is the same as in the region occupied by the 
intermediate state, by virtue of the condition of 
continuity of the tangential component of E. The 
total current through the plate is 

•o 
c C dH11 

1= -- J -dz+oE·.2(a-zo) 
4n dz 

-zo 

=--c 1- -I +2oE a---arccos- . cH [ ( 3t \2]''' { ctft 3t} 
2l't Hel 4m:rE He 

(24) 
Formulas (23) and (24) solve our problem and 

determine E(J) for all J. 
If J « cH0 , we get from (23) 

x~o) ( J ) 
E=--

cr 2a ' 
(25) 

where x<g > = :Jt /He is the concentration of the 
normal phase in the absence of current. We see 
that the de resistance in the intermediate state is 
equal to the sum of the resistances of the normal 
regions. [ 4• 11 - 141 The separation boundaries be­
tween the phases do not have additional electric 
resistivity. This fact is not trivial (since it is 
known[ 15• u, 91 that they have a large thermal re­
sistance) and is closely connected with the unique 
character of the reflection of the electronic exci­
tations from the phase boundaries, discussed 
above. 

If J » cH0 , then (24) yields 

E = cr-1 (1 I 2a), (26) 

i.e., the resistance of the plate is the same as the 
resistance of the normal metal; this is perfectly 
natural, for in this case almost the entire volume 
is occupied by the purely normal phase. 

Let now Q » v. We confine ourselves here to a 
metal with an unequal number of electrons and 
holes. For such metals the off-diagonal elements 
of the conductivity tensor aa{3• which are equal to 
±Nee/He (see [Sl), where N is the difference in 
the number of electrons and holes per unit volume, 
greatly exceeds the diagonal ones, and we can 
write 

Nee h = --2[EH]. (27) 
XnHe 

Substituting (27) in (14) and taking (9) and (11) and 
the condition curl E = 0 into account, we obtain 

Ex= Ilx = 0, H11 = -4nNeE11:JC-1z, 

II.= (H e2 -llu2) 't., (28) 

from which we readily obtain a relation for Ey(J): 

Ey = 2ac~e J. (29) 

This formula is valid if J < (c/27r)(H~- :Jt 2)112. 

When J > c(H~ - :;e2) 112 /27r, part of the volume of 
the plate goes over into a purely normal state, and 
the character of E(J) is determined in this case 
by the detailed structure of the conductivity tensor 
of the normal metal. 

The formulas obtained can be generalized in 
trivial fashion to the case of a plate placed in an 
inclined magnetic field. 

3. SMALL OSCILLATIONS 

The general equations (15) can be used also to 
solve the question of the possible propagation of 
electromagnetic waves in the intermediate state. 
We put 

H = Ho+H', !Hoi= He, Xn = X~IY)+xn' 

and linearize (15) with respect to the quantities 
H', x~, and E. The dependence of the latter on 
the coordinates and on the time is given by the 
factor exp (- ik • r - iwt). We obtain the following 
relations: 

(kHo) Xn 1 + x~IY) (kH') = 0~ 

EHo = 0, H'Ho = 0, 

. (0) 
{kE) = c-1 co (HoXn' + Xn H')' 

(kHo)H' = -4nc-1i[h, Ho]. 

(30) 

We have assumed that the equilibrium values of 
Ho and x~> do not depend on the coordinates. ~his 
is correct for the intermediate state produced m 
an arbitrary ellipsoid placed in a homogeneous 
magnetic field. Actually the results obtained from 
(30) pertain also to bodies of arbitrary shape, pro­
vided we consider wavelengths much shorter than 
the distance over which Ho and x~ > change 
noticeably. 

Multiplying the second and the last equations of 
(30) vectorially by Ho and comparing the result, 
we obtain 

(31) 

If we introduce a coordinate system with z 
axis along Ho, then the last equation can be writ­
ten in the form of a system of two equations for 
Ex and Ey: 

E 4nico /I, 2 ( . E + E 
X= c2(kHo)2 e O'xx X Uxy y), 

(32) 
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Equating to zero the determinant of the system 
(32), we obtain an equation for w(k): 

(33) 

If Q :S v, then all the components of the tensor 
aaf3 have, generally speaking, the same order of 
magnitude. Then the oscillations, as seen from 
(33), attenuate over distances of the order of their 
wavelength. 

When Q » v the spectrum w(k) depends essen­
tially on whether the metal has an equal number of 
holes and electrons or not. In the former case, 
as when Q :S v, the oscillations are rapidly damped. 
In the second case we have 

and (33) yields 

w = +(cHc/4nNe)kz2 , (34) 

where kz = (k· lfo)/Hc· Substituting (34) in one of 
the equations (32), we can readily verify that the 
waves are circularly polarized, and that two signs 
in (34) correspond to different directions of rota­
tion of the vector E in a plane perpendicular to lfo. 

With the aid of (33) we can calculate also the 
damping of the oscillations. Retaining only the 
principal terms, we obtain 

V == I lm W J = <1xx + C1yy 

(J) 2nlcrx11 1. 
(35) 

Thus, there exist weakly damped oscillations of 
the intermediate state of a sufficiently pure super­
conductor with unequal numbers of electrons and 
holes. These oscillations are in their properties 
similar to helicons which exist in a normal level 
placed in a strong magnetic field (see, for exam­
ple, [ 16J ). 

The helicon-like oscillations of the intermedi­
ate states were recently observed experimentally 
in indium. [ 6 J However, the condition T « Tc was 
not satisfied in the experiment, so that the exper­
imentally observed values of the oscillation fre­
quencies are lower than those given by (34). With 
decreasing temperature, as noted in [ 6 J, the fre­
quencies increase and thus approach their theo­
retical values. 

We present, finally, an estimate of the maximum 
possible oscillation frequencies. This can be done 
by noting that the values of the wave vector should 
be smaller than the reciprocal of the layer thick­
ness, i.e., k ~ 102-103 em -i. From (34) we then 

get w~ 103-1012 sec-1 for He~ 102 and N ~ 1022 • 

The maximum wave propagation velocity is in this 
case of the order of 10-102 em/sec. 

4. BEHAVIOR IN AN ALTERNATING FIELD 

The presence of weakly damped oscillations 
greatly influences the behavior of the intermediate 
state in an external alternating electromagnetic 
field. We consider again a plane-parallel plate 
situated in a constant magnetic field 2f, and the 
origin lies in the middle of the plate. Assume that 
a plane electromagnetic wave propagating along 
the z axis is incident on the plate. Choosing the 
x axis along the direction of the magnetic field 
polarization in the incident wave, we write (15) in­
side the plate in the form 

(O)dHx1 4rt 
Xn -d- = -(C1yxEx + C1yyE11 ), 

z c 
dEx iw (O) · 1 

-d =-Xn H 11 , 
z c 

dE11 iw (O) 1 

dz =--;;xnHx, 

(36) 

where x~> = :JC/Hc, and H' = H- lfo, where H0 is 
the magnetic intensity in the absence of the alter­
nating field. We have allowed for the fact that all 
the quantities depend only on the coordinate z by 
virtue of symmetry. 

From (36) we obtain the following general ex­
pression for Hx inside the plate: 

Hx' = B 1eik,z + B2e·-ik,, + B 3eik,z + B~e-ik,z, (37) 

where Bts B2, Ba, and B4 are arbitrary constants 

k2 = iq + q(axx + a1111 ) 

4jax11 1 

( 4rrw I C1xy I ) '/, 
q= 

c 

If we now determine H'y, Ex, and Ey with the 
the aid of (36) and write the ordinary continuity 
conditions for the tangential components of H and 
E at z = ±a (where a is half the plate thickness), 
then we can find the amplitudes of the waves pass­
ing through the plate. Simple calculations yield the 
following result: 

c1 . ( (J) )'" 

Ao = ~:Je 4ncHc!Ne I 
sh 2qa - sin 2qa 

x--~--~-----~------­
sh 2qa sin 2qa + 2ia sh 2qa cos 2qa ' 

*sh ~sinh. 

(38)* 
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C2 = eN:!fe ( (!) )''• 

Ao 4n:cH ciNel 3 

sh 2qa + sin 2qa 

X sh 2qa sin 2qa + 2ia sh 2qa cos 2qa 
(39) 

Here Ao is the amplitude of the incident wave, c1 
and C2 are the amplitudes of Hx and H1 in the 
transmitted wave, and a = (uxx + O"yy)qa/4luxy 1. 
We assume that a « 1, i.e., the waves in the plates 
attenuate little over distances on the order of a 
and qa ii:. 1. In the derivation of (38) and (39) we 
also use the fact that the parameter w/cq, which 
represents the ratio of the wave velocities in the 
plate and in vacuum, is exceedingly small. 

Formulas (38) and (39) show that the coefficient 
of transmission of the wave through the plate ex­
periences resonant oscillations. The ratio of the 
quantities I C1, 2 12 , taken at the resonance, i.e., at 
q = 7rn/2a (n = 1, 2, ... ), and far from it, is of the 
order of a-2 » 1. We note also that C1 and C2 

are proportional to the first power of the magnetic 
field :JC (see [ 6 1). 

We now consider the case a» 1. The waves in 
the plate are then damped at a distance much 
smaller than a, and therefore the surfaces of the 
plates are not correlated with each other. Choos­
ing one of the surfaces as the plane z = 0, we can 
write the general solution of (36), which attenuates 
inside the plate (in the region of positive z) for 
z « a/ a, in the form 

Hx' = Aeiqz + Be-qz, 

H 1 • C1xy (A . 11 = - l--- e•qz - Be-qz), 
I C1xul 

(0) 

E (!)Xn (A . 
II = - -- etqz - iBe-qz)' 

cq 

(0) 
OOXn Gx11 

Ex = -- ---(Be-qz- iAeiqz) 
cq lax11l ' 

(40) 

where A and B are arbitrary constants. Expres­
sing them with the aid of the first two equations of 
(40) in terms of H~ and Hy at z = 0, and substi­
tuting in the last two equations, we obtain the fol­
lowing connection between the electric field and 
the magnetic field on the surface 

(0) 

E., = ~ Xn ( 1 - i) { C1xll H 1 + H 1 } 

cq 2 I fJxlll x II ' 

If we introduce in usual fashion (see [ 71 , p. 397) 
the surface impedance t; a{3, then (41) yields 

~ (O) 1 - i ( ro ) 'I• { fJafl } 
'all= Xn -2- , 4n:laxlll 6ap-lcrxlll ' 

(42) 

where the indices a and {3 run through the values 
of x and y. 

All the preceding formulas of this section per­
tain to a superconductor with N -1 0 under the con­
dition Q » v. In the opposite limiting case, putting 
Uaf3 = uoaf3• we obtain in similar manner 

~all= (1- i)x;0\ro/8n:cr)''•6ap, (43) 

which coincides with the impedance of the normal 
metal having a conductivity u /x~ >. . 

If the plate is in an oblique magnetic field !Jt, 
we obtain in lieu of ( 43) 

. _ I:!JeziHc ( ·00 )''• • { :!fea:!fefl} 
~all- (Hc2-:!fet2) 8n:cr (1-t) 6all- Hc2 '(44) 

where :JCz is the component of :Jt normal to the 
plate, :JCf = :JC~. The depth of penetration of the 
field is then 

(45) 

In a perpendicular field ~ICt = 0, and (45) goes 
over into an expression corresponding to a conduc­
tor with conductivity u /xn and magnetic permea­
bility Xn· 

In conclusion, I thank I. E. Dzyaloshinskil, 
L. P. Pitaevskil, I. M. Khalatnikov, and Yu. V. 
Sharvin for a useful discussion of the work and 
valuable remarks. 
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