
SOVIET PHYSICS JETP VOLUME 24, NUMBER 5 MAY, 1967 

NEW METHOD OF SOLVING THE EQUATIONS OF CASCADE THEORY 

A. I. VASKIN, V. V. GUZHA VIN, and I. P. IVANENKO 

Institute of Nuclear Physics, Moscow State University 

Submitted to JETP editor May 20, 1966 

J. Exptl. Theoret. Phys. (U.S.S.R.) 51, 1483-1491 (November, 1966) 

A new method of solving the equations of electromagnetic cascade theory is described in de­
tail. The method is based on replacing the integral operator that describes bremsstrahlung 
of the electrons and pair production by photons with a simple approximate differential opera­
tor. Many results obtained by applying the method to the solution of equations of one-dimen­
sional cascade theory with and without allowance for ionization losses are presented. 

"t"'l T [ E' E' 2] dE' VVE describe a new method of solving the equa- W.(E,E')dE'= 1.36-1.36- E + (E) E' 
tions of electromagnetic cascade theory. The 
method, whose main outlines were formulated by = cp()(v)dv, v = E'/E, 

[ ( E 2 E ]dE 
W P ((E',E) dE = 1.36 E' ) - 1.36 E' + 1 E' 

= '¢o(u)du, u = E/E' 

us earlier in [1], is based on replacing the integral 
operator describing electron bremsstrahlung and 
pair-production by photons by a simple approxi­
mate differential operator. In many cases this 
substitution greatly simplified the integra-differ­
ential equations of the cascade theory, reducing 
them to linear differential equations. An analysis 
of the solutions of the approximate differential 
equations shows that in many important cases these 
solutions are more accurate than the non-approxi­
mate solutions of the initial exact equations_. By 
way of an example, we shall apply our method to 
the solution of the equations of one-dimensional 
cascade theory in approximations A and B[2J. We 
write the main equations in the form 

describes the probabilities of bremsstrahlung and 
pair production in the total-screening approxima­
'tion. We multiply (1) by exp(-A.t) and integrate with 

iJP(E t) r 
ot' = 2 J f(E',t)Wp(E',E)dE' 

E 

co 

+ ~ P(E',t)We(E',E'- E) dE' 
E 

E 

-P(E,t) ~ We(E,E')dE' + f3°p~~t); 
0 

ar<E t> r --T = J P(E', t) W.(E',E)dE' 
E 

E 

- f(E, t) ~ W p(E,E')dE'. (1) 
0 

Here P(E, t)dE and r(E, t)dE are respectively the 
number of shower electrons or photons with energy 
in the interval E, E +dE at a depth t, and {3 is the 
magnitude of the ionization losses in one cascade 
length unit. The functions 

,respec~ tot from zero to infinity. Eliminating from 
the obtained system of equations the function 
r(E, A.), we obtain in the case of a shower pro­
duced by a primary electron with energy E 0 the 
following equation for the Laplace transform 
P(E 0, E, A.): 

L[P(E0, E, A.)j- f3iJP(E0, E, 1.) /iJE = 6(Eo-E). (2) 

The integral operator L[P(E0, E, A.)] is of the form 
Eo 

L[P(E0,E,A.)) =- ~ P(E0,E',t..)[K(E,E' /..) 
E 

+ W.(E',E' -E)) dE' 

E 

+[ /.. + ~ We(E,E')dE'] P(Eo,E, "A), 
0 

(3) 

where 

E' 

K(E, E', /..) = 2~ We(E', e) Wp(e,E)de/ (/.. + u0), 

E 

U() = 0.773 .. 

The expression for L[P) can be simplified. To this 
end we multiply (3) by Es and integrate with res-
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pect to E from E 1 to E0. Replacing further E by E' 
and E1 by E, and changing the order of integration 
in some of the integrals, we obtain 

Eo Eo 

~ E'•L[P(E0,E','A)]dE'= ~P(E0,E','A)x(E.E','A,s)dE', 
E E 

where 
f 

x.(E,E','A,s)= -E'•'IJ('A,s)-E'• ~ 
1-E/E' 

(4) 

( 1 - t")" cpo ( v) dv 

E/E' 1 E/E'v 

where 

Eo 

Np'(Eo.E,s)= ~ P(E0,E','A;(s))dE'. (7) 
E 

In the first approximation we shall assume that 

q;(Eo,E,s) = q.;(s). (8) 

Then, differentiating ( 6) with respect to E and di­
viding the resultant expression by Es, we obtain 

.+E'•[- B(s) ~ v•cp0 (v)dv-2E1tv•cp0 (v)dv ~ U 8'1Jo(u)du] L[P(Eo,E,'A;(s))]= -q;(s)dNpi(:;E,s) 

-1 
X('A + O'o) . (5) 

Here 

'IJ('A,s) ='A+A(s) -B(s)C(s)IP-+cro); 

A(s), B(s), and C(s) are known functions of the cas­
cade theory[2•3]. After calculating the integrals 
in ( 5) we can represent the function x(E, E', A., s) 
in the form 

x(E, E', /.., s) = -E•{'IJ(/.., s) I x• + f(x, 'A, s)}, 

where x = E/E', and the function f(x, A., s) varies 
slowly with variation of x for specified A. and s. If 
we take for the probabilities of the bremsstrahlung 
and pair production the simplified Bethe-Heitler 
cross sections for the case of total screening[2], 

then 

f(x, A, s) = B(s)C(s) (xs- s- 1) I ('A+ ·cro) 

-x 2Ft(1, s + 1; s + 2; x) I (s + 1), 

where 2F 1(1, s + 1; s + 2; x) is a hypogeometric 
function. In order for x(E, E', A., s)/Es likewise to 
vary little with change of x, it is necessary to put 
1/J(A., s) = 0. From this condition it follows that A. 
and s should be connected by the relations A. = A. 1(s) 
or A. = A. 2(s), where A. 1 and A. 2 are the roots of the 
equation 1/J(A., s) = 0. Putting A. = A. 1(s) or A. = A. 2(s), 
we obtain 

x(E,E',}.,,s) = -E•f;(x,s), 

where the indices i = 1 and i = 2 correspond to the 
values A. = A. 1(s) or A. = A. 2(s). Substituting the ob­
tained expressions x(E, E', s) in (4), we have 

Eo 

~ E'•L[P(E0, E', 'A; (s))] dE'= E•qi(Eo, E, s)Npi (Eo, E, s), 
E 

( 6) 

- sq;(s) N i(E E ·) R P o, ~, s . ( 9) 

Substituting (9) in (2) and introducing new variables 
Ei = Eq/f:i and Eoi = E 0q/f:i. we obtain a second­
order linear differential equation with respect to 
the function N~(E 0 , E, s): 

d2N pi (eo, e, s) dNpi ( e0, e, s) 
e de~ - c de 

. 6(eo-e) 
- sNp1 (e0, e, s) = e . 

q; (s) 
( 10) 

Equation (10) replaces Eq. (2) with good accuracy. 
Thus we obtain in place of the integra-differential 
equation (2) a second-order linear differential 
equation (10). This equation is obtained from (2) 
by making the sole assumption (8), the validity of 
which can be readily verified. 

If the ionization losses are disregarded, then 
Eq. (10) with {3 = 0 can be rewritten in the form 

dNpi(E0,E,s) s . 6(E0 -E) 
--d-E~ +E Np 1 (E0,E,s)= -----'--

q;(s) 
( 10') 

Its solution is 

N i(E E ). _ { (Eo/E)s/q;(s) E <Eo 
p o, , s -

0 E ~Eo. 
(11) 

Substituting (11) in (7) and carrying out the neces­
sary integrations, we obtain for the function 
qi(E 0, E, s) the following expression: 

1 

q;(Eo,E,s)= -(E/Eo) 8 /;(E/Eo,s)-sS j;(.r,s)xs-tdx. 
E/Eo 

(7') 

Figure 1 shows the function q 1(E 0, E, s), while 
Fig. 2 shows the function q2(E 0, E, s) for different 
values of E/E 0 and s. We see from the figures that, 
accurate to several per cent, these functions are 
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FIG. 1. Dependence of the function q,(E 0 , E, s) on E for 
different values of s without account of ionization losses. 

constant in a wide range of s when 0 :s: E/E0 :s: 0. 5. 
The relative error of the functions Ni (E 0, E, s), 
due to replacing qi(E 0, E, s) by qi(s) ,Pcan be readily 
estimated with the aid of the following formula: 

I'1Npi q;(E0,E,s)- q;(s) 
--=-- -----Ni p qi(Eo,E,s) 

(12) 

If the error in the function N~ calculated in the 
zeroth approximation for qi = qi(s) turns out to be 
too large, a method of successive-approximations 
in terms of qi can be developed. Substituting the 
first-approximation expression for qi(E 0, E, s) in 
the right side of ( 6), differentiating ( 6) with respect 
to E, and dividing by Es, we obtain the first-ap­
proximation expression for the operator L[P), etc. 
It can be shown that the expression for Np in the 
n-th approximation is given by formula (11) in 
which qi(s) is replaced by the n-th approximation 
q~(E 0 , E, s). The relative error of the function Np 

l 
in the n-th approximation is determined here by a 
formula similar to (12). 

FIG. 2. Dependence of the function q,(E0 , E, s) on E for 
different values of s without account of the ionization 
losses. 

Confining ourselves to the zeroth approximation 
q = qi (s), we determine the function Np(E 0, E, A.) in 
the form 

2 

Np(Eo,E,'A)= ~ (Eo/E)•/qi(s), (13) 
i=1 

where s is determined from the relations A. = A.i(s). 
It can be shown that the functions qi(s) have an 
analytic representation 

q;(s) = -s'A/(s) / H;(s), ( 7") 

where A.i(s) and Hi(s) are known cascade' func-
tions [2 J. To obtain N (E 0, E, t) it is necessary to 
take the inverse Lapface transform. In the calcu­
lation of the inversion integral we go from integra­
tion with respect to A. to integration with respect to 
s in accordance with the formula A. = A.i(s). As a 
result we obtain 

, 1 O+ioo 2 1 Eo s 

Np(Eo,E,t)=~ -----; ~ ~ --(- )el.;(s)td'A;(s). 
2m 6-ioo i=1 q;(s) E 

Taking into account formula (7"), we rewrite the 
expression for Np(E 0, E, t) in the form 

1 O+ioo H() E s 

Np(E0,E,t)=-~ \ [-1 -8 (~)el.1(s)t 
2m v s E 

6-ioo 

( 14) 

The expression (14) coincides exactly with formula 
(6.4) ofl2J and formula (2.50) ofl3J, which are the 
exact solutions of the equations in the region 
E « E 0. Using (12) and (7'), we can show that the 
expression (14) represents the solution of the ini­
tial equations in the region E < 0.3E 0 with accuracy 
not worse than 5%. The expressions for NP(E 0, E, t) 
in the first, second, and succeeding approximations 
represent more accurately the solution in the reg­
ion 0.3E0 :s: E :s: E 0. 

From the presented method of obtaining the 
operator L[P(E 0, E, s)] it follows that its expres­
sion in (2) does not depend on the form of the boun­
dary conditions or on the form of the source func­
tions in (1). The boundary conditions and the 
source functions determine the form of the right 
side of (2) and (10) or (10'). The solution of (10) 
or ( 1 0') with the right side specified in the form 
cp(E, s) can be represented in the form 

Eo 

{Np(Eo,E,s)}<P(E,sl= ~ {Np(E0,E',s)}Prp(E',s)dE', (15) 
E 

where {Np(E 0, E, s)}P is the solution of the same 
equations with boundary conditions corresponding 
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to one primary electron with energy E 0 at t = 0. 
The integral in (14) can be calculated numerically 
with electronic computers[4] or approximately by 
the saddle-point methodl2 l. In Fig. 3 we show the 
function { Np(E 0, E, t)} r in approximation A, cal­
culated in a shower from a primary photon for 
several values oft and E/E 0 with a computer 
(solid line) and by the saddle-point method (dashed 
lines). We see from the figure that when t > 0. 01 
and E/E 0 ~ 0.3 the function N(E 0, E, t) can be cal­
culated by the saddle-point method with an error 
:s 10%. 

We consider now the solution of (10) with allow­
ance for the ionization losses. Eq. (10) with zero 
right-hand side is the Kummer differential equa­
tion for the confluent hypergeometric function 
(seel 5l). Equation (10) itself and its solution for 
s = 1 coincide exactly with the well known equation 
and solution for the "equilibrium" Tamm-Belen'kil 
spectrum l2]. For arbitrary values of the parame­
ter s we can also write an analytic solution which 
is conveniently expressed in terms of two linearly 
independent particular solutions M_s, u 2( E) and 
W -s, 1; 2(E) of the Whittaker equationr5J in the form 

. l'(s+ 1) 
Np'(eo, e, s) = ----eeoe-eo 

q; ( s) 

X [F2 (s + 1, 2, e)F1 (s + 1, 2, eo) 
- Fi(s + 1, 2, e)F2(s + 1, 2, e0)]; (16) 

here F1 (s + 1, 2, e) = e•f2M-s, '/,(e) I e, 

Fz(s + 1, 2, e) = e•I2W-s, w(e) I e. 

The explicit expressions for the Whittaker func­
tions M-s, 1; 2(E) and W -s, 1t 2(E) ar~ given inr 5J. 
Formula (16) defines the function N~(E0 , E, s) in a 
wide range of variation of E 0 and E and in the 
vicinity of Res ;r-1, -2, -3, ... 

At certain extremal values of the arguments we 
can obtain sufficiently simple asymptotic expres­
sions for the function N~( E0, E, s). Thus, for exam-

ple, we can show that when Eo » 1 and E « 1 we get 

Ht(s) ( E 0 )s Np(eo, e, s) =---- D(s) - G(s, e) 
sA.{(s) ~ 

[ (1-s)s l 
X 1-----+ ... 

eo _; 

-e, . [ 1 + S l' -e G(s,e0 )e 1+-2-e+ ... ~f· ( 17) 

where the functions D(s) and G(s, E) are defined in 
accord withr2J; when Eo» 1 and E ~Eo we have 

2 

0 

FIG. 3. Dependence of the total number of electrons 
lNp(E 0 , E, t)jf' on the energy E in a shower from a primary 
photon with energy E 0 at different depths t. The solid lines 
are the results of calculations [4 ] with an electronic com­
puter; dashed lines-results of calculations by the saddle­
point method. 

1\T ( )- 1 ·{(eo)•[1 s(s+1) s(1-s) J p eo, e, s - -- - - _ + 
q1 (s) e e e0 .. · 

- (e\ 8 r1 (1-s)s s(s+1) ]} - ee Eo _) - _ + , 
,e L e e ··· ' 

( 18) 

1 ( 6s2) P(eo.e,s)=-~ 1-~, Eo~1 ( 19) 

and when Eo~ 1 and E « 1 

Np (eo, e, s) = q1~0s-) e-•·{ G(s, e)F1 (s + 1, 2, e0 ) 

- :
0 

( 1-1- s: 1 e -1- ... )c(s, e0 ) }. (20) 

The limitations on the region of variation of the 
variables E 0 and E are imposed by the following: 
a) physical consideration, which allow us to neglect 
the scattering of particles and the dependence of 
the photon absorption coefficient on the photon 
energy; b) the assumptions made in the derivation 
of the approximate expression (9) for 
L[P(E 0, E, A.i(s))]. As in the approximation A, we 
have made a single assumption in the derivation of 
(9)-we have assumed that q(E 0, E, s) does not de­
pend on the energy E. The basis for such an as­
sumption is the fact that the function fi(x, s), de­
fined above, changes little in practically the entire 
interval of variation of x from zero to one. In that 
energy region where the approximation A is valid, 
we have N~(E 0 , E, s) ~ (E 0/E)s and consequently 
relation qi(E 0, E, s) = qi(s) is satisfied. 

To check on the validity of (8) in approximation 
B, let us calculate qi(E 0, E,_ s) in accord with (7), 
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r---------------------~q~1 (~so_.s_,s_=_o._or~~!_w ________ ~ 

FIG. 4. Dependence of the function q 1( E 0 , E, s), 
calculated with account of the ionization losses, on the 
energy E for different values of s. The values of 
q,( E0 , E, s) for the parameter s = 0.01 are decreased by a 
factor 10. 

-"~?------~--------~J--------~------~2~------~j~ 
loge 

using expression (16) for N~(E 0 , E, s). The results 

of the calculation of q1(E 0, E, s) for 0 « E < E 0 and 
0 < s :::::2 are shown in Fig. 4. It is seen from the 
figure that when E changes in the region 0 :S. E 
:S 0. 5E 0, the function remains constant accurate to 
several per cent. The number of particles with 
energy higher than E is given by expression ( 16) in 
the form 

Since the function q changes somewhat with energy, 
it would be more accurate to put 

JVpi(eo, e, s) = Eop-1<ppi(eo', e', s), 

where E' = q(E 0, E, s)E/{3. Since q(E 0, E, s) differs 
little from q(s), the error arising when (16) is used 
has in first approximation the form 

h.N ·;N. ocppi(eo,e,s) I . 
p' p' = e oe h.q q>p'(eo, e, s)q, (21) 

where b.q = q(E 0, E, s)- q(s). 
The results of the calculations of b. Nb!Nb by 

means of formula (21) are given in the table. It is 
seen from it that when 0 :S s :S 2 and in the region 
0 ;S E :S. 0.5E 0 formula (16) represents the solution 
of (2) with an error not larger than 20%. The next 
higher approximation for Ni ( E 0, E, s) can be ob­
tained, just as in approximftion A, by substituting 
in (6) q = qi(E 0, E, s) etc. Other cascade functions 
of the arguments E 0, E, s and also cascade func­
tions of other boundary conditions can be easily 
expressed in terms of the integrals of ( 16). For 
example, in a shower due to a primary electron 
with energy E 0 we have 

{P(Eo,E, s)}P =- {Np(e~ e, s~-- f(s: 1) eoee-•• 

[ rJFz(s + 1, 2, e) 
X oe Ft(s+1,2,e0) 

8F1(s + 1, 2, e) J 
- iJe F2(s + 1, 2, eo) . (22) 

Here 

&Ft(s+1,2,e) s+1 
---··-~-=--F1(s+2 3 e) 

&e 2 ' ' ·' 

s+1 
=-----

2 

X [-F2(s + 1, 2, e)+ sF2 (s + 2, 2, e)]. 

When using the simplified expression for the cross 
section of the electron bremsstrahlung process in 
the form We(E', E) dE' =dE' /E, we obtain simple 
formulas for the photons: 

f(E Es)= 1N(Eo,E,e) 
o, ' E A.1(s)+ cro' 

f(s+ 1)eoe-e. [ 
Nr(Eo,E,s)= --- ··-- F1(s 

q1 (s)[A.1 (s) + cro] 

.. 
+ 1, 2, eo)~ F2(s + 1, 2, e')de' 

(23) 

(24) 

To obtain the function Np(E 0, E, t) and also other 
functions of t with allowance for the ionization 
losses, it is necessary to take the inverse Laplace 
transform either approximately, analytically, or by 
numerical methods. Results of calculations of 

Values of lb. Nb!Nbl in per cent for E 0 = 103 

and different E and s. 

• 
• l1o-• 110-• I I I 10· 1 5-10' I 10-3 1 10 9·10' 

2.0 1 2 6 3 11 4 22 7 
1.0 0.1 0.3 0.5 1 9 6 10 21 
0.01 0,01 0,01 0.01 0.01 0.01 0.02 0.02 -
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FIG. 5. Dependence of the function {Np( E0 , E, t)IP on the 
depth t in a shower from a primary electron with energy 
E0 = 10. 

Np( E0, E, t) for several values of the arguments 
E0, E, and tare shown in Fig. 5. 

Thus, even in first approximation the proposed 
method of solution makes it possible to obtain, 
with acceptable accuracy, the Laplace transforms 
of the cascade functions of the arguments E 0, E, 
and s in the region 0 < s ~ 2 and in a wide range of 
values of E0 and E. If the inversion integral is cal­
culated with sufficient accuracy, we obtain cascade 
functions for arbitrary values of the arguments 
E0, E, and t. The limitations imposed on the region 
of variation of the arguments are determined by 
purely physical limitations of the region of appli-

cability of approximations A and B of the cascade 
theory. 

In conclusion we note that the use of the approxi­
mate expression L(P] of the type (9) greatly sim­
plifies the solution of many problems in the cas­
cade theory: the construction of a theory with ac­
count of the dependence of the absorption coefficient 
of the photons on the energy, the solution of angular 
problems, and the solution of problems on the dis­
tribution of the particles in space. 
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