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Parametric interaction of three intense electromagnetic modes having frequencies w 1, w2, and 
w 3 is considered. The frequencies satisfy the condition w 1 + w 2 = w 3, the last one being the ab­
sorption frequency of the medium. Equations are derived describing the interaction both in the 
presence and the absence of population inversion and taking the saturation effect into account. 
Qualitative differences between the resonance and non-resonance interaction are considered. 
Generation of sum frequency fields and parametric frequency division are investigated. 
Analytical expressions are found for the resulting fields; the field values significantly depend 
upon two-photon absorption of fields E(w 1) and E(w 2). The maximum coefficient of conversion 
of the fields E(w 1) and E(w 2) into E(w 3) is also determined. It is shown that the length charac­
terizing an appreciable energy transfer between the interacting modes depends on the lifetime 
of particles of the working substance in the excited state. The resonance parametric interac­
tion is found to be less critical with respect to synchronization conditions than non-resonance 
interaction. Numerical computation is made for the case when the working substance consists 
of impurities in a dielectric. 

1. Parametric interaction of non-resonance mono­
chromatic electromagnetic modes in a dispersive 
medium is well known in terms of theory and ex­
periment (see, for example,U-4l). The parametric 
interaction of waves having one mode frequency 
close to the natural frequency of the medium has 
been studied much less.[5-S] The mathematical 
treatment in all the above papers was based on a 
perturbation theory that is applicable only if the 
interacting field amplitudes are sufficiently 
small;[4l furthermore, neither two-photon absorp­
tion nor the population saturation effect (which may 
become significant in these processes, as will be 
shown below), were taken into account. For exam­
ple, in the case of resonance at the second harmonic 
it is necessary to consider the two-photon absorp­
tion of the incident wave energy at the fundamental 
frequency as well as the absorption of the second­
harmonic field. In particular, the two-photon ab­
sorption intensity determines the value of the 
doubled-frequency field that can be reached in 
generation, and the lifetime of excited particles of 
the working substance determines the length as­
sociated with the energy transfer between the inter­
acting fields. 

The averaging method was used in[9 •10l to obtain 
equations that allowed for the saturation effect and 

described both the Raman scattering and the 
parametric interaction of fields when some fields 
had resonance frequency. These equations will be 
used in our work. 

2. We consider an interaction of three frequen­
cies 

(1) 

(here, l = 1, 2, 3, kz = 27r/A.z, A.z is the wavelength, 
w3 =w 2 +w 1; and Ez = mz(z) exp[-icpz(z)]) propa­
gating along the z axis in a medium t) of particles 
whose energy levels contain levels 2 and 1, such 
that 

(2) 

Here, w21 is the frequency of transition 2- 1, and 
0 ::::: .6. ::::: w 1, w2. Henceforth we assume that level 1 
corresponds to the ground state of the particles. 

The complex polarization amplitude P(wz) at the 
frequency wz is readily defined for our stationary 
process with the aid of Eqs. (4), (15), and (18) 2) 

1 )The medium is considered isotropic for simplicity. An­
istropy is taken into account in the same manner as in the case 
of the parametric interaction of nonresonance fields (see[']). 

2 lEquation (18) of [9 ] contains an error: the right-hand side 
should be multiplied by i. 
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of[s] and Eq. (1) of[1o]. For simplicity, a dipole 
field-matter interaction is considered and the 
fields E3, E2, and E1 are considered polarized in 
the directions a, b, and c respectively. The projec­
tions of the complex amplitudes of polarization on 
these directions are then determined as follows: 

P c, b ( ro1, 2) ei6l1,z1 = Spc, b {pp (rot, z)} 

= ~ [p(c, b)q! Ptq ( ro1, z) + P<c, b)2q pqz( rot, z) ], 
q 

P a ( roa) ei.,,t = Pa2! 0"12 ei(Cila-4)1 (3) 

Here, f> is the dipole moment operator, and Pcmn• 
Pbmn• and Pamn are the projections of its matrix 
elements on the directions of fields E1, E2, and E3. 
The expressions for matrix elements P 1q and Pq2 

of the density matrix p are determined by Eqs. (15) 
of[s] (where we set j = 1, i = 2, a = 1, (3 = 2, and 
!:1wa,(3 = 1:1), and a 12 is obtained from Eq. (18) of[9], 

taking account of Eq. (1) of[1o]. As a result, we 
have 

Pc(rot) = -d[li-2Pal2r*EaEz*ei(l•,-k,)z 

+ ft-31 ri21E212Efe-ik,z]Nn, 

Pb ( roz) = -d[ h-2Pal2r• EaEt" ei(k,-k,)z 

+ ft-31ri21Ed2E2e-ik,z]Nn, 

Pa(roa) = -d[h-2paztrEtEze-i(k,+k,)z 

+ h-11Pa2d 2Eae-ikaz]Nn, 

where 
r = ~ ( Pclq Pbq2 + Pcq2/}biq ) 

roqz + roz roqz + rot q 

(4a) 

(4b) 

(4c) 

3 -1 

d = [ T.-1 + i( ll- 1~ QziEzl2)] (5) 

r characterizes the intensity of two-photon absorp­
tion, N is the particle density, n is the population 
difference between levels 1 and 2 for a single par­
ticle: 

n = no{1 + 4h-4.(h2 IPa2d 2 IEal 2 

+2ft Re (paztrEtEzEa"ei(l•a-1<,-l<,)z) 

+ lri 2 1Eti 2IE212-r] [T-2 + (!l- ~QziEzi 2) 2]-1T'-1}-1 , 

(6) 

n0 is the equilibrium population difference, Tis the 
particle lifetime on level 2, T -1 is the linewidth of 
transition 2-1, and ~Qz1Ezl 2 determines the change 
in frequency w21 due to the fields Ez. The coeffi­
cients Q z can be found from Eq. ( 1) of[1o]: 

Qz= 2 { I(P2iEz)l 2 flza+~ [roq,I(PtqEz)l 2 

h2 ro21 + roz q roq12 - roz2 

+ rozq I (pq2E1) 12 ]} 
(J)q.;- roz2 

(7) 

(o z3 is the Kronecker delta). 
Let us now consider Eqs. (4a)-(4c). The first 

terms in the numerators of (4a)-(4c) define the 
part of polarization due to the parametric interac­
tion of the fields, while the second terms in (4a) 
and ( 4b) are associated with the intensity of two­
photon processes. Let us note that the quantity r 
defining this intensity is also included in the first 
part of polarization. 

In a general case the "non-resonance" part of 
the interaction should also be included in the com­
putation of P(wz); for this purpose, the correspond­
ing terms 

are added to (4a)-(4c). Here, Xabc etc. coincide 
with the components of the susceptibility tensor 
(see expressions (22.23) in[4]) without the reson­
ance terms. 3> 

Of interest is the case in which the resonance 
part of polarization plays the major role; accord­
ing to (4) and (8), this calls for 

IPa21rl ~h2T-1 Ixl. (9) 

where xis the "non-resonance" part of the sus­
ceptibility of a single particle. The above inequality 
is satisfied if, for example, a two-photon transition 
between levels 1 and 2 is well resolved (for optical 
frequencies lrl ~ 10- 51 cgs esu), while a single 
photon transition is resolved only up to the mag­
netic dipole approximation (1Pa21 l ~ 10-21 cgs esu) .4> 

In fact, assuming that x has the value of the 
susceptibility of KDP (X~ 10-31 cgs esuf3]) and 
that T ~ 10-11 sec, we find that the left-hand side of 
(9) is more than 100 times larger than the right­
hand side. Furthermore, from now on we will 
neglect the frequency variation of transition 2-1 
as compared to the linewidth T -1. It follows from 
(7) that this is justifiable when E < 3 x 103 cgs esu 
(~ 106 V/cm) for the parameters given above. 

Taking all the above considerations into account, 
we use Eq. (4) to find four equations for the real 
amplitudes mz(z) and phase differences cp1(z) + cp2(z) 
- cp3(z) + (ok) z = 8(z) [3·4], where ok = k1 + k2- k3: 

3 >Expressions (8) are obtained by inserting in (3) the values 

of a~~ taken from (6) of [9 ]. 

4 >In this case, p21 and E 3 denote the matrix element of the 
magnetic moment operator and the magnetic field amplitude re­
spectively. All the Pmn will henceforth be considered real. 
Consideration of Pmn as a complex quantity does not yield qual­
itatively new results and merely renders the exposition more 
difficult. 
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(10a,b) 

dms +~3m3 = [(Bs'sin 8- B{1 oos 8)m1m2- bs"ms]n, 
dz 

(10c) 

Therefore, we can assume that e = rr in (10a)-(10c). 
Introducing new variables we obtain 

x1,2= (a2,1at"-r: I hat,2) 'l•mt,z= (4f!.w2,t'tTI /t~w1,2) 'i•mt,2, ( 14a) 

y = (lt-1a/1't)'hms = 2h-1Pa2d'tT)'"ms, (14b) 

11 = (ata2hat'1't-1)'i'n = rcrw1wzNT'"nl c2h(ktk2't)'f, (14c) 

_ d8 = 8k + [ ( Bt'' mams + B{' m1ms + Bs'1 m1m2 ) sin 8 and using ( 12), we write ( 1 Oa) -( 1 Oc) for ok = !:!.. = 0 
dz ' m1 m2 ms in the form 

( , m1m2 B 1 m1ms B , m2ms) b 1 + Bs --- 2--- 1-- cos8- ( 1m22 
Ills m2 m1 

+ b/mt2) + b3'J. n. (10d) 

The following notation is used in (10a)-(10d): {Jz is 
the linear attenuation coefficient for the Z-th field 
in the medium, 

Bz = B{ + iB{' = azg, 
az = rcw(W I 2c?-kz, g = 4pa2trT(i + Tt'!.) I h2 (1 + T2A2), 

bz = b{ + ib{' = azaz, 
a1 = a2 = 4f!-T(i + TA) I /t&(1 + T21l2), 

as= 4p~21T(i + T!!.)/h(1 + T2!!,.2). (11) 

Let us note that the resonance absorption of field 
E 3 in the medium is defined by the term b3"m3n in 
( 10c). 

Using the above notation, the population differ­
ence can be described by 

dx1,2 I dz + ~1,2X1,2 = x2,1 (y- x1x2) 1'], 
dy I dz + ~sY =A (x1x2- Y)'l'], 

1']=1'Jol[1+:(y-xtx2)2], 1']o=1'] (n=no), 

A= 2pa22tr1ws(T-r:/w,w2)'h. 

3. We consider frequency doubling 

Wt = W2 = W, (t)g = 2w. 

Then x 1 = x 2• 

(15a,b) 
(15c) 

(15d) 

( 16) 

( 17) 

Let us note that the plane x 1 = x 2 is stable when 
{3 1 = {3 2• This is readily demonstrated by multiplying 
(15a) and (15b) by x 1 and x 2 respectively and sub­
tracting one equation from the other. For example, 
the condition {3 1 = {32 is satisfied if w 1 is little dif­
ferent from w2• Therefore all the relations obtained 
for case ( 17) in terms of the variables x, y, and T), 

are also valid for the interaction of fields with 
close frequencies w 1 and w2• In this case the am­

n =no[1 +1t-1-r:(as''ms2 + 2g"m1m2mscos 8 + a{1m 12m22 )]-1. 
plitudes m 1, m 2, and m 3 must be determined from 

( 12) ( 14). 

It should be remembered that Eqs. (10) are valid 
when!:!..« w2, w 1 and conditions (9) are satisfied. 

In a general case an analytic solution of ( 1 0) is 
not possible. Nevertheless, the qualitative differ­
ences between resonance and non-resonance 
parametric interaction can be readily observed 
in the case of ok = 0 and!:!..= 0. Moreover, this 
example permits us to evaluate the maximum ef­
fectiveness of the resonance parametric conver­
sion (the case of ok "' 0 will be considered in Sec. 
5). 

When ok = !:!.. = 0, Eq. (10d) assumes the form 

~ = (Bt'' m2ms + B2" mtms + Bs" mtm2) n sin e. ( 13) 
dz m1 m2 m3 

It can be readily seen that the plane e = rr is stable 
when n > 0 (the working level populations are not 
inverted). 

It is useful to analyze the process of generating 
one of the E z fields when its intensity at the boun­
dary is close to zero (or, more precisely, when its 
intensity is determined by noise). According to ( 10) 
and (13) the rate of approach of the phase differ­
ence towards the plane e = rr is then much higher 
than the rate of change of field amplitudes m z· 

Thus let us assume that x 1 = x 2 = x, neglecting 
linear losses from now on. Then we obtain from 
( 15a) -(15d) 

dx x(y- x2)1']o 

dz 1 + (Y - x2) 2 ' 

~-A (x2-y)'l']o 
dz- 1+(y-x2)2' 

( 18a) 

(18b) 

where, if (17) holds, x andy are determined as 
before by (14a) and (14b); the amplitudes of the 
first and second harmonic will be denoted by m 
and M respectively. 

5 )A direct check will show that P(w) derived similarly to 
(4 a) and (4 b) is twice as large as P(w 1 ~ w, E 1 ~E) ob­
tained from (4 a) in the case of degenerate frequencies 
w1 ~ w2 ~ w. The coefficients in (10 a) increase in a correspond­
ing manner, thus changing Tf and A. We obtain a smooth transi­
tion from (14) to (19) when w1 _, w 2 by allowing for the slow 
motions- exp [i(w 1 - w2)t] in the derivation of the initial short­
ened Eqs. (10) of [9 ] and Eq. (1) of [10] for w1 - w2 ~ r'; then 
P(w 1) in (4 a), for example, will acquire the additional terms 
- E 3E 1 * and I E,i 2 E 1 which lead to the above increase of P(w) 
when w1 _, w2 • 
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Dividing ( 18a) by ( 18b) we obtain the first integral 

y- yo= A ln t(xo I x), (20) 

where 

Xo = xlz=o; Yo= Y,l,z=O· (21) 

It also follows from ( 18) that the ratio of ampli­
tudes of the second and first harmonics tends to 
the following limit, 6> regardless of the boundary 
values (21): 

(22) 

with 7J = 7Jo (n = n0). Consequently in the presence 
of an incident field of frequency w the population 
difference n near the boundary is less than the 
equilibrium value because of the two-photon ab­
sorption of field E(w) and the single-photon ab­
sorption of field E(2 w), which occur in the system 
as a result of the synchronization conditions. 
E(2w) grows in the z direction and the parametric 
interaction of E(2w) with E(w) increases nand 
returns it to the equilibrium value. 

Using (20) and (22) we now find the limiting 
values of the field amplitudes established in the 
course of the interaction 

Yoo + 1lvf ln Yoo = Xoo2 +A In Xoo =Yo+ A ln Xo. (23) 

Let us consider the generation of the second 
harmonic Yo= 0 (M0 = 0). From (23) we find m 0, 

which is the boundary value of the first-harmonic 
amplitude necessary to obtain Mmax• the limit of 
the doubled frequency field amplitude 

1 1'oo/A 
Xo = Yoo 1'e or mo = (vMmax)'f,eMmaxlv, 

V = lipa21 / r, 
(24) 

(25) 

Mmax is expressed in terms of y oo with the aid of 
(14b). 

As is known, a total energy transfer from the 
first to the second harmonic is theoretically possi­
ble in the course of non-resonance frequency 
doubling. It readily follows from (24) that in the 
case under consideration the conversion factor 
a = Mmax/m0 reaches a maximum at m 0 ~ 1.16 y; 
amax ~ 0.43. Here Mmax ~ 0.5 y and the ratio of 
energy converted into the second harmonic to that 
absorbed by the material is W conv/W abs I z- oo 

~ 0.35. If 

Mmax~V, (26) 

an approximate formula can be used instead of (24): 

6>we will show -below that for y 0/x 0
2 cjl we have y--> Yoo 

and x __, X 00 as z __,. oo (see (28) and (29)). 

(27) 

For r ~ 10- 51 cgs esu, Pa21 ~ 10-20 cgs esu, and 
y = 104 cgs esu, the inequality (26) is satisfied 
when m 0 :S 0.3 y (~ 106 V/cm). In this case the con­
version factor is 

aoo ~ mol 'Y· (28) 

Let us analyze the dependence of the doubled­
frequency field amplitude upon the coordinate. 
From (18b) and (20) we have 

y 

Z= (A'l'Jo)-f ~ {(xo2e2(yo-t)/A-t)-f+xo2e2(Yo-t)/A-t}dt. 

Yo 
(29) 

In the general case the integral (29) cannot be 
expressed in terms of elementary functions. How­
ever, it can be computed approximately for 
Yoo <A (Mmax < y). We confine ourselves here to 
the case where the field of the first harmonic can 
be considered as given (condition (26) is satisfied). 
For Yo = 0 we obtain 

z = (AT]o)-1[yxo2(1- y I xo2) -In (1- y I xo2) ]. (30) 

In dimensional variables we have 

z = c2k [ T:rmo2 ( 1 _ lipa21M) M 
Jtw2NnoPa21 li2 rmo2 

(30a) 

The first term in the brackets of (30a) is due to 
saturation of the working level population differ­
ence. This term can be neglected if (see also (15d)) 

x02 ~ 1 or mo2 ~1i2 12r(r:T)'!.. (31) 

As we know, in the case of non-resonance fre­
quency doubling, in the approximation of a given 
first-harmonic field, the distance required for the 
second harmonic amplitude to reach a value y 1 is 
inversely proportional to x~. [3 ) In the case of 
resonance doubling, as follows directly from (30), 
there is an optimum value of x5 

X~ opt= YN2 + (yN4 + 1)'1•, (32) 

such that z(x 0 = x 0 opt) = Zmin. The value of Zmin 
can be found from (32) and (30). 

We perform some numerical computations, as­
suming that an impurity dielectric is the working 
substance that is capable of satisfying the synch­
ronization conditions. Let m 0 ~ 2 x 103 cgs esu, 
Pa21 ~ 10-20 cgs esu, r ~ 10- 51 cgs esu, w ~ 1015 sec- 1, 

T ~ 10- 11 sec, Nn0 ~ 1020 , and lifetime T « 10-7 sec. 
Then (31) is satisfied and (30a) yields L ~ 10-2 em 
for M(z = L) ~ 2 x 102 cgs esu (a = 10% and 
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M = 0. 5 Mmax). The corresponding conversion 
length for KDP is L ~ 0.1 em (see 3.36 a in[3J). 

Thus a material that is unsuitable as the work­
ing substance in a non-resonance parametric con­
version (condition (9) holds) can be adequate for 
resonance conversion if the two-photon transition 
between levels 2 and 1, satisfying resonance con­
dition (2), is allowed and the linewidth of transition 
2 - 1 is sufficiently small. 

Given a material of density N ~ 1020 , a conver­
sion factor of a ~ 1 O% can be obtained over lengths 
of the same order as in KDP crystals or even 
shorter. Let us note, however, that the above 
values for p21 and r are optimal in the sense that a 
considerable decrease of p21 7> from the above value 
(lo-20 cgs esu) increases the conversion length; at 
the same time, as we noted above, a cannot exceed 
amax = 0.43. On the other hand, an increase of 
Pa21 decreases the conversion factor (see (28)). 

It is also of interest to determine the distance 
in which the second harmonic field amounts to a 
considerable fraction of Mmax• such as 
M = 0.9 Mmax (y = 0.9yco). Let Mmax = s-y 
(y co = sA), where s « 1; then according to (27) and 
(30) 

Xo = (sAfi', Lo,9 = (AT]o}-1 (2.3 + 0.09 s2A2 }, (33) 

or 

mo = s'l•y; 
ftc2k ( 0.57 2 't ) 

Lo.9 ~ 2N - 2 T + 0,09s2Pa21--;;:;:- . 
:rtw no P a21 

(33a) 

It follows from (33a) that L0. 9 depends significantly 
upon the working-substance particle lifetime at 
level 2 if 

(34) 

For the above parameters of the material and 
for m 0 ~ 2 x 103 cgs esu, we obtain a 00 ~ 0.2, 
s = 4 x 10-2, and Tcrit ~ 4 x 10-8 sec. ForT~ Tcrit 
we get L0. 9 ~ 0.1 em. 

4. Let us consider the problem of the parame­
tric frequency division. According to (20) a field 
of frequency w can be amplified only if Yo > A 
( M0 > y). This is difficult to achieve if 
y 2:, 104 cgs esu (the limiting values of the fields 
when Yo> A can be found from (23)). The conver­
sion factor can be increased considerably by plac­
ing the working substance in a resonator with a 
frequency w. We consider here parametric fre­
quency division in a traveling-wave resonator. 

7 )Note that Pa21 can be reduced by suitably orienting the 
field E, with respect to the direction of p21 • 

The walls of the resonator are assumed transpar­
ent to fields of frequency 2 w (or w 3). The phase 
difference is again assumed to be 1r, for during 
the establishment of the stationary distribution of 
the field E(w) the growing resonator fluctuations 
will be just those characterized by the stable value 
6 = 1r. Using (18a) and (20), we obtain 

dx2 

-=2 
dz 

x2 [Yo- +A In (x/xo) 2 - x2 J T]o 

1 +[Yo-~ A In (x/x0 ) 2 -xJ 
. (35) 

Assuming that the reflection coefficient R satisfies 
the condition R- 1 - 1 « 1 for z = l (l is the length 
of the resonator), and R = 1 for z = 0, we can ex­
pand ln(x/x 0) in a series. Using only the linear 
terms of the expansion and integrating (35), we ob­
tain 

where v = 1 + A/2x5, u = Yo + A/2, and r is the 
integration constant. 

(36) 

The boundary conditions can be written as fol­
lows:8> 

f=<p{xo), l+f=<p(xt), 

where <p(xz) is the right-hand side of (36) and xz is 
the field in the resonator for z = l. Subtracting 
the first equality from the second, we find the 
resonator length necessary to obtain x z 

T]ol= [Yo+ (Yo+~ r1-xt2] (1-R) 

( A )-t Yo - Rx? + Yo+- In . 
2 Yo+(A(1-R)/2)-xt2 

(37) 

It follows from (37) that the limiting value of the 
field in the resonator is 

X! max= [Yo- A (1- R) / 2]"'. (38) 

Therefore, intensive conversion requires an input 
field of Yo » A( 1 - R) I 2; it should be noted that the 
field in the absence of a resonator should be y0 »A. 

The field at the output from the resonator is 
xb = xz(1- R). Using (38) we find it to have a 
maximum for R ~ 1- 4y0/3A. Since we have as­
sumed that R is close to unity, the last statement 
is valid for 4y0/3A « 1. Then 

Xbmax = 4yo'i•/3y3A. (39) 

B)Only amplitude relations are considered here. To deter­
mine the frequency spectrum of the resonator it is necessary 
to consider the field-phase equations in addition to (35). 
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Let us note that according to (39) x(Z) becomes 
a two-valued function when 

A(1-R) [ A2(1-R)2 ]'I• 
Yo > y ::::::: 4 + 16 + 1 ( 40) 

Consequently, if (40) holds, two different field 
distributions of the first harmonic are possible 
for the same length l in the resonator. s> The quali­
tative dependence of x z on l for this case is given 
in Fig. 1 (curve 1). The value of xz min is readily 
determined from ( 37) 

2Rxz2min = Yo(1 +R)-AR(1-R)- {{Yo(1 +R) 

- AR(1- R))2 -4R[y02 - Ay0 (1- R) 

-(Yo+AR)I(Yo+A)]}'I•. (41) 

The values of Zmin are found by substituting (41) 
into (37). It should be noted that when (40) holds, 
the value of l corresponding to xz = 0 does not 
correspond to the threshold: stationary solutions 
are also possible for lower l (see Fig. 1). This 
means that the excitation conditions cannot be ob­
tained in our case with the aid of a linear approxi­
mation in terms of x 2Z' 

.Xzt~------ --------

~ Xmin ~ 

lmw l 

FIG. 1. Parametric frequency division. Field as a function 
of resonator length; curve 1-y0 > Y; curve 2-y0 < Y. 

We conclude this section with numerical com­
putations. Setting y = 104 cgs esu, M0 ~ 103 cgs esu, 
R ~ 0.96, T ~ 10-11 sec, T ~ 10-8 sec, and N ~ 1020, 

we find from (38) and (14) mz max ~ 2.5 x 103 cgs 
esu, and mb max ~ 102 cgs esu. Let us note that 
(40) does not hold here and a unique field distribu­
tion of the first harmonic is possible in the resona­
tor (Fig. 1, curve 2). The stationary-solution 
criterion is found from (37): l > 0.1 em. A reson­
ator length l ~ 0.25 em is necessary to obtain 
mz ~ 103 cgs esu. 

5. We consider the qualitative description of the 
phenomena in the case of incomplete synchroniza­
tion ok >" 0. The detuning A is assumed equal to 
zero as before. The equation for e = 2<P 1(z) - <P2(z) 
+ (ok)z is obtained from (13) by adding ok to the 

9)We are not concerned here with the time stability of these 
distributions. 

right-hand side. Let us introduce a new variable 
<P = () - 1r. Then ( 13) assumes the form 

drp I dz = -f(z) sin rp + 6k, ( 42) 

where f(z) is the coefficient of sin() in (13). 
We now show that the function 8(z) has an upper 

bound when I okl < min f(z). To consider an actual 
case, we assume that ok > 0 (the case of negative 
ok is considered in a similar manner, replacing 
<P by- <P). 

Let us introduce two functions 1jJ 1(z) and l/! 2(z) 
such that 

d¢1 I dz ~ -f(z) sin ¢1 + 6k, 

6'1jl2 I dz ;;;:: -f(z) sin 'ljlz + 6k. (43) 

Then, if 1/! 1(0) s; tp(O) s; I/J 2(0) we have l/! 1(z) s; tp(z) 
s; 1jJ 2(z). [l1J We set 1/J 1 = 0 and 1/Jz equal to the solu­
tion of the second equation of ( 43) in which f(z) 
= fmin· Here 

d'ljl2 I dz = -/min sin '1Jl2 + 6k;;;:: -f(z) sin ¢2 + 6k, 

where 

fmin + q- (/min- q)Kezq 
¢2 ( z) = 2 arctg _.:....__;.._;;:._..:._._. 

6k(1- Kezq) 

q = l'f min-(6k)2, 

K = 6ktg 1/2'1Jl2(0)- /min- q 

6ktg 1/2¢2(0)- /min+ q 

(44)* 

It follows from (44) that 1jJ 2 tends to the limit 

If 

fmin- q 
'ljl2 ( oo) = 2 arctg -=--6.,--k-=--

( 45) 

1jJ 2(oo) ~ ok/fmin· Thus, if (45) holds, <P tends to the 
region 

0 :;::;:;; rp ~ 6k J /min (46) 

and e = 1r + ok/fmin· Here, the rate of change of <P 
along the z axis, equal to [f2 - (ok) 2] 112 (see (44)), 
is the minimum rate. In fact, as noted above, this 
rate, which is proportional to m(z)/M0 (or to 
m 1m 2/m3), is much larger than the minimum in the 
case of frequency doubling (or frequency addition) 
when M0 ~ 0 (m3 ~ 0 for z = 0) (see (42) and (13)). 

To determine fmin we can use the results of the 
analysis for ok = 0. Then, according to (13) and 
(24), if (26) and (31) hold, 

I B" mo2 -B"~=B" min :::::::min 1 llf(z) - 1 .M(oo) 1 'Y· 

*arctg = tan-•, tg = tan. 
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Using the above parameters of the medium we find 
that fmin ~ 10-100. Consequently, cos () ~ 
- [1 - (ok/fminl 21 for ok < (3-30) cm-110> in the 
range defined by ( 46) . 

In the case of insignificant saturation Eqs. (18) 
have the form 

iJy =A [x2 (1- cp2 )- y] T]o, 
dz 2, 

dx2 [ ( cp2 ) J dz = 2x2 y 1 - z - x2 'l']o. (47) 

If A » 1, y rapidly reaches the range of slow mo­
tions 

y=x~(1-cp2/2) (48) 

and remains there. Therefore 
(x0)2 

dx2/dz ~ - 2x4cp2, x2 ~ (49) 
1 + 2(x0)2cp2z 

Here, x 0 is the value of x for which the representa­
tive point falls within the range (x2 - y) ~ qJ2/2 
(see Fig. 2). According to (48) and (49), x andy 
tend towards a stable equilibrium condition y = x 
= 0, rather than towards the singular curve x 2 = y 

/ 
/ 

!/ 

FIG. 2. Phase plane in the 
case of incomplete synchroniza­
tion (explanation in text). 

10)Let us note that in the case of the parametric frequency 
division the requirements imposed on ok are more rigorous, 
since fmin depends on the population difference n which, owing 
to saturation, can be small near the boundary in the presence 
of a strong resonance field m,. Furthermore, dO[ dz[ z~ 0 - m,n[ z~ 0 

is in this case smaller, generally speaking, than in the case of 
frequency doubling. 

as in the case of ok = 0. The rate of this motion, 
according to ( 49), does not exceed 2x~qJ2 • 

In conclusion let us note the following. If we 
specify the ratio of the first and second harmonic 
fields at the boundary as yM0/m5 ~ 1 (M0 « m 0), 

then the resonance field of the frequency 2 w at 
ok = 0 propagates without absorption (neglecting 
linear attenuation), as follows from (22) and (23). 
For 0 < ok < fmin• Eqs. (47) are valid; it follows 
from ( 49) that the second harmonic field attenuates 
by less than a factor of two at a distance of 
z1 ~ 1/2({J2x5. For m 0 ~ 2 x 103 cgs esu, 
y ~ 104 cgs esu, and qJ ~ 0.1, we have z 1 ~ 20 em. 

The authors thank R. V. Khokhlov for his atten­
tion to this work. 
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