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The broadening of excited atomic levels in a gas owing to electron scattering by neighboring 
atoms is considered. The density of highly excited levels is determined. It is shown that no 
bound electron states exist at energies IE I~ E0 , where Eo is a characteristic parameter of 
the problem [see formula (34)]. The change of the level density of the free electrons is deter
mined in the region E ;::, E0• It is shown that for small values of Eo the contribution of the ex
cited states to the partition function should be taken into account, while at large values of Eo 

the change of the level density of the free electrons becomes important. 

BEGINNING with a paper by Fermi, E 11 a rather 
large number of articles have appeared in which 
the shift and the broadening of highly excited levels 
of the atoms of a gas have been investigated. Fir
sov E 2' 3 J studied in detail the shift of highly excited 
levels owing to the scattering of the excited elec
trons on neighboring atoms of the gas and to the 
polarization of these atoms by the electron and the 
remainder of the atom. He considered the case 
where one can restrict oneself to s scattering. 
The same problem was treated in E 4J with account 
of the scattering contribution of all partial waves. 
The calculation was based on the assumption 'Yn 
« I En - En+ 1 1, where 'Yn is the width and En is 
the energy of the n-th level; in the derivation of the 
formulas for the level width the degeneracy of the 
levels was in fact neglected [cf., for example, for
mula (2) in [ 4J]. 

If y n ~ I En - En+ 1l, the spectroscopic analy
sis of such levels becomes impossible since the 
spectrum does not by itself imply that we are deal
ing with free electrons. As will be seen in the fol
lowing, the electron becomes free (by this we mean 
its ability to move over the whole volume) for 
y n ~ I En 1. Thus there exists a range of frequen
cies where the radiation spectrum is continuous 
but the radiation itself is caused by transitions of 
electrons between bound states. The spectral den
sity of such excited atomic states is clearly of in
terest since it determines the contribution of these 
states to the partition function of the gas and 
hence, to the thermodynamic properties of the gas. 

In our view, the most natural approach is to 
consider this problem by calculating the Green's 
function of the excited electron moving in the field 

of the ion and the neutral atoms of the gas. The 

temperature is assumed to be sufficiently low that 
one may assume that the gas atoms near an atom 
in an excited state are only in the ground state, i.e., 
the concentration of excited atoms is very low. In 
order to exclude resonant energy transfer from 
atom to atom, we shall assume that the excited at
oms are different from the scattering atoms. This 
model can be applied with good accuracy to a gas 
with an admixture of alkali atoms. The concentra
tion of the admixture must be sufficiently low so 
that we can neglect the resonant transfer of the ex
citation [a quantitative criterion is given below, 
see formula (47)]. The atomic scatterers are as
sumed at rest; we average over all possible con
figurations of the scatterers. E 1 J The assumption 
that the scatterers are immovable is justified as 
long as one can neglect the energy transfer be
tween the atom and the excited electron. An excited 
electron (which is hence weakly bound to the ion) 
receives as a result of the collision with an atom 
an average energy transfer .6-E ~ kTm/M, where m 
and M are the masses of the electron and the 
atom, and T is the temperature. This energy 
transfer must be taken into account only if 

,!lEn = En+! -En ~ kTm / M. (1) 

The highly excited levels of any atom are hydro
gen-like, and we therefore obtain from (1) that the 
heat motion of the atoms can be neglected for all 
levels with 

(la) 

Thus the problem consists in finding the Green's 
function of an electron moving in the field of the 
remainder of the atom and of the atomic scatter-
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ers which are randomly distributed in space. Then 
the equation for the Green's function is 

[ in !t + ~ L\- V (r)- f U (r- R1) =F ie J 
x•G±(r, r'; t-t') =2nn6(r-r')6(t-t'). (2) 

Here G± are the retarded ( +) and advanced (-) 
Green's functions of the electron, V(r) is the po
tential energy of the interaction between the elec
tron and the ion, and U(r- Ri) is the potential en
ergy of the electron in the field of an atomic scat
terer located at the point Ri (the origin of the co
ordinate system is taken at the nucleus of the ion). 
Let us introduce the Fourier transform of the 
Green's function: 

G ' 1 ';' ±(r, r; E)=--\ e1E~I11G (r r'· T)dt: 
2nn .l ± ' • • 

-oo 

(3) 

and expand G±(r, r'; E) in a complete orthonormal 
set of hydrogen-like functions 1/J 11(r), ~~~,(r'): 

G±(r,r';E)= ~;G±(v,v';E)¢v(r)1jlv.*(r'); (4) 
'Y,V' 

v, v' are the quantum numbers (nlm) in the case 
of a discrete spectrum or a complete set of quan
tum numbers in the case of a continuous spectrum. 
Then we obtain from (2) the following equation for 
G±(ll, v'; E): 

{E- Ev + ie} G±(v, v'; E) 

-~ <v!U(r) lv")G±(v",v';E)= c'>vv•. (5) 

Here 

~ -- N 'i. U(r)= ""-~ U(r -R;)-U, U =- J U(r- Ri)dV, . v 
' (6) 

where U is the average interaction energy be
tween the electrons and the atoms, and E 11 is the 
eigenvalue of the electron energy in the Coulomb 
field but with an energy scale shifted by U. The 
density matrix is expressed through the Green's 
function by: [ 5J 

p(r,r';E) = (2ni)-1[G+(r,r';E) -G-(r,r';E)J, (7) 

and the level density by 

N(E) = 2 S p (r, r; E)dr. (8) 

The factor 2 in front of the integral in (8) comes 
from the spin of the electron. 

We shall solve (5) by iteration taking into ac
count that we must average over all possible posi-

tions of the atomic scatterers. The method for ob
taining from (5) a closed equation for the average 
Green's function G,. is analogous to that used 
in [ 6• TJ. The zeroth iteration for G,. (v, v'; E) of 
(5) [without account of U(r)] gives 

1 
G+0 (v, v'; E)= c'>vv•. (9) 

E-Ev.-ie, 

It is convenient to apply the graph technique for 
the solution of (5). Let us symbolize G~(v, v'; E) 
by a thin line and (vi U(r- Ri) lv') by a cross x. 
Drawing a heavy line for G,.(v, v'; E), we then ob
tain the graphical equation 

= --+---
j 

+ -~---- + -x-~- +·· i i i H 

(10) 

When we average over all possible positions of 
each atom and sum over all indices i, k, ... (each 
of these takes the values from 1 to N, where N is 
the total number of gas atoms in the volume V), 
then, because of (6), all graphs drop out which con
tain any index only once. Joining the crosses with 
identical indices (over which the average and sum 
is taken) by dotted lines, we obtain 

,,- .... , ---= ---+->t--"-i i 

(11) 

G,.(v, v'; E) thus retains the same graphical form 
as G+ (v, v'; E). 

Let us consider the graph 

,.--..... 
" , ~· ' v" 16 l.: 

which is equal to 

~ ~ S dRi ~ dr¢v" (r) U(r- Ri) 
v' 

(12) 

The wave functions 1/J 11(r) are evidently quasiclas
sical, where the deBroglie wave length is 

A.~a, 
(13) 

with a the scattering length for electron-atom 
scattering. Then (13) is violated only near the ion, 
but this region makes a small contribution to (12). 
It follows from (12) and (13) that 
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It is easy to see that (14) has a sharp maximum for 
v = v" [for free particles, the expression (14) 
~ <'>vv"[ 7J ]. We may assume with good accuracy 
that 

(14a) 

Let us now show that the graphs with non
intersecting dotted lines are larger than graphs 
with intersecting dotted lines. To this end let us 
compare, for example, the two graphs 

,,--, ,--..... 

'/ I V 1 ' V / V11 ' V a) -x--~~--~ 
l l H I! 

In graph a) the sum goes over v' and v", where
as in graph b) we must have either v' = v", v"' = v 
or v' = v, v" = v'", i.e., we have one summation 
less. In the continuous electron spectrum b) is 
smaller than a) in the ratio :;::; E - 1 Im G-1 . [ 7 J Since 
the wave functions of the excited states in the re
gion where most of the electron-atom collisions 
occur differ little from the wave functions of free 
electrons, this criterion should hardly change. 

Indeed, by direct calculation of a) and b) with 
the help of quasiclassical wave functions we ob
tain for b) the condition 

Pnl- Pn'l' + Pn"l"- Pn"'l"' ~ 0, (15) 

where Pn z is the radial momentum of the electron 
in a state with principal quantum number n and 
angular momentum l. All principal quantum num
bers n, n', n", n"' must be assumed to be about 
equal, so that the corresponding En, En', etc., 
differ by no more than Im G-1• Otherwise the en
ergy denominators in b) and in a) are very large 
and the contributions of such states is small. It 
then follows from (15) that l, l', l", and l"' are 
subject to the two conditions 

[2 + ["2 =· [12 + l"'2, [2["2 ( 16) = ['2[11'2, 

i.e., the summation goes practically only over one 
of the three numbers l', l", l"', for example, l', 
whereas in case a) the summation goes over l' 
and l". However, condition (16) fixes l" (for arbi
trary l') since n', n", n"' are fixed, i.e., D.l" 

:;::; ~n". But since n" ~ IE l-112 we have ~l" 
~ IE l-312 Im G- 1• In case a) the total number of 
possible l II is :;::; n" ~ IE r1 12• This implies 

(17) 

i.e., the same criterion as in the case of the con
tinuous spectrum. As long as E-1 Im G - 1 « 1, we 
can therefore neglect in (11) all graphs of type b) 
with intersecting dotted lines; this involves an er
ror of :;::; E - 1 1m G-1. For an isolated level Im G-1 

determines the width of the level. One may say 
that our approximation-including only graphs with 
non-intersecting dotted lines-is valid so long as 
the level width is smaller than the energy of the 
level itself. 

Neglecting the correlation between the positions 
of the different atoms, we can average (11) inde
pendently over the position of each atom. Using 
(14a) we thus transform (11) into the integral equa
tion 

+ (18) 

or 

+ G+0 (v; E) ~ I \vI U (r- R;) lv') I 2G+(v'; E) G+(v; E). 
v', i 

(18') 
Equation (18) has been obtained under the assump-
tion that each scatterer enters only twice in (11). 
In this case the square of the matrix element 
I ( jJ I U(r- Ri) I v') 12 = u~v'(Ri) appearing in (18') 
is expressed through the Born scattering ampli
tude. It can be shown that the Born amplitude in 
(18) must be replaced by the full scattering ampli
tude if all terms of the perturbation series for one 
and the same scatterer are taken into account [as 
before, we discard graphs of type b)]. [ 6 J 

Equation (18) can be rewritten in the form 
G+0 (v; E) 

(19) 

v'. i 

Let us introduce 

(20) 
v', i 

Then G+(v; E) is expressed through C+(v; E): 

- 1 
G+(v· E)= -:::-------

' E-Ev-ie-C+(v;E) · (21) 

Thus Im C+ (v; E) = lm G-1(v; E). Substituting (21) 
in (20), we obtain an integral equation for C+(v; E), 
whose solution will now be obtained: 

C+(v;E)= ~Uvv,2(R;) 1 
v', i E-Ev•- ie- C+(v'; E) · (22) 
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Let us consider ~ U ~vr(Ri) in various regions 
1 

of the energy spectrum. 
Let us assume that v' and v belong to the con

tinuous spectrum, where we choose as basis func
tions the functions ~· k (r), [ 8 1 normalized to unity 
in the volume V: 

~ Uvv,2(R;)= ~) dR;jUkk•(R;) 12, (23) 
i 

here N is the total number of atomic scatterers. 
Since the probability that the atomic scatterer lies 

+ 
in a region close to the ion, i.e., where <Pk is ap-
preciably different from a plane wave, is very 
small, we may assume that the wave functions with 
which the matrix element in (23) is calculated are 
plane waves normalized to unity in the volume V. 
Replacing the matrix element by the scattering 
amplitude fkk', we obtain 

~ 1 ( 2n/i2)2 
LJ !Ukk•(R;) 12 =no- -- /kk·2 

; V m ' 
(24) 

where no is the density of the gas. 
For transitions between the discrete and con

tinuous spectra we use the expansion 

'ljln!m(r) = S d3k'<D(nlmlk')eik'r, (25) 

and ¢k_(r) of the continuou~ spectrum is replaced 
by the plane wave v-1 /Z e1r · k. Here we incur a 
much larger error than in the derivation of (24), 
since in this case the average is taken over the 
volume of the excited atom, where 1/Jk(r) can differ 
appreciably from a plane wave. However, the ex
act value of 1Unzm,k(Ri)l 2 will not be needed in 
the following, so that it is sufficient to have an es
timate for it. Using (25), we obtain 

U nlm, k (Ri) = ;V ~ d3k' 

X~ dra>• (nlm I k')e-ik'•U(r- R;)aikr 

= :v ~ d3k'(!)• (nlm I k') e-ik'R; ~ aapu (p) ei(k-k')Pe•kR;, 

(26) 

If we assume that the s scattering plays the main 
role (this is generally the case for highly excited 
levels, since k and k' have a small absolute 
value) then 

------ 1 ( 2nli2 \ 2 

~I Un~m. k(R;) 12 ~noV ----;;;----}f. (27) 
i 

Comparing (27) and (24), we see that the aver
aged square of the matrix element is about the 
same for the continuum-continuum and the 
continuum -discrete transitions. 

For the calculation of a discrete-discrete tran
sition we use the expansion (25): 

u~;;;,m· (R;) = ~ ~ d3kd3k'(f). (nlm I k) e-ikR; 

X <D (n' l'm' 1 k') eik'R; ~ aapei(k'-klPU (p). (28) 

Let us replace the matrix element Ukk' in (28) by 
the scattering amplitude. We assume that the main 
contribution comes from s scattering. This does 
not impair the generality of our subsequent con
siderations but simplifies the numerical calcula
tions and permits us to solve (22) in analytic form, 
With the assumption of s scattering we obtain 

~ n'l'm' ( 2n/i2 )2 
~ I U nlm (R;) 12 = no ----;;;- f2 

(29) 

The integral in (29) can be found in analytic form 
using the fact that the wave functions of highly ex
cited states are quasiclassical: 

n'l'm' s· 
lnlm == drl'ljln!m(r) l 2 l'ljln•!•m•(r) 12 

( li2 r 1 ll' 1 1 
= me2 · ~ n2n'2 ao + bo "f-;=(=a==c )=(::::;:b==:d::-) 

X K ( 2"f;;Ji;)K((b-c)(a-d) )'/,' 
\ ao + bo ! 1 (a - c) ( b - d) (30) 

where 

b =min { n2 (1 + l'1-l2jn2) 
a = max n'2 ( 1 + "f1 - l'2/n'2) 

d =min { n2(1- "f1-l2fn2) 
c =max n'2(1- "f1-l'2/n'2-). 

The quantity K is the complete elliptic integral of 
the first kind; it diverges logarithmically for 
n = n', l = l'. However, since we sum over n' and 
l' in (22) (this summation will be replaced by an 
integration), this divergence does not affect the 
result. 

Let us rewrite (22), separating the continuous 
and discrete spectra, and let us go from the sum
mation over k to an integral over dk according to 
the rule 

Taking account of (24), (26), (29), and (30) and as
suming s scattering, we obtain 
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C(k· E)= no ( 2nfl2 )2f2_1_ 
' m (2n) 3 

\ d3k' 1 
X J E- nzk'2/2m- ie- C(k'; E) 

1 ( 2nfl2 )2 . 1 + no- ·-- j2 ~ -------=--=----:::--
V m E-En-ie-C(nlm;E) 

nlm 

(31a) 
( 2:n:fl2 \2 1 

C(nlm; E)= n0 --I f2--
\ m ! (2n)3 

X\ d3k 1 
J E- fl2k2/2m- ie- C(k; E) 

( 2rcn2 ) 2 •z• • 1 
+no ---,;;:-- f2 ~ I;:zm m E- En'- ie- C(n'l'm'· E)" 

n7m' ' 

(31b) 

The second term in (31a) is smaller than the 
first in the ratio V nzm/V, where V nlm is the 
volume of the excited atom; it can therefore be 
neglected. This is easy to understand: transitions 
between levels of the continuous spectrum due to 
scattering occur over the whole volume of the sys
tem, whereas transitions between the continuous 
and discrete spectra occur only within the volume 
of the excited atom. Then we obtain from (31a) an 
equation for Im C(k; E) = b(k; E): 

ft4 \ b (k'; E) 
b (k; E) = n0a -- .) d3k' --,--;::------,--,-,...,.--,---::--::-:-:::--'-

8:rr2m2 (E-n2k'2/2m)2+b2(k';E)' 

(32) 

where u = 47rf 2 is the cross section for the elec
tron-atom scattering and E =E-Re C(k'; E). The 
right-hand side of (32) is independent of k. Hence 
b(k; E) = b(E). This equality is a consequence of 
the independence of u of k. 

For b(E) we obtain from (32) the algebraic 
equation 

"" 
1 = l'~ (' )'xdx 

; (E- x)2 .+ b2 (E) 
(33) 

Here 

1 h2 

eo= (Z:n:) 2 (ano)2-;;, (34) 

Re C(k; E) is independent of k, just as b(k; E) is. 
Using b(E)/E « 1 we can extend the integration in 
(33) to -oo, Then (33) leads to 

b(E) = Jte0'h(E + n2e0 / 4)'''· 

Since we have considered the case b(E) /E « 1, 
(35) implies E » E0, i.e., 

b (E) ~ :n:)'Ee0• 

(35) 

(36) 

In (36) we have replaced E by E, because 
Re C (k; E) is in general of the same order as_ b( E), 
and taking account of the difference between E 
and E is equivalent to including higher powers of 
Eo than was done in (36). 

Let us now consider the solution of (31b). For 
E < 0 and IE I »Eo we can neglect the first term 
on the right-hand side of (31b), since it gives a 
relative contribution ~E0 /E to the imaginary part. 
Thus the quantity Im G-1 is independent of the 
character of the positive energy spectrum, if -E 
» E0• From (31b) we obtain 

( 2nfl2 )2 
C(nlm; E)= no -- f 

' m 

~ n•l'm' 1 
X~ lnzm E- E •- C(n'l'm'· E) ' 

n'l'm' n ' 

(37) 

where the expression (30) must be substituted for 
n'l'm' 

1nzm 
Let us first consider the case of overlapping 

levels Eo »~En, n + 1• In this energy region it is 
only meaningful to calculate the level density, us
ing (8). Since we will sum over l in the following, 
we introduce 

i n-1 I 

C(n; E)=-~ ~ C(nlm; E). (38) n2 
1=0 m=-l 

After replacing C(n'l'm'; E) by C(n'; E) and the 
sum over n' by an integration over the energy, 
Eq. (37) becomes up to a factor of order unity, 

-f1 1 rx') 
C(x; E) = l'eox.) y - dx'. 

0 Yx' x' + E- C(x'; E) x 

(39) 
Here x = I En I, x' = I En' I, and the function y(x' /x) 
is shown in Fig. 1. The asymptotic values of y(z) 
are 

{ 3.7zq,, 
y(z)= 0.3z-'" 

z---+0 
(40) 

z---+ 00 

The replacement of C (n lm; E) by C (n; E) does not 
'l' ' 'l'm' introduce a large error since I~z 11~\ ~ I~z 2m2 up 

to factor of order unity, i.e., the right- hand side 
of (37) is almost independent of l and m (for 
given n). The integral in (39) converges rapidly 
at the upper limit; therefore, we do not incur a 
large error if we replace the sum over n' for 
small n' by an integration over x' for large x' 

= I En' I· 
In solving (39) as before, we assume 

IC(x; E)/EI « 1, which corresponds to IEo/EI « 1. 
Let us introduce 
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y(z} 

z 
FIG. 1 

b(x';E) == ImC(x';E). (41) 

Up to terms ~E0 /I E I « 1, we may set b(x'; E) 
constant in the interval (x', x' ± I C (x'; E) I), i.e., 

db(x';E) Bo 

dx' b ~ "JEI~1. (42) 

Using (42) and the fact that the region x' J":j IE I 
makes the most important contribution to the inte
gral in (39), we obtain 

( Bo )''• ( E ) b(En; E)= 1t fEI IEniY En . (43) 

It is seen from (43) and Fig. 1 that for a given 
energy E, the imaginary part of the Green's func
tion is nonvanishing for all n such that 

1/2~En IE~ 2. (44) 

Recalling the definition of b(En; E), we find 

1 
G± (nlm; E)= E- En =F ib (En; E) 

(45) 

The level density calculated by (7), (8), and (45) is 
equal to 

N(E} = m'loeSh-31Ei''· (46} 

Formula (46) holds for energies at which reso
nant transfer of the excitation from one alkali atom 
to another is not yet important. Taking for the 
average radius of the orbit of the excited electron 
r J":j e2/ I En I. we find that (46) is valid if 

(47) 

where Po is the density of the alkali atoms. 
The calculation of the number of levels enclosed 

in the unit energy interval with the help of (46) 
leads to the same result as the calculation by the 
formula N(n) = 2n2, where n2 is the principal 
quantum number of the level. 

Formula (46) has been derived under the as
sumption -E » E0 • In the region of negative ener
gies with - E :;:. Eo, Eq. (31b) does not reduce to 
(37). We see from (31a) and (3lb) and from I C I 
~ Eo, that at these energies the contribution of the 

unbound states of the electron must also be in
cluded. Then the level density in this energy re
gion IE I :::. Eo is proportional to the volume, i.e., 
at these energies the electron should be regarded 
as unbound. The electron is in a bound state only 
for negative energies - E » E 0 • Indeed, the proba
bility density for the presence of an electron with 
energy E at the point r 0 , 

p (ro, r0; E)= ~ [G+(v, v'; E)- G-(v, v'; E)]'l!lv(ro)'l!lv," (ro} 
v,v' 

decreases exponentially with increasing r 0: 

p(ro, ro; E) --'exp {-c"fm"VEr0 /n}, 

(48) 

where c is a number of order unity, since the 
summation over v, v' for -E »Eo is restricted 
by an inequality of the type (44). For E > -E0 the 
electron can be regarded as free, since the sum 
in (48) includes the ~v(r0 ) of the continuous spec
trum and p(r0, r 0; E) does not drop off to zero with 
increasing r 0• 

It is easy to see that Im G-1 J":j Re G-1 for IE I 
:;:. E0 , i.e., the poles of the Green's function do not 
even approximately correspond to energy levels of 
the system. Indeed, the indeterminacy of the en
ergy of the unperturbed state is t.E J":j li/T, where 
T is the time between two collisions, 
T = [anohE/m]-1• Then 

~E ~ ~~ ;;- ~ (; )"', 

i.e., t.E/E ~ 1 for E ~ E 0• At such energies the 
scattering of the electron by the atoms of the gas 
leads to a strong mixing of unperturbed states, and 
the density of states is probably constant over the 
whole energy interval IE I~ E0 • 

The calculation of the level density of the states 
of the unbound electron with the help of (35) gives 

V ( m )'" N(E),= :rt2 fi2 b(E) (1(E2 + b2- E)-'''· (49) 

For E »Eo it follows from (49) that 

vy2 ( m)'" -
No(E}= ~ t/,2 1(E (49a) 

the usual expression for the density of unperturbed 
states of the continuous spectrum. But for E = 0 
we obtain from (49) 

N(O)= V _ (!!!_)'''lleo. 
:n: -y2 n2 • 

(49b) 

Expression (49b) cannot be regarded as exact, 
since (31a), (3lb), and hence also (49) were de-
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rived under the assumption E0 /E « 1. However, it 
follows from the general considerations above that 
the density of states is almost constant for IE I~ Eo 

and should naturally be determined by the param
eter E0• 

An interpolation formula can be given, which is 
simpler than (49), gives the exact result (49a) for 
E »Eo and in general reproduces approximately 
the heuristic quantity N(O): 

Vl'2 ( m )'" N(E)=---;;;;- fi2 l'IEI+eo, (50) 

where (50) is valid for E < 0 but IE I < Eo (see 
Fig. 2). 

Thus we see that Eo is the characteristic pa
rameter which determines the spectrum of highly 
excited atomic levels in a gas. In the calculation 
of the statistical sums of gases one usually does 
not include the contribution of the excited levels of 
the atoms (cf. [91 , Sec. 106). This is not always justi
fied. It has been shown by Larkin [ 101 how many 
levels must be included if one wants to take ac
count of the Debye screening of the ion. Here the 
number of levels is finite, and the energy I En I of 
the last level is given by 

(51) 

where Rd is the Debye screening radius. 
The quantity Eo is another competing limiting 

boundary of the spectrum of atomic levels in the 
calculation of the collision broadening. For the 
usual density n0 ~ 3 x 1019 em - 3 and a ~ 3 
x lo-15 cm2 we have EO~ 10-18 erg, i.e., in such 
cases the spectrum of bound states is bounded by 
En of (51) or (la). But the level density for the 
calculation of the statistical sum must as before 
be taken from ( 46). We call attention to the fact 
that Eo increases rapidly with llij(J. If a weakly 
bound state of the electron and the atomic scat
terer is possible, then a may be very large: 
u ~ lo- 13 cm2 (cf. [ 81 , Sec. 131). Then Eo ~lo-13 erg 
for a density llo ~ 3 X 1020 em - 3, i.e., the number 
of bound states is indeed small. But in taking ac
count of the spectrum of the free electrons one 
must use formula (50). In the calculation of the 
statistical sum this corresponds to an effective 
lowering of the ionization potential by E 0• This 
correction can become appreciable at high gas 
densities. In the case of small E 0 it is necessary 
to include the excited levels in the statistical sum, 
since their number is of order 106 for Eo 

~ 10-15 erg, and the statistical sum over the ex
cited states may be of the same order of magni
tude as the statistical sum over the free electrons. 

FIG. 2. Dependence of the level density of free electrons 
on the energy. Solid curve: according to (SO), dotted curve: 
N(E) without account of scattering. 

Let us now briefly consider the situation for 
Eo «b. En n + 1• In this case one may, with an ac
curacy ~·E0 /b.En, n+ 1, retain on the right-hand side 
of (37) only the terms corresponding to a single 
energy level: 

C( l E ( 2nfl2 )2 ~ n'l'm' 1 
nm; )=no\--;;;- f2..::::..Jlntm E-E -C(nl'm'·E) 

l'm' n ' 

(52) 

Thus the presence of gas atoms leads to an effec
tive removal of the degeneracy in l, where the 
broadening of the level with given l depends on 
the broadening of the levels with other l'. Equa
tion (52) can be solved only numerically. A calcu
lation of the broadening of an isolated degenerate 
atomic level in a gas is in progress and will be 
published. 

In conclusion I express my sincere gratitude to 
Prof. A. S. Kompaneets and the participants of his 
seminar in the theoretical section of the Institute 
of Chemical Physics for fruitful discussions. 
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